Christian Schulz

Nachweis der Erdbebensicherheit bei hohen Talsperren (Erddämme) mit numerischen Methoden

Masterarbeit

G R I N 🙂

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit, Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2013 GRIN Verlag ISBN: 9783656429982

Dieses Buch bei GRIN:

Christian Schulz

Nachweis der Erdbebensicherheit bei hohen Talsperren (Erddämme) mit numerischen Methoden

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com

Master-Thesis

Nachweis der Erdbebensicherheit bei hohen Talsperren (Erddämme) mit numerischen Methoden

von Christian Schulz

19.02.2013

Kurzfassung

Der Nachweis der Erdbebensicherheit ist in Deutschland für Talsperren ebenso wie für konventionelle Bauwerke erforderlich, sofern sich diese innerhalb einer Erdbebengefährdungszone befinden. Bei sogenannten hohen Erddämmen, die eine Dammhöhe $h \ge 40 m$ aufweisen, ist der Nachweis der Erdbebensicherheit im Allgemeinen auf der Grundlage von dynamischen Berechnungsverfahren durchzuführen.

Diese Arbeit untersucht numerische Methoden, auf deren Grundlage das dynamische Verhalten von hohen Talsperren (Erddämmen), beim Nachweis der Erdbebensicherheit, simuliert werden kann. Im Zuge dessen werden zunächst die Anforderungen an den Nachweis der Erdbebensicherheit sowie die möglichen dynamischen Berechnungsverfahren beschrieben. Ebenso werden die bei der Modellbildung anzusetzenden Randbedingungen erläutert.

Diese Arbeit basiert auf Parameterstudien, die unter Anwendung des Zeitschrittverfahrens durchgeführt werden. Anhand dieser wird untersucht, wie das dynamische Verhalten eines Erddammes bei einer Erdbebensimulation, mit den derzeitigen Möglichkeiten numerischer Berechnungsmethoden sowie durch die Beschreibung des Materialverhaltens, möglichst wirklichkeitsnah abgebildet werden kann. Auf der Grundlage der durch die Parameterstudien gewonnenen Erkenntnisse wird ein Vorschlag entwickelt, wie beim Nachweis der Erdbebensicherheit an hohen Erddämmen vorgegangen werden kann. Bei dieser Vorgehensweise werden sowohl numerische als auch bodenmechanische Berechnungsmethoden eingesetzt. Die beschriebene Vorgehensweise beim Nachweis der Erdbebensicherheit wird anhand eines Beispiels verdeutlicht.

Abstract

Earthquake analyses are required in Germany for all constructions within earthquake vulnerable areas, both for conventional structures and in particular for dam constructions. Specifically, for large earth embankment dams with heights $h \ge 40 m$, earthquake analyses have to be performed using dynamic simulation methods.

This thesis reviews numerical Methods to simulate the dynamic behaviour of large earth embankment dams, and applies these for the purpose of earthquake analysis. In this context, requirements for earthquake analysis are discussed, as well as the currently available dynamic calculation methods that can be used in earthquake analysis. Also, boundary conditions, that have to be considered in the process, are described.

This work is based on parameter studies, using a time step analysis. Investigations were made to find out how dynamic behaviour of earth embankment dams during earthquake situations could be predicted as realistically as possible by the simulations. In these investigations, the current possibilities of numerical calculation methods and of specifying the material behaviours were considered. Based on the results of the parameter studies, a procedure for earthquake analysis of large earth embankment dams is being proposed. This procedure includes numerical simulation methods as well as soil-mechanical calculation methods. The proposed procedure for earthquake analysis of large earth embankment dams is discussed in detail using a specific example.

Fachbereich Bauingenieurwesen Prüflabor Geotechnik

Aufgabenstellung Master- Thesis Herr Christian Schulz

Nachweis der Erdbebensicherheit von hohen Talsperren (Erddämme) mit numerischen Methoden

Die Sicherheitsüberprüfung von bestehenden Erddämmen in Deutschland erfordert u.a. eingehende Untersuchungen zur Sicherheit der Bauwerke bei Erdbebenbeanspruchung. Der Sachverhalt ist komplex und erfordert in der Regel Berechnungen nach der Finite-Element- Methode. Zur Vorgehensweise liegen Vorschläge in Veröffentlichungen und einigen wenigen Merkblättern vor. Ein allgemeingültiges Regelwerk besteht jedoch noch nicht.

Dem Kandidaten wird zur Erweiterung des allgemeinen Kenntnisstandes die Aufgabe gestellt, numerische Grundsatzuntersuchungen zur Thematik durchzuführen. Im Einzelnen sind folgende Punkte zu bearbeiten:

- 1. Literaturrecherche und Darstellung des allgemeinen Kenntnisstandes zur dynamischen Beanspruchung von Erddämmen bei Erdbebenbelastung.
- 2. Durchführung von numerischen Berechnungen an einem Modelldamm unter vereinfachender Annahme eines zweidimensionalen ebenen Systems.
- 3. Untersuchung des Einflusses von unterschiedlichen Annahmen zum Berechnungsmodell (Netzgröße, Diskretisierung des Untergrundes etc.).
- 4. Ausarbeitung eines Vorschlages zum Nachweis von Standsicherheit und
 Gebrauchstauglichkeit von Erddämmen bei Erdbebenbelastung.

1/1

Symbolverzeichnis

Griechische Buchstaben

ε	Dehnung
ε_{dyn}	Dynamische Dehnung
ε_{el}	Elastische Dehnung
ε_{pl}	Plastische Dehnung
η	Abstimmverhältnis $\eta=\Omega/\omega$ (im Abschnitt 1.2)
η	Verbleibende Sicherheit ($\eta = 1/\mu$)
γ	Sicherheitsbeiwert (global)
$\gamma_{0,7}$	Scherdehnung $\gamma_{0,7}$ bei $0, 7 \cdot G_0$
γ_s	Scherdehnung
λ	Lamé-Konstante (bei der allgemeinen Wellengleichung im elasti-
	schen Vollraum)
λ_R	Wellenlänge der Rayleigh-Welle $(\lambda_R = c_R/f)$
μ	Ausnutzungsgrad
μ	Lamé-Konstante (bei der allgemeinen Wellengleichung im elasti-
	schen Vollraum)
ν	Querdehn- bzw. Poissonzahl
ν_{dyn}	Dynamische Poissonzahl
σ	Spannung (Normalspannung)
σ_{dyn}	Dynamische Spannung
σ_m	Mittlere Hauptspannung $(\sigma_m = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3})$
ω	Kreisfrequenz bzw. Winkelgeschwindigkeit
ω_0	Kreisfrequenz des ungedämpften Systems
ω_D	Kreisfrequenz des gedämpften Systems
Ω	Erregerfrequenz
φ'	Effektiver Reibungswinkel
φ_{crit}	Kritischer Reibungswinkel
φ_{max}	Maximaler Reibungswinkel

ρ	Dichte
au	Schub- bzw. Scherspannung
Θ	Volumetrische Dehnungsanteile bei der allgemeinen Wellenglei-
	chung im elastischen Vollraum ($\Theta = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$)
ζ	Dämpfung (Lehr'sches Dämpfungsmaß) in $[\%]$

Kleine lateinische Buchstaben

a	Beschleunigung
a_g	Bodenbeschleunigung bzw. Spitzen-Bodenbeschleunigung
a_{gR}	Referenzwert der Spitzen-Bodenbeschleunigung gemäß
	DIN EN 1998-1
a_h	Spitzenwert der horizontalen Bodenbeschleunigung
a(t)	Beschleunigung als Funktion der Zeit
С	Kohäsion
c'	Effektive Kohäsion
С	Wellengeschwindigkeit (allgemein)
C_P	Wellengeschwindigkeit der Primärwelle
c_R	Wellengeschwindigkeit der Rayleigh-Welle
c_S	Wellengeschwindigkeit der Sekundärwelle
d	Dämpfungskoeffizient
d	Durchmesser (bezogen auf eine Bodenprobe)
d_k	kritische Dämpfung
e	Porenzahl
e	Euler'sche Zahl (im Abschnitt 1.2)
f	Fließbedingung
f	Frequenz
f_0	Grundfrequenz (1. Eigenfrequenz bzw. Eigenwert)
g	Erdbeschleunigung
h	Dammhöhe
k	Durchlässigkeit
k	Federkonstante bzwsteifigkeit
l	Länge (bezogen auf eine Bodenprobe)
m	Masse
p	mittlere Spannung $p = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)$
q	Spannungsdeviator $q = \sigma_1 - \sigma_3$

