Ayman Mohamed

The Metabolic Effects of Echinochrome Pigment Extracted from Sea Urchin on Diabetic Rats

Doctoral Thesis / Dissertation

YOUR KNOWLEDGE HAS VALUE

- We will publish your bachelor's and master's thesis, essays and papers
- Your own eBook and book sold worldwide in all relevant shops
- Earn money with each sale

Upload your text at www.GRIN.com and publish for free

Bibliographic information published by the German National Library:

The German National Library lists this publication in the National Bibliography; detailed bibliographic data are available on the Internet at http://dnb.dnb.de .

This book is copyright material and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased or as strictly permitted by applicable copyright law. Any unauthorized distribution or use of this text may be a direct infringement of the author s and publisher s rights and those responsible may be liable in law accordingly.

Imprint:

Copyright © 2018 GRIN Verlag ISBN: 9783668612952

This book at GRIN:

https://www.grin.com/document/387206

The Metabolic Effects of Echinochrome Pigment Extracted from Sea Urchin on Diabetic Rats

GRIN - Your knowledge has value

Since its foundation in 1998, GRIN has specialized in publishing academic texts by students, college teachers and other academics as e-book and printed book. The website www.grin.com is an ideal platform for presenting term papers, final papers, scientific essays, dissertations and specialist books.

Visit us on the internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com

Metabolic effects of Echinochrome pigment extracted from sea urchin on diabetic rats

A THESIS Submitted to the Faculty of Science, Cairo University In Partial Fulfillment of the Requirements for the Degree of Ph.D. (Molecular and integrated physiology)

BY

Ayman Saber Mohamed (M.Sc. Faculty of Science – Cairo University)

> Department of Zoology Faculty of Science Cairo University

ACKNOWLEDGMENT

First and foremost thanks to God

I would like to express my great appreciation and infinite gratitude to **Prof. Dr. Mohamed Assem Said Marie**, Professor of Environmental Physiology, Zoology Department, Faculty of Science, Cairo University, for his supervision, scientific guidance, and continuous help throughout the whole work.

Special gratitude and sincere thanks to **Prof. Dr. Amel Mahmoud Soliman** Professor of Physiology, Zoology Department, Faculty of Science, Cairo University, for her great assistance, supervision, valuable suggestions and for his kind help throughout this work and during the preparation of the manuscript.

I wish to express my deep thanks, grateful acknowledgement and gratitude to **Prof. Dr. Sohair Ramadan Fahmy**, Professor of Physiology, Zoology Department, Faculty of Science, Cairo University for her kind help during this work. Again, special thanks to staff members and my colleagues of the Zoology Department, Faculty of Science, Cairo University, for their encouragement.

Finally, I deeply thank my family for their love, support and encouragement through the work.

ABSTRACT

Student Name: Ayman Saber Mohamed

Title of the thesis: Metabolic effects of Echinochrome pigment extracted from sea urchin on diabetic rats Degree: Ph.D. in Zoology (Molecular and Integrated Physiology)

Diabetes mellitus is one of the most public metabolic disorders. It is mainly classified into type 1 and type 2. Echinochrome (Ech) is a pigment from sea urchins that has antioxidant, anti-microbial, anti-inflammatory and chelating abilities. The present study aimed to investigate the anti-diabetic mechanisms of Ech pigment in streptozotocin-induced diabetic rats. Thirty-six male Wistar albino rats were divided into two main groups (18 rats/group). Each group was divided into 3 subgroups (6 rats/subgroup); control, diabetic and Ech subgroups. Diabetic models were induced by a single dose of streptozotocin (60 mg/kg, i.p) for type 1 diabetes and by a high fat diet for 4 weeks before the injection of streptozotocin (30 mg/kg, i.p) for type 2 diabetes. Diabetic groups were treated orally with Ech (1 mg/kg body weight in 10% DMSO) daily for 4 weeks. Ech groups showed a reduction in the concentrations of glucose, globulins, triglycerides (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), creatinine, urea, uric acid, malondialdehyde (MDA) and the activities of arginase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyltransferase (GGT). While, it caused general increase in the levels of insulin, total bilirubin (TB), direct bilirubin (DB), indirect bilirubin (IB), total protein (TP), albumin, nitric oxide (NO) and the activities of glucose-6-phosphate dehydrogenase (G6PD), hexokinase, glutathione-S-transferase (GST), superoxide dismutase (SOD) and glutathione reduced (GSH). The histopathological investigation showed partial restoration of pancreatic islet cells and clear improvement in the hepatic and kidney architecture. The results of this study clearly show that Ech has anti-diabetic potential in both types of diabetes. The possible anti-diabetic mechanisms of Ech involving improved glucose metabolism, restoration of β cells, improve insulin secretion, improve insulin signaling and antioxidant activity

Key words: Diabetes-Echinochrome-Oxidative stress-Pancreas-Liver-Kidney-Histopathology.

