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Abstract

A function m : RY — R is considered, which is costly to compute. X is an R?-valued random variable with known distribution. A
nonparametric estimation of a quantile g,,(x) q is regarded, where m(X) also is a random variable. An order statistic estimate and
also a Monte Carlo estimate is considered, where m is replaced by an estimate m,, which is constructed with the use of an artificial
neural network. Then the quantile g,,(x),q is estimated by the Monte Carlo estimate of gy, (x),o.- Furthermore, a general error bound
on the error of this quantile estimate is given. The two estimates are compared to each other by applying them on simulated data.
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