q	Verhaltensbeiwert gemäß DIN EN 1998-1
t	Zeit
Δt	Zeitintervall (Inkrement)
v	Geschwindigkeit
v(t)	Geschwindigkeit als Funktion der Zeit
\hat{y}	Amplitude
x	Auslenkung bzw. Relativverschiebung
x	Strecke (im Abschnitt 1.2.1)
\dot{x}	Geschwindigkeit
\ddot{x}	Beschleunigung
x_B	Bodenverschiebung
\ddot{x}_B	Bodenbeschleunigung im Fall des fußpunkterregten Einmassen-
	schwingers
\ddot{x}_{B0}	Ausgangswert der Bodenbeschleunigung im Fall des fußpunkterreg-
	ten Einmassenschwingers
\ddot{x}_m	Mittlere Bodenbeschleunigung im Intervall Δ_t im Fall des fußpunk-
	terregten Einmassenschwingers
$x_h(t)$	Homogener Lösungsansatz der allgemeinen Bewegungsgleichung
$x_p(t)$	Partikulärer Lösungsansatz der allgemeinen Bewegungsgleichung
	bei Belastung
x_T	Gesamtverschiebung des fußpunkterregten Einmassenschwingers
	$(x_T = x_B + x)$
z	Einflusstiefe der Rayleigh-Welle

Große lateinische Buchstaben

A_0	Amplitude der Grundresonanzfrequenz
C	Impedanzverhältnis
C	Konstante (bei der Herleitung der freien gedämpften Schwingung)
D	Dämpfung (Lehr'sches Dämpfungsmaß) in $\%$
E	Elastizitätsmodul
E	Beanspruchung bzw. Einwirkung nach DIN EN 1997
E_s	Steifemodul
E_{sd}	Dynamischer Steifemodul
$E_{s,dyn}$	Dynamischer Steifemodul
F	Äußere Kraft

F	Fließfläche
F(t)	Angreifende Kraft (zeitvariabel)
F_0	Erregerkraft der harmonischen Erregung $(F(t) = F_0 \cdot \sin(\Omega \cdot t))$
F_D	Dämpferkraft $(F_D = d \cdot \dot{x})$
F_F	Federkraft $(F_F = k \cdot x)$
F_I	Trägheitskraft $(F_I = m \cdot \ddot{x})$
G	Schubmodul
G_0	Schubmodul bei sehr kleinen Scherdehnungen
G_d	Dynamischer Schubmodul
G_{dyn}	Dynamischer Schubmodul
$G_{d,max}$	Maximalwert des dynamischen Schubmodul
G_{d0}	Dynamischer Schubmodul bei sehr kleinen Scherdehnungen
Н	Mächtigkeit der Lockergesteinsschicht
Ι	Impedanz $(I = \rho \cdot v_S \cdot \cos \Theta)$
I_D	Bezogene Lagerungsdichte
I_P	Plastizitätszahl
M_0	Seismisches Moment
M_L	Lokal Magnitude
M_S	Oberflächenmagnitude
M_W	Momentmagnitude
N	Lastwechselzahl
PGA_{50Hz}	Spitzenbodenbeschleunigung gemäß DIN 19700 bei $T=0,02\;s$ bzw. $f=50\;Hz$
R	Resultierender Widerstand nach DIN EN 1997
S	Untergrundfaktor gemäß DIN EN 1998-1
S_r	Sättigungsgrad
Т	Periode oder Schwingungsdauer
T	Wiederkehrperiode eines Erdbebenereignisses in [a]
T_s	Stationäre Dauer künstlich generierter Beschleunigungs-Zeitver-
	läufe
V	Vergrößerungsfaktor bzw. dynamische Vergrößerungsfunktion
W	Elastische Energie
ΔW	Dissipierte Energie

Mathematische Operaden

- [D] Dämpfungsmatrix
- [K] Steifigkeitsmatrix
- [M] Massenmatrix
- [P] Matrix der äußeren Kräfte
- $\{x\}$ Vektor (hier: Verschiebungsvektor)
- ∇^2 Laplace-Operator (bei der allgemeinen Wellengleichung im elastischen Vollraum) ($\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$)

Inhaltsverzeichnis

1	Gru	ndlagei	n der Bodendynamik	1
	1.1	Einfüh	rung Bodendynamik	1
	1.2	Grund	lagen der Dynamik - Schwingungen	4
		1.2.1	Begriffe und Bewegungsdifferenzialgleichung	4
		1.2.2	Einmassenschwinger	8
		1.2.3	Mehrmassenschwinger	21
		1.2.4	Nicht-lineare Massenschwinger	23
	1.3	Weller	ausbreitung	26
		1.3.1	Wellentypen	26
		1.3.2	Wellenausbreitung im elastischen Raum	29
		1.3.3	Wellenaus breitung im elastischen Halbraum $\ .\ .\ .\ .\ .$	30
		1.3.4	Wellenausbreitungsgeschwindigkeiten $\ldots \ldots \ldots \ldots \ldots$	31
		1.3.5	Dämpfung der Wellenenergie	33
		1.3.6	Energieanteil der Wellentypen	34
2	Mat	orialvo	rhalten von Böden bei dynamischen Finwirkungen	37
2	Mat 2.1	erialve Einfüt	rhalten von Böden bei dynamischen Einwirkungen	37 37
2	Mat 2.1 2.2	erialve Einfüh Beschi	rhalten von Böden bei dynamischen Einwirkungen urung	37 37 38
2	Mat 2.1 2.2	erialve Einfüh Beschr 2 2 1	rhalten von Böden bei dynamischen Einwirkungen arung	37 37 38 39
2	Mat 2.1 2.2	Einfüh Einfüh Beschr 2.2.1 2.2.2	rhalten von Böden bei dynamischen Einwirkungen urung reibung des dynamischen Materialverhaltens - Stoffmodelle Linear-äquivalente Stoffmodelle Anwendung elastoplastischer Stoffmodelle in der Bodendynamik	 37 37 38 39 40
2	Mat 2.1 2.2	Einfüh Einfüh Beschr 2.2.1 2.2.2 2.2.3	rhalten von Böden bei dynamischen Einwirkungen urung reibung des dynamischen Materialverhaltens - Stoffmodelle tinear-äquivalente Stoffmodelle Anwendung elastoplastischer Stoffmodelle in der Bodendynamik Prinzipieller Aufbau elastoplastischer Stoffmodelle	 37 37 38 39 40 43
2	Mat 2.1 2.2	Einfüh Einfüh Beschr 2.2.1 2.2.2 2.2.3 2.2.4	rhalten von Böden bei dynamischen Einwirkungen arung reibung des dynamischen Materialverhaltens - Stoffmodelle teibung des dynamischen Materialverhaltens - Stoffmodelle Linear-äquivalente Stoffmodelle Anwendung elastoplastischer Stoffmodelle in der Bodendynamik Prinzipieller Aufbau elastoplastischer Stoffmodelle Berücksichtigung kleiner Scherdehnungen	 37 37 38 39 40 43 48
2	Mat 2.1 2.2	Einfül: Beschr 2.2.1 2.2.2 2.2.3 2.2.4 Dynar	rhalten von Böden bei dynamischen Einwirkungen arung reibung des dynamischen Materialverhaltens - Stoffmodelle reibung des dynamischen Materialverhaltens - Stoffmodelle Linear-äquivalente Stoffmodelle Anwendung elastoplastischer Stoffmodelle in der Bodendynamik Prinzipieller Aufbau elastoplastischer Stoffmodelle Berücksichtigung kleiner Scherdehnungen nische Einflussgrößen	 37 37 38 39 40 43 48 50
2	Mat 2.1 2.2 2.3	Einfüh Beschr 2.2.1 2.2.2 2.2.3 2.2.4 Dynan 2.3.1	rhalten von Böden bei dynamischen Einwirkungen urung	 37 37 38 39 40 43 48 50 53
2	Mat 2.1 2.2 2.3	Einfül: Beschr 2.2.1 2.2.2 2.2.3 2.2.4 Dynan 2.3.1 2.3.2	rhalten von Böden bei dynamischen Einwirkungen urung reibung des dynamischen Materialverhaltens - Stoffmodelle tinear-äquivalente Stoffmodelle Anwendung elastoplastischer Stoffmodelle in der Bodendynamik Prinzipieller Aufbau elastoplastischer Stoffmodelle Berücksichtigung kleiner Scherdehnungen nische Einflussgrößen Bodenphysikalische Eigenschaften Ansatz dynamischer Bodenkennwerte in numerischen Berech-	 37 37 38 39 40 43 48 50 53
2	Mat 2.1 2.2 2.3	Einfüh Beschr 2.2.1 2.2.2 2.2.3 2.2.4 Dynan 2.3.1 2.3.2	rhalten von Böden bei dynamischen Einwirkungen urung	 37 37 38 39 40 43 48 50 53 65
2	Mat 2.1 2.2 2.3	Einfül: Beschr 2.2.1 2.2.2 2.2.3 2.2.4 Dynan 2.3.1 2.3.2 Boden	rhalten von Böden bei dynamischen Einwirkungen urung	 37 37 38 39 40 43 48 50 53 65 67
2	Mat 2.1 2.2 2.3 2.4	Einfül: Beschr 2.2.1 2.2.2 2.2.3 2.2.4 Dynan 2.3.1 2.3.2 Boden 2.4.1	rhalten von Böden bei dynamischen Einwirkungen urung	 37 37 38 39 40 43 48 50 53 65 67 67

