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ABSTRACT 

Student Name: Ayman Saber Mohamed 

Title of the thesis: Metabolic effects of Echinochrome pigment extracted from sea 

urchin on diabetic rats 

Degree: Ph.D. in Zoology (Molecular and Integrated Physiology) 

Diabetes mellitus is one of the most public metabolic disorders. It is mainly 

classified into type 1 and type 2. Echinochrome (Ech) is a pigment from sea urchins 

that has antioxidant, anti-microbial, anti-inflammatory and chelating abilities. The 

present study aimed to investigate the anti-diabetic mechanisms of Ech pigment in 

streptozotocin-induced diabetic rats. Thirty-six male Wistar albino rats were divided 

into two main groups (18 rats/group). Each group was divided into 3 subgroups (6 

rats/subgroup); control, diabetic and Ech subgroups. Diabetic models were induced by a 

single dose of streptozotocin (60 mg/kg, i.p) for type 1 diabetes and by a high fat diet 

for 4 weeks before the injection of streptozotocin (30 mg/kg, i.p) for type 2 diabetes. 

Diabetic groups were treated orally with Ech (1 mg/kg body weight in 10% DMSO) 

daily for 4 weeks. Ech groups showed a reduction in the concentrations of glucose, 

globulins, triglycerides (TG), total cholesterol (TC), low density lipoprotein cholesterol 

(LDL-C), creatinine, urea, uric acid, malondialdehyde (MDA) and the activities of 

arginase, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 

phosphatase (ALP) and gamma-glutamyltransferase (GGT). While, it caused general 

increase in the levels of insulin, total bilirubin (TB), direct bilirubin (DB), indirect 

bilirubin (IB), total protein (TP), albumin, nitric oxide (NO) and the activities of 

glucose-6-phosphate dehydrogenase (G6PD), hexokinase, glutathione-S-transferase 

(GST), superoxide dismutase (SOD) and glutathione reduced (GSH). The 

histopathological investigation showed partial restoration of pancreatic islet cells and 

clear improvement in the hepatic and kidney architecture. The results of this study 

clearly show that Ech has anti-diabetic potential in both types of diabetes.  The possible 

anti-diabetic mechanisms of Ech involving improved glucose metabolism, restoration 

of β cells, improve insulin secretion, improve insulin signaling and antioxidant activity

Key words: Diabetes-Echinochrome-Oxidative stress-Pancreas-Liver-Kidney-

Histopathology. 
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I. Introduction 

Glucose is an essential metabolic substrate of all mammalian cells. Most 

of the energy needed to sustain life is delivered by oxidation of glucose 

(Pischetsrieder, 2000). Although glucose is required by all cells, its main 

consumer is the brain in the fasting or postabsorptive phase, which accounts for 

approximately 50% of the body’s glucose use. Another 25% of glucose disposal 

occurs in the splanchnic area (liver and gastrointestinal tissue), and the 

remaining 25% takes place in insulin-dependent tissues, including muscles and 

adipose tissues (DeFronzo, 2004). Approximately 85% of endogenous glucose 

production is derived from the liver, with glycogenolysis and gluconeogenesis 

contributing equally to the basal rate of hepatic glucose production. The 

remaining ~15% of glucose is produced by the kidneys (Mari et al., 1994; 

DeFronzo, 2004).  

The pancreas is considered as a doubled-entity organ, with both exocrine 

and endocrine components, reciprocally interacting with a composed system 

whose function is relevant for digestion, absorption, and homeostasis of 

nutrients (Piciucchi et al., 2015). Pancreatic islets composed of many types of 

cells, including insulin-producing  cells, glucagon-releasing  cells, 

somatostatin-producing  cells, pancreatic polypeptide (PP)-containing cells and 

ghrelin containing  cells (Damasceno et al., 2014). All of these hormones are 

involved in the regulation of nutrient metabolism and glucose homeostasis 

(Assmann et al., 2009). 

Normally, following glucose ingestion, the increase in plasma glucose 

concentration triggers insulin release, which stimulates splanchnic and 

peripheral glucose uptake and suppresses endogenous glucose production. In 

healthy adults, blood glucose levels are tightly regulated within a range of 70 to 

99 mg/dl, and maintained by specific hormones (e.g., insulin, glucagon, 
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incretins) as well as the central and peripheral nervous system, to meet 

metabolic requirements (Wardlaw and Hampl, 2007).  