Title	Page
I. Introduction	1
Aim of work	15
II. Materials and methods	16
II.1. Chemicals and reagents	16
II.2. Sea urchin Collection	16
II.3. Echinochrome (Ech) extraction	17
II.4. Experimental animals	17
II.5. Ethical Consideration	17
II.6. Induction of type 1 diabetes mellitus (T1DM)	18
II.7. Induction of type 2 diabetes mellitus (T2DM)	18
II.8. Experimental design	18
II.9. Determination of the physical parameters	19
II.9.1. Body weight	19
II.9.2. Urine volume	19
II.9.3. Hot plate test	20
II.9.4. Wire suspension	20
II.10. Animal handling and specimen collection	20
II.11. Samples preparation	21
II.11.1. Serum preparation	21
II.11.2. Liver and kidney homogenate preparation	21
II.11.3. Histopathological examination	21
II.12. Biochemical assessment	22
II.12.1. Diabetic markers	22
II.12.1.1. Determination of glucose	22
II.12.1.2. Determination of Insulin	23
II.12.1.3. Determination of arginase	24

List of contents

II.12.1.4.Determination of Hexokinase (HK)25II.12.1.5.Determinationofglucose-6-phosphate27dehydrogenase (G6PDH)II.12. 2. Serum biomarkers for liver function29II.12.2.1.Determination ofserum aminotransferase29enzymes (ASAT, ALAT)II.12.2.3.Determination of alkaline phosphatase31II.12.2.3.Determination of gamma-glutamyltransferase32(GGT)II.12.2.4.Determination of total bilirubin, direct & indirect33II.12.2.5.Determination of serum albumin and globulins36II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum triglycerides (TG)38II.12.3.3.Determination of serum total cholesterol (TC)39II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of ure and creatinine44clearanceII.12.4.Determination of ure and creatinine47II.12.4.3.Determination of ure and creatinine47II.12.4.3.Determination of ure and creatinine47II.12.4.3.Determination of ure acid45II.12.5.1.Determination of ure acid45II.12.5.2.Determination of lipid peroxide49(Malandialdehyde)II.12.5.2.Determination of catalase (CAT)50		
dehydrogenase (G6PDH)II.12. 2. Serum biomarkers for liver function11.12.2.1. Determination of serum aminotransferase29II.12.2.1. Determination of serum aminotransferase29enzymes (ASAT, ALAT)II.12.2.2. Determination of gamma-glutamyltransferase31II.12.2.3. Determination of gamma-glutamyltransferase32(GGT)II.12.2.4. Determination of total bilirubin, direct &indirect33II.12.2.5. Determination of serum albumin and globulins36II.12.3.1. Determination of serum triglycerides (TG)38II.12.3.2. Determination of serum total cholesterol (TC)39II.12.3.3. Determination of serum total cholesterol (TC)39II.12.3.4. Determination of High density lipoprotein cholesterol (HDL-C)II.12.4. Determination of creatinine and creatinine declearanceII.12.4. Determination of uric acid45II.12.4.1. Determination of uric acid47II.12.5.2. Determination of uric acid47II.12.5.1. Determination of Vidative Stress parameters49(Malandialdehyde)II.12.5.2. Determination of glutathione reduced (GSH)50	II.12.1.4. Determination of Hexokinase (HK)	25
II.12. 2. Serum biomarkers for liver function 29 II.12.2.1. Determination of serum aminotransferase 29 enzymes (ASAT, ALAT) 11.12.2.2. Determination of alkaline phosphatase 31 II.12.2.3. Determination of gamma-glutamyltransferase 32 (GGT) 11.12.2.4. Determination of total bilirubin, direct & indirect 33 II.12.2.5. Determination of total protein 35 II.12.2.6. Determination of serum albumin and globulins 36 II.12.3. Determination of serum triglycerides (TG) 38 II.12.3.1. Determination of serum total cholesterol (TC) 39 II.12.3.3. Determination of serum total cholesterol (TC) 39 II.12.3.4. Determination of High density lipoprotein cholesterol 41 (LDL-C) 11.12.4. Determination of creatinine and creatinine 44 clearance 41 II.12.4. Determination of uric acid 45 II.12.4.2. Determination of uric acid 45 II.12.4.3. Determination of uric acid 47 <td>II.12.1.5. Determination of glucose</td> <td>e-6-phosphate 27</td>	II.12.1.5. Determination of glucose	e-6-phosphate 27
II.12.2.1.Determination of serum aminotransferase29enzymes (ASAT, ALAT)II.12.2.2.Determination of alkaline phosphatase31II.12.2.3.Determination of gamma-glutamyltransferase32(GGT)II.12.2.4.Determination of total bilirubin, direct &indirect33II.12.2.5.Determination of total protein35II.12.2.6.Determination of serum albumin and globulins36II.12.3.Determination of lipid profile38II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination of High density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of uric acid45II.12.4.1.Determination of uric acid45II.12.4.3.Determination of uric acid45II.12.4.3.Determination of uric acid45II.12.4.3.Determination of uric acid45II.12.4.3.Determination of uric acid45II.12.5.1.Determination of uric acid47II.12.5.1.Determination of lipid peroxide49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	dehydrogenase (G6PDH)	
enzymes (ASAT, ALAT)II.12.2.2. Determination of alkaline phosphatase31II.12.2.3. Determination of gamma-glutamyltransferase32(GGT)33II.12.2.4. Determination of total bilirubin, direct & indirect33II.12.2.5. Determination of total protein35II.12.2.6. Determination of serum albumin and globulins36II.12.3. Determination of lipid profile38II.12.3.1. Determination of serum triglycerides (TG)38II.12.3.2. Determination of serum total cholesterol (TC)39II.12.3.3. Determination low density lipoprotein cholesterol41(LDL-C)11.12.3.4. Determination of High density lipoprotein43cholesterol (HDL-C)11.12.4.1. Determination of creatinine and creatinine44clearance47II.12.4.3. Determination of uric acid45II.12.4.3. Determination of uric acid45II.12.4.3. Determination of uric acid45II.12.4.1. Determination of uric acid45II.12.4.2. Determination of uric acid45II.12.4.3. Determination of uric acid45II.12.4.3. Determination of uric acid45II.12.4.3. Determination of uric acid47II.12.5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)50	II.12. 2. Serum biomarkers for liver function	29
II.12.2.2.Determination of alkaline phosphatase31II.12.2.3.Determination of gamma-glutamyltransferase32(GGT)II.12.2.4.Determination of total bilirubin, direct &indirect33II.12.2.5.Determination of total protein35II.12.2.6.Determination of serum albumin and globulins36II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination of serum total cholesterol (TC)39II.12.3.4.Determination of High density lipoprotein cholesterol (HDL-C)43II.12.4.1.Determination of creatinine and creatinine clearance45II.12.4.2.Determination of uric acid45II.12.4.3.Determination of urea47II.12.5.1.Determination of urea49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	II.12.2.1. Determination of serum ami	inotransferase 29
II.12.2.3.Determination of gamma-glutamyltransferase32(GGT)II.12.2.4.Determination of total bilirubin, direct &indirect33II.12.2.5.Determination of total protein35II.12.2.6.Determination of serum albumin and globulins36II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum triglycerides (TG)38II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.1.Determination of creatinine and creatinine44clearanceII.12.4.3.Determination of uric acid45II.12.4.3.Determination of urica acid45II.12.5.1.Determination of Oxidative Stress parameters49II.12.5.2.Determination of glutathione reduced (GSH)50	enzymes (ASAT, ALAT)	