3	Erdl	oeben		71	
	3.1	Einfüh	nrung	71	
	3.2	Erdbe	beneinwirkung	71	
		3.2.1	Entstehung von Erdbeben	71	
		3.2.2	Erdbebenstärke	75	
	3.3	Einflu	ss lokaler Standortbedingungen - Baugrundschichtung	81	
		3.3.1	Ausbreitung von Erdbebenwellen im geschichteten Untergrund	83	
		3.3.2	Verstärkungseffekte von Erdbebeneinwirkungen im geschich-		
			teten Untergrund	84	
	3.4	Auswi	rkungen von Erdbeben auf Stauanlagen - Erddämme	90	
4	Erdl	pebenb	eanspruchung von hohen Erddämmen (Stand der Technik)	93	
	4.1	Einfüh	nrung	93	
	4.2	Nachw	zeis der Erdbebensicherheit bei hohen Erddämmen	94	
		4.2.1	Nachweise und Sicherheitskonzept nach DIN 19700 $\ldots\ldots\ldots$	94	
		4.2.2	Umfang erforderlicher Nachweise im Lastfall Erdbeben $\ .\ .$.	99	
	4.3	Ermit	tlung der Erdbebeneinwirkung	103	
		4.3.1	Klassifizierung der Untergrundverhältnisse	103	
		4.3.2	Ermittlung der Bodenbeschleunigung nach DIN EN 1998-1 $\ .$.	105	
		4.3.3	Ermittlung der Bodenbeschleunigung für die Wiederkehrperi-		
			oden gemäß den Anforderungen der DIN 19700	108	
	4.4	Dynamische Berechnungsverfahren bei hohen Erddämmen unter Erd-			
		beben	belastung	109	
		4.4.1	Antwortspektrenverfahren	110	
		4.4.2	Zeitschrittverfahren	114	
		4.4.3	Böschungsstabilität	117	
		4.4.4	Prinzipielle Vorgehensweise beim Nachweis der Erdbebensi-		
			cherheit an hohen Erddämmen	120	
	4.5	Model	lbildung bei dynamischen Berechnungsverfahren	122	
		4.5.1	Antwortspektrenverfahren	123	
		4.5.2	Zeitschrittverfahren	123	
	4.6	Spann	ungszustände von Erddämmen unter Erdbebene inwirkung $\ .\ .\ .$	127	
		4.6.1	Dynamischer Spannungszustand	127	
		4.6.2	Einflüsse auf dynamische Spannungszustände	129	
	4.7	Schwin	ngverhalten von hohen Erddämmen	132	
		4.7.1	Verwendung von Eigenfrequenzen	132	

		4.7.2	Ermittlung von Eigenfrequenzen von Erddämmen		
		4.7.3	Bandbreite der Eigenfrequenzen hoher Erddämme $(h \ge 40~m)~~139$		
		4.7.4	Eigenformen von Erddämmen		
	4.8	Zusan	nmenfassung zum Stand der Technik zur Erdbebenbeanspru-		
		chung	von hohen Erddämmen		
		4.8.1	Nachweis der Erdbebensicherheit bei hohen Erddämmen $~\ldots~143$		
		4.8.2	Ermittlung der Erdbebeneinwirkung		
		4.8.3	Dynamische Berechnungsverfahren bei hohen Erddämmen un-		
			ter Erdbebenbelastung $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 146$		
		4.8.4	Modellbildung bei dynamischen Berechnungsverfahren $\ . \ . \ . \ 149$		
		4.8.5	Spannungszustände von Erddämmen unter Erdbebeneinwirkung152		
		4.8.6	Schwingverhalten von hohen Erddämmen		
5	Para	Parameterstudien 15			
	5.1	Unters	suchungsprogramm		
	5.2	Grund	llagen der Parameterstudien		
		5.2.1	Dammgeometrie und Untergrundverhältnisse		
		5.2.2	Berechnungsprogramm und Randbedingungen		
		5.2.3	Erdbebenbeanspruchung und -zeitverläufe		
	5.3	Paran	neterstudie - Modellbildung		
		5.3.1	Einführung		
		5.3.2	Mächtigkeit des Untergrundes		
		5.3.3	Modellbreite		
		5.3.4	Ansatz des spezifischen Eigengewichts im Untergrund $\ .\ .\ .\ .$ 181		
		5.3.5	Überprüfung der erforderlichen Modellbreite		
		5.3.6	Zusammenfassung der Ergebnisse der Parameterstudie zur Mo-		
			dellbildung		
	5.4	Paran	neterstudie - Netzdiskretisierung		
		5.4.1	Einführung		
		5.4.2	Einfluss des Detaillierungsgrades		
		5.4.3	Einfluss der Netzfeinheit		
		5.4.4	Zusammenfassung der Ergebnisse der Parameterstudie Netz-		
			diskretisierung		
	5.5	Paran	neterstudien zu weiteren Ansätzen bei der Modellbildung 227		
		5.5.1	Einführung		
		5.5.2	Ansatz der Materialdämpfung		

		5.5.3	Ansatz einer Wassermasse	235
		5.5.4	Zusammenfassung der Ergebnisse der Parameterstudie zu wei-	
			teren Ansätzen bei der Modellbildung	253
	5.6	Param	eterstudie elastoplastische Stoffmodelle bei dynamischer Bean-	
		spruch	ung	255
		5.6.1	Einführung	255
		5.6.2	Ansatz elastoplastischer Stoffmodelle	257
		5.6.3	Empfehlung zum Ansatz elastoplastischer Stoffmodelle bei dy-	
			namischen Berechnungen	271
	5.7	Altern	ativer Ansatz der Erdbebenbeanspruchung	274
		5.7.1	Einführung	274
		5.7.2	Vorschlag eines alternativen Ansatzes der Erdbebenbeanspru-	
			chung	275
		5.7.3	Empfehlung zur Anregung des Berechnungsmodells	283
	5.8	Wahl o	des Berechnungsmodells	284
		5.8.1	Einführung	284
		5.8.2	Berechnungsausschnitt und Randbedingungen	284
		5.8.3	Berechnungsnetz	284
		5.8.4	Materialdämpfung	285
		5.8.5	Ansatz des Wasserstandes und Strömungskräfte	285
		5.8.6	Materialverhalten und Erdbebenverläufe	286
	5.9	Unters	uchungen des dynamischen Verhaltens von hohen Erddämmen	289
		5.9.1	Untersuchungen	289
		5.9.2	Verteilung der Antwortbeschleunigungen im Dammkörper	289
		5.9.3	Verformungen	293
		5.9.4	Spannungszustände	298
6	Nac	hweis c	ler Erdbebensicherheit	315
	6.1	Einfüh	rung	315
	6.2	Vorsch	lag zur Vorgehensweise beim Nachweis der Erdbebensicherheit	316
		6.2.1	Grundlagenermittlung	316
		6.2.2	Modellbildung	318
		6.2.3	Erdbebensimulation	321
		6.2.4	Nachweis der Standsicherheit	321
		6.2.5	Nachweis der Gebrauchstauglichkeit	325
		6.2.6	Nachweis der Betriebssicherheit	326