Various cells and tissues (within the brain, muscles, gastrointestinal tract, 

liver, kidney, and adipose tissue) are also involved in blood glucose regulation 

by means of uptake, metabolism, storage, and excretion (DeFronzo, 2004). The 

majority of glucose uptake in peripheral tissues occurs in muscles, where 

glucose may either be used immediately for energy or stored as glycogen 

(Guyton and Hall, 2006). Transport of glucose into muscles is insulin-

dependent, and thus requires insulin for activation of the major enzyme 

(glycogen synthase) that regulates production of glycogen (Porte et al., 2003). 

While adipose tissue is responsible for a much smaller amount of peripheral 

glucose uptake (2%-5%), it plays an important role in the maintenance of total 

body glucose homeostasis by regulating the release of free fatty acids (which 

increase gluconeogenesis) from stored triglycerides, influencing insulin 

sensitivity in the muscles and liver (DeFronzo, 2004). While the liver does not 

require insulin to facilitate glucose uptake, it needs insulin to regulate glucose 

output (DeFronzo, 2004). So, for example, when insulin concentrations are low, 

hepatic glucose output rises (Porte et al., 2003). Additionally, insulin helps the 

liver to store most of the absorbed glucose in the form of glycogen (Guyton and 

Hall, 2006). The kidneys are increasingly recognized to play an important role 

in glucose homeostasis via release of glucose into the circulation  

(gluconeogenesis), uptake of glucose from the circulation to meet renal energy 

needs, and reabsorption of glucose at the proximal tubule (Wright et al., 2007). 

The kidneys also aid in the elimination of excess glucose (when levels exceed 

approximately 180 mg/dL, though this threshold may rise during chronic 

hyperglycemia by facilitating its excretion in the urine (ADA, 2008).  
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Diabetes mellitus (DM) is a metabolic disorder resulting from a defect in 

insulin secretion, insulin action, or both (Kumar and Clark, 2002). Insulin 

deficiency, in turn, leads to chronic hyperglycemia with disturbances of 

carbohydrate, fat and protein metabolism (Lindberg et al., 2004). DM is 

considered as one of the most dangerous metabolic disorders in the world 

(Sosale et al., 2015). It is a complex and potentially debilitating disease that 

affects an estimated 8.3% of the adult population or 382 million people 

worldwide (IDF, 2013). Egypt will have at least 8.6 million adults with diabetes 

and will be the tenth largest population of diabetics in the world (Shaw et al., 

2010). The eleventh most important cause of premature mortality in Egypt is 

diabetes mellitus (Saad et al., 2013). It’s responsible for 2.4% of all years of life 

lost. Also, diabetes is the six most important cause of disability burden in Egypt 

(NICHP, 2004).  

DM generally classified into type 1 (T1DM) and type 2 (T2DM) diabetes 

mellitus. Type 1diabetes (T1DM) is an autoimmune disease, which 

characterized by loss of insulin producing β cells and reliance on exogenous 

insulin for survival (Simmons and Michels, 2015).  T1DM is characterized by 

mononuclear infiltration of the pancreatic islets, followed by the destruction of 

insulin-producing  cells (Mathis et al., 2001). The two main forms of clinical 

type 1 diabetes are type 1a (about 90% of type 1 cases in Europe) which is 

thought to be due to immunological destruction of pancreatic β cells, resulting in 

insulin deficiency; and type 1b (idiopathic, about 10% of type 1 diabetes), in 

which there is no evidence of autoimmunity (Bastaki, 2005). Type 1a is 

characterized by the presence of islet cell antibody (ICA), anti-glutamic acid 

decarboxylate (anti-GAD) and insulinoma-associated protein-2 (IA-2) that 

identify the autoimmune process with β cells destruction (Zimmet, et al., 2004). 

Autoimmune diseases such as Grave’s disease, Hashimoto’s thyroiditis and 

Addison’s disease may be associated with T1a (Atkinson and Maclaren, 1994). 