(GGT)II.12.2.4. Determination of total bilirubin, direct &indirect33II.12.2.5. Determination of total protein35II.12.2.6. Determination of serum albumin and globulins36II.12.3. Determination of lipid profile38II.12.3.1. Determination of serum triglycerides (TG)38II.12.3.2. Determination of serum total cholesterol (TC)39II.12.3.3. Determination low density lipoprotein cholesterol41(LDL-C)11.12.3.4. Determination of High density lipoprotein43cholesterol (HDL-C)11.12.4.1. Determination of creatinine and creatinine44clearance4747II.12.4.3. Determination of uric acid45II.12.4.1. Determination of uric acid45II.12.4.2. Determination of uric acid45II.12.5.1. Determination of Oxidative Stress parameters49II.12.5.2. Determination of glutathione reduced (GSH)50	II.12.2.2. Determination of alkaline phosphata	se 31
II.12.2.4.Determination of total bilirubin, direct &indirect33II.12.2.5.Determination of total protein35II.12.2.6.Determination of serum albumin and globulins36II.12.3.0Determination of lipid profile38II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.1.Determination of creatinine and creatinine44clearanceII.12.4.2.Determination of uric acid45II.12.4.3.Determination of uric acid4547II.12.5.Determination of Oxidative Stress parameters49II.12.5.1.Determination of lipid peroxide49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	II.12.2.3. Determination of gamma-glutan	nyltransferase 32
II.12.2.5.Determination of total protein35II.12.2.6.Determination of serum albumin and globulins36II.12.3.1.Determination of lipid profile38II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of kidney Function tests44clearanceII.12.4.Determination of uric acid45II.12.4.3.Determination of uric acid4547II.12.5.Determination of Oxidative Stress parameters49II.12.5.1.Determination of lipid peroxide49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	(GGT)	
II.12.2.6.Determination of serum albumin and globulins36II.12.3. Determination of lipid profile38II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of kidney Function tests44clearanceII.12.4.Determination of uric acid45II.12.4.3.Determination of uric acid47II.12.5.Determination of Oxidative Stress parameters49II.12.5.1.Determination of lipid peroxide49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	II.12.2.4. Determination of total bilirubin, dire	ect & indirect 33
II.12. 3. Determination of lipid profile38II.12. 3. Determination of serum triglycerides (TG)38II.12.3.1. Determination of serum total cholesterol (TC)39II.12.3.2. Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4. Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4. Determination of kidney Function tests44II.12.4.1. Determination of creatinine and creatinine44clearance45II.12.4.3. Determination of uric acid45II.12.4.3. Determination of uric acid45II.12.5.1. Determination of Oxidative Stress parameters49(Malandialdehyde)II.12.5.2. Determination of glutathione reduced (GSH)50	II.12.2.5. Determination of total protein	35
II.12.3.1.Determination of serum triglycerides (TG)38II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of kidney Function tests44II.12.4.1.Determination of creatinine and creatinine44clearance4545II.12.4.3.Determination of uric acid45II.12.5.1.Determination of Oxidative Stress parameters49II.12.5.2.Determination of glutathione reduced (GSH)50	II.12.2.6. Determination of serum albumin and	l globulins 36
II.12.3.2.Determination of serum total cholesterol (TC)39II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of kidney Function tests44II.12.4.1.Determination of creatinine and creatinine44clearance45II.12.4.2.Determination of uric acid45II.12.4.3.Determination of urea47II.12.5.1.Determination of Oxidative Stress parameters49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	II.12. 3. Determination of lipid profile	38
II.12.3.3.Determination low density lipoprotein cholesterol41(LDL-C)II.12.3.4.Determination of High density lipoprotein43cholesterol (HDL-C)II.12.4.Determination of kidney Function tests44II.12.4.1.Determination of creatinine and creatinine44clearance4545II.12.4.2.Determination of uric acid45II.12.5.2.Determination of Oxidative Stress parameters49II.12.5.2.Determination of glutathione reduced (GSH)50	II.12.3.1. Determination of serum triglycerides	s (TG) 38
(LDL-C)II.12.3.4. Determination of High density lipoprotein cholesterol (HDL-C)43II.12. 4. Determination of kidney Function tests44II.12.4.1. Determination of creatinine and creatinine clearance44II.12.4.2. Determination of uric acid45II.12.4.3. Determination of urea47II.12. 5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)50	II.12.3.2. Determination of serum total cholest	terol (TC) 39
II.12.3.4.Determination of High density lipoprotein cholesterol (HDL-C)43II.12.4.Determination of kidney Function tests44II.12.4.1.Determination of creatinine and creatinine clearance44II.12.4.2.Determination of uric acid45II.12.4.3.Determination of urea47II.12.5.Determination of Oxidative Stress parameters49II.12.5.1.Determination of lipid peroxide49(Malandialdehyde)50	II.12.3.3. Determination low density lipoprote	in cholesterol 41
cholesterol (HDL-C) II.12. 4. Determination of kidney Function tests II.12.4.1. Determination of creatinine and creatinine 44 clearance II.12.4.2. Determination of uric acid 45 II.12.4.3. Determination of urea 47 II.12. 5. Determination of Oxidative Stress parameters 49 II.12.5.1. Determination of lipid peroxide 49 (Malandialdehyde) II.12.5.2. Determination of glutathione reduced (GSH) 50	(LDL-C)	
II.12. 4. Determination of kidney Function testsII.12.4.1. Determination of creatinine and creatinine44clearanceII.12.4.2. Determination of uric acid45II.12.4.3. Determination of urea47II.12. 5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)II.12.5.2. Determination of glutathione reduced (GSH)50	II.12.3.4. Determination of High density	lipoprotein 43
II.12.4.1. Determination of creatinine and creatinine44clearance45II.12.4.2. Determination of uric acid45II.12.4.3. Determination of urea47II.12. 5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)11.12.5.2. Determination of glutathione reduced (GSH)50	cholesterol (HDL-C)	
clearanceII.12.4.2. Determination of uric acid45II.12.4.3. Determination of urea47II.12. 5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)11.12.5.2. Determination of glutathione reduced (GSH)50	II.12. 4. Determination of kidney Function tests	
II.12.4.2.Determination of uric acid45II.12.4.3.Determination of urea47II.12. 5.Determination of Oxidative Stress parameters49II.12.5.1.DeterminationoflipidII.12.5.2.Determination of glutathione reduced (GSH)50	II.12.4.1. Determination of creatinine an	d creatinine 44
II.12.4.3. Determination of urea47II.12. 5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)11.12.5.2. Determination of glutathione reduced (GSH)50	clearance	
II.12. 5. Determination of Oxidative Stress parameters49II.12.5.1. Determination of lipid peroxide49(Malandialdehyde)II.12.5.2. Determination of glutathione reduced (GSH)50	II.12.4.2. Determination of uric acid	45
II.12.5.1.Determinationoflipidperoxide49(Malandialdehyde)II.12.5.2.Determination of glutathione reduced (GSH)50	II.12.4.3. Determination of urea	47
(Malandialdehyde) II.12.5.2. Determination of glutathione reduced (GSH) 50	II.12. 5. Determination of Oxidative Stress parar	meters 49
II.12.5.2. Determination of glutathione reduced (GSH) 50	II.12.5.1. Determination of lipid	peroxide 49
	(Malandialdehyde)	
II.12.5.3. Determination of catalase (CAT) 51	II.12.5.2. Determination of glutathione reduce	d (GSH) 50
	II.12.5.3. Determination of catalase (CAT)	51