		6.2.7	Nachweis der Erdbebensicherheit	327	
	6.3	Beispie	el einer Erdbeben simulation an einem hohen Erddamm	328	
		6.3.1	Berechnungsgrundlagen	328	
		6.3.2	Berechnungsannahmen	333	
		6.3.3	Ergebnisse der numerischen Berechnung	. 337	
		6.3.4	Nachweis der Erdbebensicherheit	338	
		6.3.5	Nachweis der Gebrauchstauglichkeit	343	
		6.3.6	Nachweis der Betriebssicherheit	343	
7	Zusa	ammen	fassung	345	
8	Glos	sar		349	
Lit	Literaturverzeichnis 359				

Abbildungsverzeichnis

1.1	Harmonische ungedämpfte Schwingung einer Masse	5
1.2	Punkt auf sich drehender Scheibe - Kreisfrequenz	6
1.3	Allgemeiner Einmassenschwinger mit angreifender Kraft $\ .\ .\ .$.	7
1.4	Freier ungedämpfter Einmassenschwinger	8
1.5	Freier gedämpfter Einmassenschwinger	10
1.6	Schwingverhalten unterschiedlicher Dämpfungen (nach [48]) \ldots	12
1.7	Harmonisch erregter Einmassenschwinger	14
1.8	Arten der Krafterregung (nach [73])	15
1.9	Darstellung der Vergrößerungsfunktion V in Abhängigkeit vom Ab-	
	stimmverhältnis η und dem Dämpfungsverhältnis D (nach [35])	18
1.10	Fußpunkterregter Einmassenschwinger	19
1.11	Harmonisch erregter Einmassenschwinger	22
1.12	Darstellung möglicher Wellentypen (nach [48])	28
1.13	Spannungskomponenten eines Quaders im elastischen (Voll-) Raum	
	$(nach [32]) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	29
1.14	Wellenausbreitung im elastischen Halbraum an einem Kreisfunda-	
	ment (nach [79]) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	34
1.15	Messtechnisch aufgenommene Bodenverschiebung bei einem Erdbe-	
	benereignis mit Kennzeichnung des Eintretens unterschiedlicher Wel-	
	lentypen (nach [32]) \ldots \ldots \ldots \ldots \ldots \ldots	35
2.1	Schematische Darstellung einer Spannungs-Dehnungs-Beziehung un-	
	ter statischer und zyklischer Belastung (in Anlehnung an [48] und [49])	39
2.2	Schematische Darstellung elastoplastischer Bodenmodelle im Spannungs	-
	Dehnungs-Diagramm (nach [71])	44
2.3	Spannungs-Dehnungs-Beziehung eines Spannungspunktes in Abhän-	
	gigkeit von der Fließbedingung f (nach [71])	44
2.4	Allgemeine zwei-dimensionale Darstellung der Zusammenhänge der	
	$Flie\®el (nach [71]) \dots \dots$	45

2.5	Darstellung einer Fließfläche im p-q-Diagramm sowie im Hauptspan- nungsraum (nach [71])	46
26	Schematische Darstellung des möglichen Spannungs-Dehnungs-Verhalter	ne
2.0	elastoplastischer Stoffmodelle (nach [71])	47
27	Darstellung des Verfestigungsverhaltens elastoplastischer Stoffmo-	11
2.1	delle im Hauptspannungsraum (nach [68])	47
28	Charakteristisches Verhalten des Schubmoduls in Abhängigkeit tv-	11
2.0	pischer Scherdehnungen $\gamma_{\rm c}$ (nach [63])	48
29	Darstellung der erforderlichen Bodenkennwerte zur Beschreibung der	10
2.5	Steifigkeit in Abhängigkeit von der Scherdehnung $\gamma_{\rm c}$ (nach [23])	49
2 10	Verstärkung des dynamischen Steifemoduls in Abhängigkeit des sta-	10
2.10	tischen Steifemoduls bei Lockergesteinsböden (nach [33])	54
2 11	Größenordnung der sich ergebenden Scherdehnungen γ_{i} bei unter-	01
2.11	schiedlichen dynamischen Belastungen (nach [40])	56
2 12	Schematische Darstellung des Zusammenhangs zwischen dynamischem	00
2.12	Schubmodul G_d und der Schubdehnung γ_a (in Anlehnung an [83])	57
2 13	Verlauf der Abminderung des Schubmoduls in Abhängigkeit von der	0.
2.10	Plastizitätszahl I_P (nach [22])	58
2.14	Abschätzung der Größe des bezogenen Schubmoduls in Abhängigkeit	
	von der Schubdehnung γ_e (nach [33])	59
2.15	Einfluss von Porenzahl e und Normalspannung σ_3 auf den Schubmo-	
	dul G_0 (nach [81])	60
2.16	Einfluss von Porenzahl e auf den bezogenen Schubmodul im Bereich	
	$10^{-6} < \gamma_s < 10^{-3} \text{ (nach [81])}$	61
2.17	Schematische Darstellung des Zusammenhangs zwischen der Materi-	
	aldämpfung D und dem dynamischen Schubmodul G_d in Abhängig-	
	keit von der Schubdehnung γ_s (nach [40])	62
2.18	Schematische Darstellung einer Hysteresenschleife (in Anlehnung an	
	[33])	63
2.19	Abschätzung der Größe der Materialdämpfung D in Abhängigkeit	
	von der Schubdehnung γ_s (nach [33])	64
2.20	Auswirkung der Bodenverflüssigung - Kippen von Gebäuden (aus [48])	67
2.21	Abschätzung der Gefahr einer Bodenverflüssigung anhand der Korn-	
	verteilung mit Darstellung verflüssigungsempfindlicher Zonen (nach	
	$[16]) \ldots \ldots$	70

3.1	Verschiebungen der Plattenränder und Bereiche potenzieller Erdbe-	
	ben im Bereich einer Subduktionszone (aus [48])	73
3.2	Begrifflichkeiten zur Beschreibung des Erdbebenherdes (nach $[48]$).	74
3.3	Bruchbewegungen des Erdbebenherdes in der Verwerfungsfläche (nach	
	$[48]) \ldots \ldots$	74
3.4	Vergleich der unterschiedlichen Magnitudenverläufe (aus [48]) $\ .$	79
3.5	Aufnahme des Geschwindigkeits-Zeitverlaufs eines Erdbebens an zwei Messstationen auf unterschiedlichem Untergrund (nach [32])	82
3.6	Schematische Darstellung der Begrifflichkeit von Bodenbewegungen	-
0.0	in Abhängigkeit von der Standortbedingung (nach [32])	82
3.7	Schematische Ausbreitung der Raumwellen vom Erdbebenherd zur	
	Geländeoberfläche	84
3.8	Darstellung des vereinfachten Baugrundmodells zur Beschreibung	
	des Verstärkungseffektes im geschichteten Boden (in Anlehnung an	
	[50])	85
3.9	Schematische Darstellung des Verstärkungseffektes im geschichteten	
	Baugrund mit Darstellung des Einflusses aus Dämpfung und Schicht-	
	mächtigkeit (nach [50] und [15]) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	87
3.10	Beispielhafte Darstellung der Ergebnisse einer Modellrechnung mit	
	unterschiedlichen Schichtmächtigkeiten des Lockergesteins in Form	
	von Beschleunigungs-Zeitverläufen (nach [32])	89
3.11	Schematische Darstellung der Verstärkung der Beschleunigungsant-	
	worten (in Form von Antwortspektren) bei unterschiedlichen Unter-	
	grundverhältnissen (nach [13]) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	89
4.1	Grafische Darstellung der Erdbebengefährdungsgebiete für Nachwei-	
	se an hohen Talsperren nach DIN 19700 (nach [43])	101
4.2	Darstellung der Untergrundklassen bezogen auf die Erdbebenzonen	
	in Deutschland (nach $[10]$)	105
4.3	Darstellung der Erdbebenzonen in Deutschland (nach $[10]$)	106
4.4	Schematische Darstellung eines Antwortspektrums für eine Wieder-	
	kehrperiode $T = 2.500 a$ gemäß DIN 19700 (nach [60])	110
4.5	Beispielhafte Darstellung eines Antwortspektrums (Untergrundklas-	
	se R) nach DIN 19700 im Vergleich mit einem eingehängten Antwort-	
	spektrum (B-R) nach DIN EN 1998-1 - Wiederkehrperiode $T=500\ a$	114

