Udo Scheer

Optische Untersuchungen an EU(x)Sr(1-x)S

Magneto-Optik bei der Europium-Strontium-Mischreihe

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 1980 GRIN Verlag ISBN: 9783668615588

Dieses Buch bei GRIN:

Udo Scheer

Optische Untersuchungen an EU(x)Sr(1-x)S

Magneto-Optik bei der Europium-Strontium-Mischreihe

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com

Optische Untersuchungen an Eu_x Sr_{1-x} S

Diplom-Arbeit von U. Scheer

Institut für Experimentalphysik Lehrstuhl IV Ruhr-Universität Bochum

Juni 1980

Inhaltsübersicht

	Einleitung	
I	Physikalische Grundlagen	
	1. Die geschichtliche Entwicklung	3
	2. Optische Spektren und magnetische	
	Rotverschiebung in den Eu -	
	Chalkogeniden	8
	3. Theoretische Modelle	10
	a) Bandmodelle	1 1
	b) Exzitonen - Modell	13
	c) Erklärung der magnetischen Rot-	
	verschiebung in beiden Modellen .	15
	4. Magnetische und optische Eigen-	
	schaften von Eu _x Sr _{1-x} S	16
II	Meßapparate	
	1. Das Cary 14	19
	a) Optik	19
	b) Elektronik	22
	2. Der Kryostat	25
III	Probenpräparation	
	1. Herstellung der Proben	28
	2. Kontrolle der Zusammensetzung	
	mittels Röntgenfluoreszenzanalyse	
	(RFA)	29
	3. Kontrolle der Struktur der Proben	
	mittels Röntgenbeugungsanalyse	34
IV	Ergebnisse und Diskussion	
	1. Absorption bei Zimmertemperatur	37
		40
		43
	4. Absorption bei tiefen Temperaturen,	
	magnetische Rotverschiebung	49
V	Zusammenfassung	63
	Literaturverzeichnis	64

Einleitung

Diese Arbeit beschäftigt sich mit Messungen der optischen Absorption und Reflexion an dünnen aufgedampften Schichten des Verdünnungssystems $\mathrm{Eu_{x}Sr_{1-x}S}$. Dieses Mischsystem leitet sich von dem bekannten magnetischen Halbleiter EuS durch Ersetzen der $\mathrm{Eu^{++}}$ -Ionen durch diamagnetische $\mathrm{Sr^{++}}$ -Ionen ab. Es handelt sich also um ein magnetisches Verdünnungssystem. Insbesondere der Bereich x<0.5 ist in den letzten Jahren sehr interessant geworden, da in diesem Bereich die langreichweitige ferromagnetische Ordnung bei tiefen Temperaturen zusammenbricht und stattdessen "Spinglaseffekte" gefunden wurden. Die Ursache dieses Verhaltens ist noch nicht endgültig geklärt.

An unserem Institut wurden an dem System $\mathrm{Eu_xSr_{1-x}S}$ Photolumineszenzmessungen an pulverförmigem Material durchgeführt. Diese Lumineszenzmessungen zeigten im gesamten Konzentrationsbereich 0 < x < 1 eine durch die magnetische Ordnung bewirkte Rotverschiebung der Lumineszenzemission. Sowohl oberhalb der kritischen Konzentration für Spinglasverhalten (x>0.5) als auch im "Spinglas"-Bereich (x<0.5) wurden grundsätzlich die gleichen magneto-optischen Effekte gefunden, was darauf schließen läßt, daß die magnetische Nahordnung in beiden Bereichen ähnlich ist.

Die vorhandenen Lumineszenzmessungen sollen durch Absorptionsmessungen ergänzt werden.

Zu diesem Zweck mußten dünne Filme $Eu_xSr_{1-x}S$ hergestellt und die optische Absorption im Bereich der magnetischen Ordnung (T \leq 16 K)