II.12.5.4.	Determination of superoxide dismutase (SOD)	53
II.12.5.5.	Determination of glutathione-S-transferase (GST)	54
II.12.5.6.	Determination of nitric oxide (NO)	55
II.13. Histolo	ogical examination	56
II.14. Statisti	cal analysis	57
III. Results		58
III.1. Physical pa	rameters	58
III.1.1.	Body weight	58
III.1.2.	Urine volume	59
III.1.3.	Hot plate test	60
III.1.4.	Wire suspension	62
III.2. Diabetic m	arkers	64
III.2.1.	Serum glucose	64
III.2.2.	Insulin	65
III.2.3.	Serum arginase	67
III.2.4.	Liver hexokinase	68
III.2.5.	Liver glucose-6-phosphate dehydrogenase	70
(G6PD)		
III.3.Serum biom	arkers for liver function	71
III.3.1.	Serum aspartate aminotransferase (AST)	71
III.3.2.	Serum alanine aminotransferase (ALT)	73
III.3.3.	Serum alkaline phosphatase (ALP)	74
III.3.4.	Serum gamma glutamyl transferase (GGT)	76
III.3.5.	Serum total bilirubin (TB)	77
III.3.6.	Serum direct bilirubin (DB)	79
III.3.7.	Serum indirect bilirubin (IB)	80
III.3.8.	Serum total protein (TP)	81
III.3.9.	Serum albumin	83