4.6	Schematische Darstellung eines künstlich generierten Beschleuni- gungs- Zeitverlaufes
4.7	Schematische Darstellung der Überlagerung eines künstlich gene- rierten Beschleunigungs Zeitverlaufes im Antwortspektrum mit dem
	Vorgabe Antwortspektrum 117
18	Prinzipieller Ablauf heim Nachweis der Erdhebensicherheit mit du
4.0	namischen Nachweisverfahren (nach [37])
49	Definition von V-förmigen Tälern (nach $[37]$) 125
1.0	Coometrie des Modelldemms zur Untersuchung hestimmter Finflüsse
4.10	auf die dynamischen Spannungszustände eines Erddammes (nach [50])127
1 11	Zeitverlauf der Scherdehnungen α_{i} zur Untersuchung der ungünstigs
7.11	ten Spannungen im Dammkörper (nach $[59]$) 128
1 19	Veränderung der Schubspannungsverteilung (in $[kN/m^2]$) im Damm-
7.12	(m [k V / m]) m Damm- querschnitt unter Erdbebeneinwirkung (nach [59]) 129
4 13	Einfluss der Lagerungsdichte auf die Schubspannungsverteilung (in
1.10	$[kN/m^2]$ im Dammquerschnitt bei dynamischer Belastung (nach [59])130
4.14	Finfluss der Wasserauflast auf die Schubspannungsverteilung (in $[kN/m^2]$)
1.1.1	im Dammquerschnitt bei dynamischer Belastung (nach [59]) 131
4.15	Beispielhafte Darstellung eines Antwortspektrums mit Darstellung
	der Antwortbeschleunigungen in Abhängigkeit unterschiedlicher Ei-
	genwerte
4.16	Bestimmung der Grundfrequenz f_0 (nach [64])
4.17	Vergleich der 1 5. Eigenform ohne und mit Berücksichtigung des
	spezifischen Eigengewichts im Untergrund (nach [86])
5.1	Querschnitt des verwendeten Modelldammes und Darstellung der
	Untergrundsituation
5.2	Antwortspektrum mit einer Wiederkehrperiode $T = 500 \ a$ für den
	gewählten Standort des Modelldammes (nach [60])
5.3	Antwortspektrum mit einer Wiederkehrperiode $T = 2.500 \ a$ für den
	gewählten Standort des Modell dammes (nach [60]) $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
5.4	Eingehängtes Antwortspektrum mit einer Wiederkehrperiode $T = 500 a$
	für den gewählten Standort des Modell dammes $\ .$
5.5	Eingehängtes Antwortspektrum mit einer Wiederkehrperiode $T\ =\ 2.500\ a$
	und 10%-iger Dämpfung für den gewählten Standort des Modelldam-
	mes

5.6	Künstlich erzeugter Erdbebenverlauf des im Rahmen der Parameter- studien verwendeten Testbebens
5.7	Künstlich erzeugter Erdbebenverlauf des im Rahmen der Parameter- studien verwendeten Betriebserdbebens
5.8	Künstlich erzeugter Erdbebenverlauf des im Rahmen der Parameter- studien verwendeten Bemessungserdbebens
5.9	Überlagerung des Antwortspektrums aus dem horizontalen Verlauf des Bemessungserdbebens mit dem zugehörigen eingehängten Ant-
5.10	Ergebnis der Untersuchung der Modelltiefe - Horizontale Verschie- hung Dammkrone
5.11	Ergebnis der Untersuchung der Modelltiefe - Horizontale Verschie-
5.12	bung Dammsohle
5.13	Dammkrone
5.14	Dammsohle 172 Ergebnis der Untersuchung der Modelltiefe - Resultierende Beschleu-
5.15	nigungen an der Dammsohle
5.16	Ergebnis der Untersuchung der Modellbreite - Horizontale Beschleu- nigung Modellbreite 3B
5.17	Ergebnis der Untersuchung der Modellbreite - Vertikale Beschleuni- gung Modellbreite 3B
5.18	Ergebnis der Untersuchung der Modellbreite - Horizontale Beschleu- nigung Modellbreite 4B
5.19	Ergebnis der Untersuchung der Modellbreite - Vertikale Beschleuni- gung Modellbreite 4B
5.20	Ergebnis der Untersuchung der Modellbreite - Horizontale Beschleu- nigung Modellbreite 5B
5.21	Ergebnis der Untersuchung der Modellbreite - Vertikale Beschleuni- gung Modellbreite 5B
5.22	Ergebnis der Untersuchung des spezifischen Eigengewichts - Ver- gleich der horizontalen Beschleunigung (5B A-40 F0)

5.23	Ergebnis der Untersuchung des spezifischen Eigengewichts - Ver- gleich der vertikalen Beschleunigung (5B A-40 F0)
5.24	Ergebnis der Untersuchung des spezifischen Eigengewichts - Ver- gleich der horizontalen Beschleunigung (5B A-40 F5)
5.25	Ergebnis der Untersuchung des spezifischen Eigengewichts - Ver-
5.96	gleich der vertikalen Beschleunigung (5B A-40 F5)
0.20	tale Beschleunigung (Variation v01)
5.27	Ergebnis der Untersuchung des spezifischen Eigengewichts - Vertikale
	Beschleunigung (Variation v01)
5.28	Ergebnis der Untersuchung des spezifischen Eigengewichts - Horizon-
	tale Beschleunigung (Variation v02) $\dots \dots 189$
5.29	Ergebnis der Untersuchung des spezifischen Eigengewichts - Vertikale
	Beschleunigung (Variation v02) $\ldots \ldots 189$
5.30	Ergebnis der Untersuchung des spezifischen Eigengewichts - Horizon-
	tale Beschleunigung (Variation v03) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 190$
5.31	Ergebnis der Untersuchung des spezifischen Eigengewichts - Vertikale
	Beschleunigung (Variation $v03$)
5.32	Ergebnis der ergänzenden Untersuchung des spezifischen Eigenge-
	wichts - Horizontale Beschleunigung (Variation v01)
5.33	Ergebnis der ergänzenden Untersuchung des spezifischen Eigenge-
	wichts - Vertikale Beschleunigung (Variation v01)
5.34	Ergebnis der ergänzenden Untersuchung des spezifischen Eigenge-
	wichts - Horizontale Beschleunigung (Variation v03)
5.35	Ergebnis der ergänzenden Untersuchung des spezifischen Eigenge-
	wichts - Vertikale Beschleunigung (Variation v03)
5.36	Ergebnis der Überprüfung der Modellbreite - Horizontale Beschleu-
	nigung (Variation v02)
5.37	Ergebnis der Überprüfung der Modellbreite - Vertikale Beschleuni-
	gung (Variation v02) \ldots 197
5.38	Erforderliche Mindestabmessungen des Berechnungsmodells zur Si-
	mulation der Erdbebenbeanspruchung des Dammkörpers 199
5.39	Schematische Darstellung der Auswertungspunkte - Parameterstudie
	Einfluss des Detaillierungsgrades
5.40	Ergebnis der Untersuchung des Detaillierungsgrades - Vergleich ho-
	rizontaler Beschleunigungen (Dammkrone Punkt A) 206

5.41	Ergebnis der Untersuchung des Detaillierungsgrades - Vergleich ver-
	tikaler Beschleunigungen (Dammkrone Punkt A) \ldots
5.42	Ergebnis der Untersuchung des Detaillierungsgrades - Horizontale
	Beschleunigung des Dammkörpers
5.43	Ergebnis der Untersuchung des Detaillierungsgrades - Vertikale Be-
	schleunigung des Dammkörpers
5.44	Ergebnis der Untersuchung des Detaillierungsgrades - Horizontale
	Verformung des Dammkörpers
5.45	Ergebnis der Untersuchung des Detaillierungsgrades - Vertikale Ver-
	formung des Dammkörpers
5.46	Ergebnis der Untersuchung des Detaillierungsgrades - Horizontale
	Beschleunigung der Dichtwand
5.47	Ergebnis der Untersuchung des Detaillierungsgrades - Vertikale Be-
	schleunigung der Dichtwand
5.48	Ergebnis der Untersuchung des Detaillierungsgrades - Horizontale
	Verformung der Dichtwand
5.49	Ergebnis der Untersuchung des Detaillierungsgrades - Vertikale Ver-
	formung der Dichtwand
5.50	Ergebnis der Untersuchung des Detaillierungsgrades - Frequenzver-
	halten des Dammkörpers (horizontale Beschleunigung) 214
5.51	Ergebnis der Untersuchung des Detaillierungsgrades - Frequenzver-
	halten des Dammkörpers (vertikale Beschleunigung)
5.52	Ergebnis der Untersuchung des Detaillierungsgrades - Horizontale
	Spannungen σ_{xx} - Referenzmodell (MD 5 B A-40 F0 v01)
5.53	Ergebnis der Untersuchung des Detaillierungsgrades - Horizontale
	Spannungen σ_{xx} - Vereinfachtes Modell (MD 5B A-40 F0 v04) 216
5.54	Ergebnis der Untersuchung des Detaillierungsgrades - Vertikale Span-
	nungen σ_{yy} - Referenzmodell (MD 5 B A-40 F0 v01)
5.55	Ergebnis der Untersuchung des Detaillierungsgrades - Vertikale Span-
	nungen σ_{yy} - Vereinfachtes Modell (MD 5 B A-40 F0 v04) $~$ 217
5.56	Ausschnitt des verwendeten finite Elemente Netzes zur Untersuchung
	der Netzfeinheit - Netz grob (ca. 1.500 Elemente)
5.57	Ausschnitt des verwendeten finite Elemente Netzes zur Untersuchung
	der Netzfeinheit - Netz mittelfein (ca. 1.700 Elemente)
5.58	Ausschnitt des verwendeten finite Elemente Netzes zur Untersuchung
	der Netzfeinheit - Netz fein (ca. 3.500 Elemente)

5.59	Ausschnitt des verwendeten finite Elemente Netzes zur Untersuchung
	der Netzfeinheit - Netz sehr fein (ca. 6.500 Elemente)
5.60	Ergebnis der Untersuchung der Netzfeinheit - Vergleich horizontaler
	Beschleunigungen (Dammkrone Punkt A)
5.61	Ergebnis der Untersuchung der Netzfeinheit - Vergleich vertikaler
	Beschleunigungen (Dammkrone Punkt A)
5.62	Ergebnis der Untersuchung der Netzfeinheit - Horizontale Beschleu-
	nigung des Dammkörpers
5.63	Ergebnis der Untersuchung der Netzfeinheit - Vertikale Beschleuni-
	gung des Dammkörpers
5.64	Ergebnis der Untersuchung der Netzfeinheit - Horizontale Verschie-
	bung des Dammkörpers
5.65	Ergebnis der Untersuchung der Netzfeinheit - Vertikale Verschiebung
	des Dammkörpers
5.66	Schematische Darstellung des Verlaufs der Rayleigh-Dämpfung nach
	$[24] \dots \dots \dots \dots \dots \dots \dots \dots \dots $
5.67	Darstellung des Verlaufs der gewählten Rayleigh-Dämpfung - An-
	nahme der bisherigen Untersuchungen (5% Dämpfung) 229
5.68	Schematische Darstellung der Auswertungspunkte - Parameterstudie
	zum Ansatz der Materialdämpfung
5.69	Ergebnis der Untersuchung der Materialdämpfung - Angeregte Fre-
	quenzen (horizontale Beschleunigung)
5.70	Ergebnis der Untersuchung der Materialdämpfung - Angeregte Fre-
	quenzen (vertikale Beschleunigung)
5.71	Ergebnis der Untersuchung der Materialdämpfung - Angeregte Fre-
	quenzen - Ergänzende Untersuchung (horizontale Beschleunigung) 233
5.72	Ergebnis der Untersuchung der Materialdämpfung - Angeregte Fre-
	quenzen - Ergänzende Untersuchung (vertikale Beschleunigung) 233
5.73	Verlauf der gewählten Rayleigh-Dämpfung im Betriebserdbeben (5%
	Dämpfung)
5.74	Verlauf der gewählten Rayleigh-Dämpfung im Bemessungserdbeben
	$(10\% \text{ Dämpfung}) \dots \dots$
5.75	Ergebnis der Untersuchung der Wassermasse - Angeregte Frequenzen
	(horizontale Beschleunigung) - Betriebserdbeben
5.76	Ergebnis der Untersuchung der Wassermasse - Angeregte Frequenzen

5.77	Ergebnis der Untersuchung der Wassermasse - Angeregte Frequenzen
	(vertikale Beschleunigung) - Betriebserdbeben
5.78	Ergebnis der Untersuchung der Wassermasse - Angeregte Frequenzen
	(vertikale Beschleunigung) - Bemessungserdbeben
5.79	Ergebnis der Untersuchung der Wassermasse - Horizontale Beschleu-
	nigung an der Dammkrone - Betriebserdbeben
5.80	Ergebnis der Untersuchung der Wassermasse - Horizontale Beschleu-
	nigung an der Dammkrone - Bemessungserdbeben
5.81	Ergebnis der Untersuchung der Wassermasse - Vertikale Beschleuni-
	gung an der Dammkrone - Betriebserdbeben
5.82	Ergebnis der Untersuchung der Wassermasse - Vertikale Beschleuni-
	gung an der Dammkrone - Bemessungserdbeben
5.83	Ergebnis der Untersuchung der Wassermasse - Horizontale Beschleu-
	nigung an der Wasserseite - Betriebserdbeben
5.84	Ergebnis der Untersuchung der Wassermasse - Horizontale Beschleu-
	nigung an der Wasserseite - Bemessungserdbeben
5.85	Ergebnis der Untersuchung der Wassermasse - Vertikale Beschleuni-
	gung an der Wasserseite - Betriebserdbeben
5.86	Ergebnis der Untersuchung der Wassermasse - Vertikale Beschleuni-
	gung an der Wasserseite - Bemessungserdbeben
5.87	Ergebnis der Untersuchung der Wassermasse - Horizontale Beschleu-
	nigung an der Luftseite - Betriebserdbeben
5.88	Ergebnis der Untersuchung der Wassermasse - Horizontale Beschleu-
	nigung an der Luftseite - Bemessungserdbeben
5.89	Ergebnis der Untersuchung der Wassermasse - Vertikale Beschleuni-
	gung an der Luftseite - Betriebserdbeben
5.90	Ergebnis der Untersuchung der Wassermasse - Vertikale Beschleuni-
	gung an der Luftseite - Bemessungserdbeben
5.91	Ergebnis der Untersuchung der Wassermasse - Maximale Beschleu-
	nigung $ a $ im Dammkörper - Betriebserdbeben (Wasserstand -2m) . 248
5.92	Ergebnis der Untersuchung der Wassermasse - Maximale Beschleu-
	nigung $\left a\right $ im Dammkörper - Bemessungserdbeben (Wasserstand -2m) 248
5.93	Ergebnis der Untersuchung der Wassermasse - Maximale Beschleu-
	nigung $\left a\right $ im Dammkörper - Betriebserdbeben (Wasserstand 20m) . 249
5.94	Ergebnis der Untersuchung der Wassermasse - Maximale Beschleu-
	nigung $ a $ im Dammkörper - Bemessungserdbeben (Wasserstand 20m)249

5.95	Ergebnis der Untersuchung der Wassermasse - Maximale Beschleu-
	nigung $ a $ im Dammkörper - Betriebserdbeben (Stauziel ZV 35m) 250
5.96	Ergebnis der Untersuchung der Wassermasse - Maximale Beschleu-
	nigung $ a $ im Dammkörper - Bemessungserdbeben (Stauziel ZV 35m) 250
5.97	Schematische Darstellung der Auswertungspunkte - Parameterstudie
	elastoplastische Stoffmodelle
5.98	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Angereg-
	te Frequenzen (horizontale Beschleunigung) - Bemessungs-erdbeben . 262
5.99	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Angereg-
	te Frequenzen (vertikale Beschleunigung) - Bemessungserdbeben $~$ 262
5.100	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Horizon-
	tale Beschleunigung an der Dammkrone - Bemessungserdbeben $\ .$ 264
5.101	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Vertikale
	Beschleunigung an der Dammkrone - Bemessungserdbeben 264
5.102	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Maxima-
	le Beschleunigung $ a $ im Dammkörper - Mohr-Coulomb Modell $\ .$ 265
5.103	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Maxima-
	le Beschleunigung $ a $ im Dammkörper - Hardening-Soil Modell 265
5.104	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Maxima-
	le Beschleunigung $ a $ im Dammkörper - HS-Small Modell 266
5.105	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Entwick-
	lung der Scherdehnungen γ_s an der Wasserseite über den Zeitverlauf
	- Bemessungserdbeben
5.106	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Entwick-
	lung der Scherdehnungen γ_s an der Luftseite über den Zeitverlauf -
	Bemessungserdbeben
5.107	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Horizon-
	tale Verschiebungen in der Dammachse - Bemessungserdbeben 269
5.108	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Vertikale
	Verschiebungen in der Dammachse - Bemessungserdbeben 269
5.109	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Horizon-
	tale Verschiebungen an der Dammhaut - Bemessungserdbeben 270
5.110	Ergebnis der Untersuchung elastoplastischer Stoffmodelle - Vertikale
Ĵ	Verschiebungen an der Dammhaut - Bemessungserdbeben 270
5.111	
_	Beispielhafte Darstellung der Verteilung des initiierten Schubmoduls