	Sorum globuling	85
	Serum globulins	
III.3.11.	Albumin/globulins ratio (A/G)	86
III.4. Lipid profi		88
III.4.1.	Serum triglycerides (TG)	88
III.4.2.	Serum total cholesterol (TC)	89
III.4.3.	Serum low density lipoprotein cholesterol (LDL-	91
C)		
III.4.4.	Serum high density lipoprotein cholesterol (HDL-	92
C)		
III.5. Kidney Fur	nction tests	88
III.5.1.	Serum creatinine	94
III.5.2.	Urine creatinine	95
III.5.3.	Creatinine clearance	97
III.5.4.	Serum uric acid	98
III.5.5.	Urine uric acid	100
III.5.6.	Serum urea	101
III.5.7.	Urine urea	103
III.6. Oxidative s	stress parameters in liver	104
III.6.1.	Liver malondialdehyde (MDA)	104
III.6.2.	Liver glutathione reduced (GSH)	106
III.6.3.	Liver catalase (CAT)	107
III.6.4.	Liver superoxide dismutase (SOD)	109
III.6.5.	Liver glutathione-S-transferase (GST)	110
III.6.6.	Liver nitric oxide (NO)	112
III.7. Oxidative s	stress parameters in kidney	113
III.7.1.	Kidney malondialdehyde (MDA)	113
III.7.2.	Kidney glutathione reduced (GSH)	115
III.7.3.	Kidney catalase (CAT)	116
III.7.4.	Kidney superoxide dismutase (SOD)	118

III.	7.5.	Kidney glutathione-S-transferase (GST)	119
III.	7.6.	Kidney nitric oxide (NO)	121
III.8. His	topathol	ogical examination	122
III.	8.1.	Histopathological examination of pancreas	122
III.	8.2.	Histopathological examination of liver	124
III.	8.3.	Histopathological examination of kidney	126
IV. Discussion	n		128
Conclusio	on		167
V. Summary			168
VI. Reference	s		171

List of tables

	Title	Page
Table 1:	The curative potency of echinochrome (Ech) on the final body weight (gm) of diabetic rats.	58
Table 2:	The curative potency of echinochrome (Ech) on urine volume (ml/24hr) of diabetic rats.	60
Table 3:	The curative potency of echinochrome (Ech) on hot plate period (Sec) of diabetic rats.	61
Table 4:	The curative potency of echinochrome (Ech) on wire suspension period (Sec) of diabetic rats.	63
Table 5:	The curative potency of echinochrome (Ech) on glucose concentration (mg/dl) of diabetic rats.	64
Table 6:	The curative potency of echinochrome (Ech) on insulin concentration (μ U/ml) of diabetic rats.	66
Table 7:	The curative potency of echinochrome (Ech) on arginase activity (U/L) of diabetic rats.	67
Table 8:	The curative potency of echinochrome (Ech) on hexokinase activity (U/min/ gm.tissue) of diabetic rats.	69
Table 9:	The curative potency of echinochrome (Ech) on glucose-6- phosphate dehydrogenase (G6PD) activity (U/min/ gm.tissue) of diabetic rats.	70
Table 10:	The curative potency of echinochrome (Ech) on aspartate aminotransferase (AST) (U/ml) of diabetic rats.	72
Table 11:	The curative potency of echinochrome (Ech) on alanine aminotransferase (ALT) activity (U/ml) of diabetic rats.	73
Table 12:	The curative potency of echinochrome (Ech) on alkaline phosphatase (ALP) activity (U/L) of diabetic rats.	75
Table 13:	The curative potency of echinochrome (Ech) on γ -glutamyltransferase (GGT) activity (U/L) of diabetic rats.	76
Table 14:	The curative potency of echinochrome (Ech) on total bilirubin concentration (mg/dl) of diabetic rats.	78
Table 15:	The curative potency of echinochrome (Ech) on direct bilirubin (DB) concentration (mg/dl) of diabetic rats.	79
Table 16:	The curative potency of echinochrome (Ech) on indirect bilirubin (IB) concentration (mg/dl) of diabetic rats.	81

Table 17:	The curative potency of echinochrome (Ech) on total protein (TP) concentration (g/dl) of diabetic rats.	82
Table 18:	The curative potency of echinochrome (Ech) on albumin concentration (g/dl) of diabetic rats.	83
Table 19:	The curative potency of echinochrome (Ech) on globulins concentration (g/dl) of diabetic rats.	85
Table 20:	The curative potency of echinochrome (Ech) on albumin/ globulins (A/G) ratio of diabetic rats.	87
Table 21:	The curative potency of echinochrome (Ech) on triglycerides (TG) concentration (mg/dl) of diabetic rats.	88
Table 22:	The curative potency of echinochrome (Ech) on total cholesterol (TC) concentration (mg/dl) of diabetic rats.	90
Table 23:	The curative potency of echinochrome (Ech) on low density lipoprotein cholesterol (LDL-C) concentration (mg/dl) of diabetic rats.	91
Table 24:	The curative potency of echinochrome (Ech) on high density lipoprotein cholesterol (HDL-C) concentration (mg/dl) of diabetic rats.	93
Table 25:	The curative potency of echinochrome (Ech) on serum creatinine concentration (mg/dl) of diabetic rats.	94
Table 26:	The curative potency of echinochrome (Ech) on urine creatinine concentration (mg/dl) of diabetic rats.	96
Table 27:	The curative potency of echinochrome (Ech) on creatinine clearance (ml/min) of diabetic rats.	97
Table 28:	The curative potency of echinochrome (Ech) on serum uric acid concentration (mg/dl) of diabetic rats.	99
Table 29:	The curative potency of echinochrome (Ech) on urine uric acid concentration (mg/dl) of diabetic rats.	100
Table 30:	The curative potency of echinochrome (Ech) on serum urea concentration (g/dl) of diabetic rats.	102
Table 31:	The curative potency of echinochrome (Ech) on urine urea concentration (g/dl) of diabetic rats.	103
Table 32:	The curative potency of echinochrome (Ech) on liver malondialdehyde (MDA) concentration (nmol/g.tissue) of diabetic rats.	105

Table 33:	The curative potency of echinochrome (Ech) on liver glutathione reduced (GSH) concentration (mg/g.protein) of diabetic rats.	106
Table 34:	The curative potency of echinochrome (Ech) on liver catalase (CAT) activity (U/g. protein) of diabetic rats.	108
Table 35:	The curative potency of echinochrome (Ech) on liver superoxide dismutase (SOD) activity (U/g. protein) of diabetic rats.	109
Table 36:	The curative potency of echinochrome (Ech) on liver glutathione-S-transferase (GST) activity (U/ g. protein) of diabetic rats.	111
Table 37:	The curative potency of echinochrome (Ech) on liver nitric oxide (NO) concentration (μ mol/L) of diabetic rats.	112
Table 38:	The curative potency of echinochrome (Ech) on kidney malondialdehyde (MDA) concentration (nmol/g. tissue) of diabetic rats.	114
Table 39:	The curative potency of echinochrome (Ech) on kidney glutathione reduced (GSH) concentration (mg/ g. tissue) of diabetic rats.	115
Table 40:	The curative potency of echinochrome (Ech) on kidney catalase (CAT) activity (U/g. tissue) of diabetic rats.	117
Table 41:	The curative potency of echinochrome (Ech) on kidney superoxide dismutase (SOD) activity (U/ g. tissue) of diabetic rats.	118
Table 42:	The curative potency of echinochrome (Ech) on kidney glutathione-S-transferase (GST) activity (U/ g. tissue) of diabetic rats.	120
Table 43:	The curative potency of echinochrome (Ech) on kidney nitric oxide (NO) concentration (µmol/L) of diabetic rats.	121

List of figures

	Title	Page
Figure 1:	Formation of advanced glycation endproducts.	7
Figure 2:	The polyol pathway.	8
Figure 3:	Relation between NADPH and GSH.	10
Figure 4:	Synthesis of NO.	10
Figure 5:	Activation of PKC.	11
Figure 6:	External shape of Paracentrotus lividus.	16
Figure 7:	The curative potency of echinochrome (Ech) on the final body weight (gm) of diabetic rats.	59
Figure 8:	The curative potency of echinochrome (Ech) on urine volume (ml/24hr) of diabetic rats.	60
Figure 9:	The curative potency of echinochrome (Ech) on hot plate period (Sec) of diabetic rats.	62
Figure 10:	The curative potency of echinochrome (Ech) on wire suspension period (Sec) of diabetic rats.	63
Figure 11:	The curative potency of echinochrome (Ech) on glucose concentration (mg/dl) of diabetic rats.	65
Figure 12:	The curative potency of echinochrome (Ech) on insulin concentration (μ U/ml) of diabetic rats.	66
Figure 13:	The curative potency of echinochrome (Ech) on arginase activity (U/L) of diabetic rats.	68
Figure 14:	The curative potency of echinochrome (Ech) on hexokinase activity (U/min/ gm.tissue) of diabetic rats.	69
Figure 15:	The curative potency of echinochrome (Ech) on glucose-6- phosphate dehydrogenase (G6PD) activity (U/min/ gm.tissue) of diabetic rats.	71
Figure 16:	The curative potency of echinochrome (Ech) on aspartate aminotransferase (AST) (U/ml) of diabetic rats.	72
Figue 17:	The curative potency of echinochrome (Ech) on alanine aminotransferase (ALT) activity (U/ml) of diabetic rats.	74

Figure 18:	The curative potency of echinochrome (Ech) on alkaline phosphatase (ALP) activity (U/L) of diabetic rats.	75
Figure 19:	The curative potency of echinochrome (Ech) on γ -glutamyltransferase (GGT) activity (U/L) of diabetic rats.	77
Figure 20:	The curative potency of echinochrome (Ech) on total bilirubin concentration (mg/dl) of diabetic rats.	78
Figure 21:	The curative potency of echinochrome (Ech) on direct bilirubin (DB) concentration (mg/dl) of diabetic rats.	80
Figure 22:	The curative potency of echinochrome (Ech) on indirect bilirubin (IB) concentration (mg/dl) of diabetic rats.	81
Figure 23:	The curative potency of echinochrome (Ech) on total protein (TP) concentration (g/dl) of diabetic rats.	83
Figure 24:	The curative potency of echinochrome (Ech) on albumin concentration (g/dl) of diabetic rats.	84
Figure 25:	The curative potency of echinochrome (Ech) on globulins concentration (g/dl) of diabetic rats.	86
Figure 26:	The curative potency of echinochrome (Ech) on albumin/ globulins (A/G) ratio of diabetic rats.	87
Figure 27:	The curative potency of echinochrome (Ech) on triglycerides (TG) concentration (mg/dl) of diabetic rats.	89
Figure 28:	The curative potency of echinochrome (Ech) on total cholesterol (TC) concentration (mg/dl) of diabetic rats.	90
Figure 29:	The curative potency of echinochrome (Ech) on low density lipoprotein cholesterol (LDL-C) concentration (mg/dl) of diabetic rats.	92
Figure 30:	The curative potency of echinochrome (Ech) on high density lipoprotein cholesterol (HDL-C) concentration (mg/dl) of diabetic rats.	93
Figure 31:	The curative potency of echinochrome (Ech) on serum creatinine concentration (mg/dl) of diabetic rats.	95
Figure 32:	The curative potency of echinochrome (Ech) on urine creatinine concentration (mg/dl) of diabetic rats.	96
Figure 33:	The curative potency of echinochrome (Ech) on creatinine clearance (ml/min) of diabetic rats.	98