5.112Künstlich erzeugter Erdbebenverlauf des Betriebserdbebens (auf der
Grundlage des Antwortspektrums nach GFZ / DIN 19700) 277
5.113Künstlich erzeugter Erdbebenverlauf des Bemessungserdbebens (auf
der Grundlage des Antwortspektrums nach GFZ / DIN 19700) $~$ 277
5.114 Alternativer Ansatz der Erdbebenbeanspruchung - Horizontale Be-
schleunigung an der Modellunterkante - Bemessungserdbeben $\ .$ 279
5.115 Alternativer Ansatz der Erdbebenbeanspruchung - Vertikale Beschleu-
nigung an der Modellunterkante - Bemessungserdbeben \ldots
5.116 Alternativer Ansatz der Erdbebenbeanspruchung - Horizontale Be-
schleunigung an der Dammsohle - Bemessungserdbeben \ldots
5.117Alternativer Ansatz der Erdbebenbeanspruchung - Vertikale Beschleu-
nigung an der Dammsohle - Bemessungserdbeben
5.118 Alternativer Ansatz der Erdbebenbeanspruchung - Horizontale Be-
schleunigung an der Dammkrone - Bemessungserdbeben $\ .\ .\ .\ .\ .$ 282
5.119 Alternativer Ansatz der Erdbebenbeanspruchung - Vertikale Beschleu-
nigung an der Dammkrone - Bemessungserdbeben
5.120Gewählter Ausschnitt zur Abbildung des Modelldammes im Berech-
nungsmodell für die Simulation von Erdbebenereignissen 285
5.121 Ausschnitt des gewählten FE-Netzes mit ca. 6.500 Elementen $\ .$ 285
5.122 Maximale horizontale Antwortbeschleunigungen $a_{x,max}$ im Damm-
körper
5.123 Minimale horizontale Antwortbeschleunigungen $a_{x,min}$ im Dammkörper290
5.124 Maximale vertikale Antwortbeschleunigungen $a_{y,max}$ im Dammkörper 291
5.125 Minimale vertikale Antwortbeschleunigungen $a_{y,min}$ im Dammkörper 291
5.126 Maximale resultierende Antwortbeschleunigung $\left a_{max}\right $ im Dammkörper 292
5.127 Maximale horizontale Verschiebung $u_{x,max}$ im Dammkörper 294
5.128 Maximale Setzung $u_{y,min}$ des Dammkörpers
5.129 Schematische Darstellung der Auswertungspunkte zur Beschreibung
der Verformung der Dichtwand
5.130 Relative horizontale Verformung u_x der Dichtwand $\ldots \ldots \ldots \ldots 297$
5.131 Darstellung der relativen horizontalen Verformung u_x der Dichtwand 297
5.132 Relative vertikale Verformung u_y der Dichtwand $\ldots \ldots \ldots \ldots 298$
5.133 Schematische Darstellung der Auswertungspunkte zur Beschreibung
der dynamischen Spannungszustände

5.134	Zeitlicher Verlauf der Scherdehnungen γ_s im Dammkörper und Mar-
	kierung der Bereiche zur Untersuchung der dynamischen Spannungs-
	zustände
5.135	Darstellung ausgewählter horizontaler Spannungszustände im Damm-
	körper und dem Untergrund
5.136	Detaillierte Darstellung ausgewählter horizontaler Spannungszustän-
	de im Dammkörper \ldots
5.137	Darstellung ausgewählter vertikaler Spannungszustände im Damm-
	körper und dem Untergrund
5.138	Detaillierte Darstellung ausgewählter vertikaler Spannungszustände
	im Dammkörper
5.139	Darstellung ausgewählter Schubspannungszustände im Dammkörper
	und dem Untergrund
5.140	Detaillierte Darstellung ausgewählter Schubspannungszustände im
	Dammkörper
5.141	Darstellung der Bereiche mit Festigkeitsüberschreitungen und plasti-
	sches Verformungsverhalten im Dammkörper zum Zeitpunkt $t=0,00\;s312$
5.142	Darstellung der Bereiche mit Festigkeitsüberschreitungen und plasti-
	sches Verformungsverhalten im Dammkörper zum Zeitpunkt $t=1,46\;s312$
5.143	Darstellung der Bereiche mit Festigkeitsüberschreitungen und plasti-
	sches Verformungsverhalten im Dammkörper zum Zeitpunkt $t=3,67\;s313$
5.144	Darstellung der Bereiche mit Festigkeitsüberschreitungen und plasti-
	sches Verformungsverhalten im Dammkörper zum Zeitpunkt $t=5,72\;s313$
61	Varashlag zur Vargahangwaiga haim Nachwaig dar Erdhahangisharhait
0.1	vorschag zur vorgenensweise beim Nachweis der Erdbebensicherheit
69	Empfehlung zu Wahl des Berechnungsausschnittes 210
0.2	Emplemung zu wann des berechnungsausschnittes
0.3	vergielen der Antwortbeschleunigungen eines nonen Erddammes mit
6 4	Overschnitt des Madellderenses für den beisnichaften Endhahen
0.4	Querschintt des Modendammes für den beispielnaften Erdbeben-
65	Antworten eltron für den Standert des Medelldemmes semöl [60] 220
0.0	Antwortspektren für den Standort des Modelidammes gemäß [60] 529
0.0	Kunstnen erzeugter Desemeunigungs-Zeitverlauf des BetriebserdDe-
67	Küngtlich organister Rogehlennigunge Zeitverlauf des Personungserd
0.1	hunstnen erzeugter Desemeunigungs-Zeitverlauf des Demessungserd-
	000000 = 00021000

6.8	Künstlich erzeugter Beschleunigungs-Zeitverlauf des Betriebserdbe-
	bens - Satz 2
6.9	Künstlich erzeugter Beschleunigungs-Zeitverlauf des Bemessungserd-
	bebens - Satz 2
6.10	Künstlich erzeugter Beschleunigungs-Zeitverlauf des Betriebserdbe-
	bens - Satz 3
6.11	Künstlich erzeugter Beschleunigungs-Zeitverlauf des Bemessungserd-
	bebens - Satz 3
6.12	Ergebnis der Erdbebensimulation der Betriebserdbeben - Resultie-
	rende Verformung $ u $ des hohen Erddammes $\ldots \ldots \ldots \ldots \ldots 339$
6.13	Ergebnis der Erdbebensimulation der Bemessungserdbeben - Resul-
	tierende Verformung $ u $ des hohen Erddammes \hdots
6.14	Ergebnis der Erdbebensimulation der Betriebserdbeben - Resultie-
	rende Beschleunigungen $ a_{max} $ des hohen Erddammes $\ldots \ldots \ldots 341$
6.15	Ergebnis der Erdbebensimulation der Bemessungserdbeben - Resul-
	tierende Beschleunigungen $ a_{max} $ des hohen Erddammes

Tabellenverzeichnis

1.1	Abweichung der Eigenfrequenz in Abhängigkeit der Dämpfung D_{-} .	13
1.2	Arten der dynamischen Krafterregung (in Anlehnung an $[40]$)	15
1.3	Vergleich der Wellengeschwindigkeiten bei unterschiedlicher Dichte ρ .	33
2.1	Übersicht erforderlicher und vorhandener Kennwerte zur Beschrei-	
	bung des elastoplastischen Materialverhaltens (nach $[23], [71]$ und $[75]$)	42
2.2	Feld- und Laborversuche zur Ermittlung von dynamischen Boden-	
	kennwerten (in Anlehnung an [48] und [90]) $\ldots \ldots \ldots \ldots \ldots$	52
2.3	Mittlere Kennwerte zur Abschätzung des dynamischen Schubmoduls	
	bei sehr kleinen Scherdehnung G_{d0} (nach [33])	59
2.4	Typische Querdehnzahlen $\nu \approx \nu_{dyn}$ unterschiedlicher Böden (nach [33])	65
3.1	Kurzform der makroseismischen Intensitätsskala EMS-98 inklusive	
	Bodenverflüssigung und der Auswirkungen auf Böschungsinstabilitä-	
	$ten (nach [42]) \dots \dots$	76
3.2	Intensitäten mit zugeordneter Magnitude (nach [80])	78
3.3	Ergebnisse einer Modellrechnung mit unterschiedlicher Mächtigkeit	
	der Lockergesteinsschicht (nach [32]) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	88
3.4	Auftretende Böschungsinstabilitäten bei minimaler lokaler Magnitude	
	$(nach [47] und [48]) \dots \dots$	91
4.1	Bemessungssituationen in Abhängigkeit von Lastfall und Tragwider-	
	standsbedingung (nach $[4]$)	96
4.2	Einwirkungskombinationen bei Erddämmen (nach [4])	98
4.3	Erdbebenzonen und zugeordnete Referenzwerte der Spitzen - Boden-	
	beschleunigung (nach $[10]$)	107
4.4	Anzusetzender Untergrundparameter zur Bestimmung der standorts-	
	pezifischen Bodenbeschleunigung (nach [10])	107
4.5	Darstellung der Ergebnisse der Modalanalyse eines mehrstöckigen	
	Rahmens (als Auszug nach [32])	112