Figure 34:	The curative potency of echinochrome (Ech) on serum uric acid concentration (mg/dl) of diabetic rats.	99
Figure 35:	The curative potency of echinochrome (Ech) on urine uric acid concentration (mg/dl) of diabetic rats.	101
Figure 36:	The curative potency of echinochrome (Ech) on serum urea concentration (g/dl) of diabetic rats.	102
Figure 37:	The curative potency of echinochrome (Ech) on urine urea concentration (g/dl) of diabetic rats.	104
Figure 38:	The curative potency of echinochrome (Ech) on liver malondialdehyde (MDA) concentration (nmol/g.tissue) of diabetic rats.	105
Figure 39:	The curative potency of echinochrome (Ech) on liver glutathione reduced (GSH) concentration (mg/g.protein) of diabetic rats.	107
Figure 40:	The curative potency of echinochrome (Ech) on liver catalase (CAT) activity (U/g. protein) of diabetic rats.	108
Figure 41:	The curative potency of echinochrome (Ech) on liver superoxide dismutase (SOD) activity (U/g. protein) of diabetic rats.	110
Figure 42:	The curative potency of echinochrome (Ech) on liver glutathione-S-transferase (GST) activity (U/ g. protein) of diabetic rats.	111
Figure 43:	The curative potency of echinochrome (Ech) on liver nitric oxide (NO) concentration (µmol/L) of diabetic rats.	113
Figure 44:	The curative potency of echinochrome (Ech) on kidney malondialdehyde (MDA) concentration (nmol/g. tissue) of diabetic rats.	114
Figure 45:	The curative potency of echinochrome (Ech) on kidney glutathione reduced (GSH) concentration (mg/ g. tissue) of diabetic rats.	116
Figure 46:	The curative potency of echinochrome (Ech) on kidney catalase (CAT) activity (U/g. tissue) of diabetic rats.	117
Figure 47:	The curative potency of echinochrome (Ech) on kidney superoxide dismutase (SOD) activity (U/ g. tissue) of diabetic rats.	119
Figure 48:	The curative potency of echinochrome (Ech) on kidney glutathione-S-transferase (GST) activity (U/ g. tissue) of diabetic rats.	120
Figure 49:	The curative potency of echinochrome (Ech) on kidney nitric oxide (NO) concentration (µmol/L) of diabetic rats.	122
Figure 50:	Photomicrograph of hematoxylin and eosin stained pancreas sections.	123
Figure 51:	Photomicrograph of hematoxylin and eosin stained liver	125

	sections.	
Figure 52:	Photomicrograph of hematoxylin and eosin stained kidney	127
	sections.	
Figure 53:	The hypoglycemic mechanisms of echinochrome.	166

Abbreviation	Meaning
A/G	Albumin/globulins
AAP	Amino-antipyrine
AAP	Aminophenazone
Ach	Acetylcholine
AchE	Acetylcholine esterase
AGEs	Advanced glycation endproducts
ALP	Alkaline phosphatase
ALT	Alanine aminotransferase
anti-GAD	Anti-glutamic acid decarboxylate
AR	Aldose reductase
AST	Aspartate aminotransferase
BCG	Bromocresol green
CAT	Catalase
CE	Cholesterol esterase
CO	Cholesterol oxidase
CVD	Cardiovascular disorders
DAG	Diacylglycerol
DB	Direct bilirubin
DCHB	Dichloro-2-hydroxybenzenesulfonic acid
DHBS	Dichloro-2-hydroxybenzene sulfonic acid
DM	Diabetes mellitus
DMSO	Dimethyl sulfoxide
DTNB	Dithiobis-2-nitrobenzoic acid
Ech	Echinochrome
G6PDH	Glucose-6-phosphate dehydrogenase
GGT	Gamma-glutamyltransferase
GLUT	Glucose transporter
GOD	Glucose oxidase
GSH	Reduced glutathione
GSH	Glutathione reduced
GST	Glutathione-S-transferase
H&E	Hematoxylin and eosin
HDL-C	High density lipoproteins cholesterol
HFD	High fat diet
HK	Hexokinase
HMOX	Heme oxygenase
IA-2	Insulinoma-associated protein-2
IB	Indirect bilirubin
ICA	Islet cell antibody

List of abbreviation

LDL-C	Low density lipoprotein cholesterol
MDA	Malondialdehyde
NAD+	Nicotinamide adenine dinucleotide
NEDA	N-(1-naphthyl)-ethylenediamine
NO	Nitric oxide
NOS	Nitric oxide synthase
PI3K	Phosphatidylinositol-3 kinase
PIs	Phosphatidylinositides
РКС	protein kinase C
PLC	Phospholipase C
PLD	Phospholipase D
POD	Peroxidase
PP	Pancreatic polypeptide
ROS	Reactive oxygen species
SDH	Sorbitol dehydrogenase
SOD	Superoxide dismutase
STZ	Streptozotocin
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TAGEs	Toxic advanced glycation endproducts
TB	Total bilirubin
TBA	Thiobarbituric acid
TC	Total cholesterol
TCA	Trichloroacetic acid
TG	Triglycerides
TP	Total protein
VLDL	Very low density lipoproteins

I. Introduction

Glucose is an essential metabolic substrate of all mammalian cells. Most of the energy needed to sustain life is delivered by oxidation of glucose (**Pischetsrieder, 2000**). Although glucose is required by all cells, its main consumer is the brain in the fasting or postabsorptive phase, which accounts for approximately 50% of the body's glucose use. Another 25% of glucose disposal occurs in the splanchnic area (liver and gastrointestinal tissue), and the remaining 25% takes place in insulin-dependent tissues, including muscles and adipose tissues (**DeFronzo, 2004**). Approximately 85% of endogenous glucose production is derived from the liver, with glycogenolysis and gluconeogenesis contributing equally to the basal rate of hepatic glucose production. The remaining ~15% of glucose is produced by the kidneys (**Mari et al., 1994; DeFronzo, 2004**).

The pancreas is considered as a doubled-entity organ, with both exocrine and endocrine components, reciprocally interacting with a composed system whose function is relevant for digestion, absorption, and homeostasis of nutrients (**Piciucchi** *et al.*, 2015). Pancreatic islets composed of many types of cells, including insulin-producing β cells, glucagon-releasing α cells, somatostatin-producing δ cells, pancreatic polypeptide (PP)-containing cells and ghrelin containing ε cells (**Damasceno** *et al.*, 2014). All of these hormones are involved in the regulation of nutrient metabolism and glucose homeostasis (Assmann *et al.*, 2009).

Normally, following glucose ingestion, the increase in plasma glucose concentration triggers insulin release, which stimulates splanchnic and peripheral glucose uptake and suppresses endogenous glucose production. In healthy adults, blood glucose levels are tightly regulated within a range of 70 to 99 mg/dl, and maintained by specific hormones (e.g., insulin, glucagon,

1

incretins) as well as the central and peripheral nervous system, to meet metabolic requirements (Wardlaw and Hampl, 2007).

Various cells and tissues (within the brain, muscles, gastrointestinal tract, liver, kidney, and adipose tissue) are also involved in blood glucose regulation by means of uptake, metabolism, storage, and excretion (DeFronzo, 2004). The majority of glucose uptake in peripheral tissues occurs in muscles, where glucose may either be used immediately for energy or stored as glycogen (Guyton and Hall, 2006). Transport of glucose into muscles is insulindependent, and thus requires insulin for activation of the major enzyme (glycogen synthase) that regulates production of glycogen (Porte et al., 2003). While adipose tissue is responsible for a much smaller amount of peripheral glucose uptake (2%-5%), it plays an important role in the maintenance of total body glucose homeostasis by regulating the release of free fatty acids (which increase gluconeogenesis) from stored triglycerides, influencing insulin sensitivity in the muscles and liver (DeFronzo, 2004). While the liver does not require insulin to facilitate glucose uptake, it needs insulin to regulate glucose output (DeFronzo, 2004). So, for example, when insulin concentrations are low, hepatic glucose output rises (Porte et al., 2003). Additionally, insulin helps the liver to store most of the absorbed glucose in the form of glycogen (Guyton and Hall, 2006). The kidneys are increasingly recognized to play an important role in glucose homeostasis via release of glucose into the circulation (gluconeogenesis), uptake of glucose from the circulation to meet renal energy needs, and reabsorption of glucose at the proximal tubule (Wright et al., 2007). The kidneys also aid in the elimination of excess glucose (when levels exceed approximately 180 mg/dL, though this threshold may rise during chronic hyperglycemia by facilitating its excretion in the urine (ADA, 2008).

Diabetes mellitus (DM) is a metabolic disorder resulting from a defect in insulin secretion, insulin action, or both (Kumar and Clark, 2002). Insulin deficiency, in turn, leads to chronic hyperglycemia with disturbances of carbohydrate, fat and protein metabolism (Lindberg *et al.*, 2004). DM is considered as one of the most dangerous metabolic disorders in the world (Sosale *et al.*, 2015). It is a complex and potentially debilitating disease that affects an estimated 8.3% of the adult population or 382 million people worldwide (IDF, 2013). Egypt will have at least 8.6 million adults with diabetes and will be the tenth largest population of diabetics in the world (Shaw *et al.*, 2010). The eleventh most important cause of premature mortality in Egypt is diabetes is the six most important cause of disability burden in Egypt (NICHP, 2004).

DM generally classified into type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Type 1 diabetes (T1DM) is an autoimmune disease, which characterized by loss of insulin producing β cells and reliance on exogenous insulin for survival (Simmons and Michels, 2015). T1DM is characterized by mononuclear infiltration of the pancreatic islets, followed by the destruction of insulin-producing β cells (Mathis *et al.*, 2001). The two main forms of clinical type 1 diabetes are type 1a (about 90% of type 1 cases in Europe) which is thought to be due to immunological destruction of pancreatic β cells, resulting in insulin deficiency; and type 1b (idiopathic, about 10% of type 1 diabetes), in which there is no evidence of autoimmunity (Bastaki, 2005). Type 1a is characterized by the presence of islet cell antibody (ICA), anti-glutamic acid decarboxylate (anti-GAD) and insulinoma-associated protein-2 (IA-2) that identify the autoimmune process with β cells destruction (Zimmet, *et al.*, 2004). Autoimmune diseases such as Grave's disease, Hashimoto's thyroiditis and Addison's disease may be associated with T1a (Atkinson and Maclaren, 1994).