4.6	Einfluss des Detaillierungsgrades des Dammkörpers und Schichtmäch-
	tigkeit der Lockergesteinsschicht auf die Eigenfrequenzen (nach $\left[86 \right] \right)$. 136
4.7	Einfluss der Berücksichtigung des spezifischen Eigengewichts im Un-
	tergrund auf die Eigenfrequenzen (nach [86])
4.8	Antwortbeschleunigungen in Abhängigkeit von der Berücksichtigung
	des spezifischen Eigengewichts im Untergrund
5.1	Bodenkennwerte des Berechnungsmodells als Grundlage für die Pa-
	rameterstudien $\ldots \ldots 159$
5.2	Übersicht der Rechenschritte im Rahmen der Parameterstudien \ldots . 168
5.3	Modellkonfiguration - Parameterstudie Mächtigkeit des Untergrundes 170
5.4	Modellkonfiguration - Parameterstudie erforderliche Modellbreite 176
5.5	Modellkonfiguration - Parameterstudie zum Ansatz des spezifischen
	Eigengewichts im Untergrund
5.6	Auswirkungen der Abminderung der Wichten des Untergrundes auf
	die Wellenausbreitung
5.7	Erläuterungen der Parametervariationen zur Untersuchung des Ein-
	flusses des Detaillierungsgrades im Berechnungsmodell
5.8	Angesetzte Bodenkennwerte für die vereinfachte Darstellung des Damm-
	körpers im Modell MD 5B A-40 F0 v04
5.9	Übersicht der im Rahmen der Parameterstudie zu untersuchenden
	Netzfeinheiten
5.10	Wahl der Dämpfungsparameter α und β zur Beschreibung der Mate-
	rialdämpfung nach Rayleigh
5.11	Parameterstudie zum Ansatz der Wassermasse im Berechnungsmodell
	Variation des Wassereinstaus
5.12	Zusammenstellung der ersten maßgeblich angeregten Frequenz des
	Frequenzspektrums (Grundfrequenz) - Variation des Wassereinstaus . 237
5.13	Vergleich der Veränderungen der maximalen Beschleunigungen $ a $
	im Dammkörper bei unterschiedlichen Wasserständen gegenüber dem
	Modell ohne Wassereinstau
5.14	Angesetzte Bodenkennwerte in den Berechnungsmodellen der Para-
	meterstudie elastoplastischer Stoffmodelle
5.15	Angesetzte Bodenkennwerte im gewählten Berechnungsmodell $\ .\ .\ .\ .$ 287
6.1	Kombination der richtungsabhängigen Beschleunigungskomponenten
	beim Nachweis der Böschungssicherheit (nach [56])

6.2 $\,$ Bodenkennwerte bei den Erdbebensimulationen am Modelldamm $\,$. . 334 $\,$

1 Grundlagen der Bodendynamik

1.1 Einführung Bodendynamik

In der Bodendynamik werden zeitabhängige Belastungen und die sich daraus ergebenden Reaktionen des Bodens berücksichtigt. Aufgrund dieser zeitabhängigen Belastungen des Bodens ergeben sich für unterschiedliche Zeitpunkte unterschiedliche Verschiebungen. Da ein physikalischer Zusammenhang zwischen der Verschiebung, der Geschwindigkeit sowie der Beschleunigung einer Masse besteht, ist bei Analysen der Dynamik, somit auch in der Bodendynamik, eine Berücksichtigung von Trägheitskräften erforderlich (vgl. [48]). Ebenso führen dynamische Einwirkungen zu wirksamen und neutralen Spannungszuständen im Boden.

Als eine der wesentlichen Beanspruchungen, mit denen sich die Bodendynamik befasst, sind Erschütterungen, die sich in Form von Wellen im Medium Boden ausbreiten, zu benennen. Neben lastinduzierten Ereignissen, die beispielsweise aus dem Verkehr oder aus Bauvorgängen stammen, sind in diesem Zusammenhang auch die Einflüsse aus Erdbebenereignissen zu berücksichtigen (vgl. [48]). Ebenso werden zyklische Belastungen, beispielsweise von Gründungsbauteilen, behandelt. Diese stellen in der Regel eine komplexe Problemstellung dar. Ferner kann es infolge von zyklischen Belastungen wasserführender Böden zu Porenwasserüberdrücken kommen. Ein bekanntes Phänomen, welches als Resultat auf induzierte Porenwasserüberdrücke auftreten kann, stellt die Bodenverflüssigung dar.

Im Allgemeinen ergeben sich die wesentlichen Herausforderungen der Problemstellungen in der Bodendynamik bei der Modellierung von Belastungsverläufen sowie der Abbildung der Materialeigenschaften (vgl. [48]). Um das dynamische Verhalten des Bodens abzubilden bzw. mathematisch zu beschreiben, ist es erforderlich spezielle Stoffmodelle in den bodendynamischen Anwendungsbereichen zu verwenden.

Diese Stoffmodelle müssen im Wesentlichen

- a.) das Verhalten der Steifigkeit des Bodens unter dynamischer Belastung sowie
- b.) die Festigkeitseigenschaften des Bodens unter dynamischer Belastung und
- c.) die Wechselwirkung von wirksamen und neutralen Spannungen unter dynamischer Belastung beschreiben.

Da die Bodendynamik ein Teilgebiet der Bodenmechanik darstellt, gelten die gleichen Prinzipien wie in der Erdstatik. Die beschriebenen Komplexitäten, durch die Beanspruchungen in der Bodendynamik, führen in der Regel dazu, dass Einflüsse schwieriger abzuschätzen sind (vgl. [48]). Ein Beispiel hierfür stellt der Einfluss von Steifigkeiten dar. Je nach angesetzter Steifigkeit des Materials verändert sich das Frequenzverhalten (vgl. [48]) und somit die Beanspruchung gegenüber dynamischen Belastungen. Daher ist bei Analysen in der Bodendynamik, gegenüber denen in der Erdstatik, in der Regel ein noch sorgfältigeres Vorgehen bei der Abbildung der geologischen Verhältnisse erforderlich. Nach Studer [48] ist der Einsatz von Parameterstudien ein probates Mittel, um eine Aussage zur Empfindlichkeit des Materials gegenüber Parameteränderungen treffen zu können. Diese sind demnach vor Beginn einer Analyse durchzuführen, um Rückschlüsse zu erhalten, durch welche Parameter die Ergebnisse einer Untersuchung maßgeblich beeinflusst werden. Dementsprechend sind diese Parameter in der Modellbildung der Analyse mit Bedacht anzusetzen.

Weiterhin sind in der Bodendynamik in der Regel größere Einflussbereiche von Lasten und Deformationen gegenüber der Erdstatik zu berücksichtigen. Dies begründet sich durch die Wellenausbreitung im Boden. Nach [48] ist die Modelltiefe beispielsweise bei einer dynamischen Setzungsberechnung eines Fundamentes mit dem 5 bis 10-fachen der Fundamentbreite zu wählen. Bei einer statischen Berechnung hingegen beträgt die erforderliche Modelltiefe in etwa der 2- bis 3-fachen Fundamentbreite (vgl. [48]). Ferner müssen bestimmte Randbedingungen bei der Modellbildung verwendet werden, die die Wellenbewegung an den Modellrändern absorbieren, sodass keine ungewollten Reflexionen durch die Modellränder erzeugt werden.

Im Zusammenhang mit der Analyse bodendynamischer Untersuchungen wird seitens [48] eine prinzipielle Vorgehensweise angegeben, welche aber auch allgemein für numerische Analysen in der Bodenmechanik verwendet werden sollte. Diese prinzipielle Vorgehensweise setzt sich aus folgenden Schritten zusammen: