
S c h r i f t e n  z u m  C o n t r o l l i n g ,
F i n a n z -  u n d  R i s i k o m a n a g e m e n t

Herausgegeben von Andreas Brieden, Thomas Hartung,
Bernhard Hirsch und Andreas Schüler

PETER LANG
Internationaler Verlag der Wissenschaften

Bernhard Christian Kübler

Risk Classification
by Means of Clustering
Theoretische Konzetion
und empirische Umsetzung





Risk Classification by Means of Clustering



PETER LANG
Frankfurt am Main·Berlin·Bern·Bruxelles·New York·Oxford·Wien

S c h r i f t e n  z u m  C o n t r o l l i n g ,
F i n a n z -  u n d  R i s i k o m a n a g e m e n t

Herausgegeben von Andreas Brieden, Thomas Hartung,
Bernhard Hirsch und Andreas Schüler

Band 4



Bernhard Christian Kübler

Risk Classification
by Means of Clustering

PETER LANG
Internationaler Verlag der Wissenschaften



Bibliographic Information published by the Deutsche 
Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the 
Deutsche Nationalbibliografie; detailed bibliographic data is 
available in the internet at http://dnb.d-nb.de. 

Zugl.: München, Univ. der Bundeswehr., Diss., 2009

D 706
ISSN 1867-027X

ISBN 978-3-653-00279-9

© Peter Lang GmbH
Internationaler Verlag der Wissenschaften

Frankfurt am Main 2010
All rights reserved.

All parts of this publication are protected by copyright. Any
utilisation outside the strict limits of the copyright law, without

the permission of the publisher, is forbidden and liable to
prosecution. This applies in particular to reproductions,

translations, microfilming, and storage and processing in
electronic retrieval systems.

www.peterlang.de



Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit
als wissenschaftlicher Mitarbeiter an der Professur für Statistik,
insbesondere Risikomanagement an der Universität der Bun-
deswehr München.

Mein Dank gilt meinem Doktorvater Herrn Professor Dr.
Andreas Brieden, der durch seine erstklassige Betreuung entschei-
dend zum Gelingen der Arbeit beigetragen hat. Herrn Pro-
fessor Dr. Thomas Hartung danke ich für die Übernahme des
Zweitgutachtens.

Besonderer Dank gilt meinen Eltern, denen diese Arbeit auch
gewidmet ist. Sie haben durch ihre groÿzügige Unterstützung
die Anfertigung dieser Arbeit ermöglicht.





Contents

List of Figures 7

List of Abbreviations 8

1 Introduction 11

1.1 Exploratory Focus . . . . . . . . . . . . . . . . . 11

1.2 Economic Incentive . . . . . . . . . . . . . . . . . 16

1.2.1 On the Relevance of Classi�cation in Eco-
nomics . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Application Areas of Cluster Analysis . . 19

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 A Plan of this Investigation . . . . . . . . . . . . 29

2 Fundamentals of Premium Pricing 32

2.1 General Remarks . . . . . . . . . . . . . . . . . . 32

2.1.1 Objectives and Techniques of Premium Pric-
ing . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Determinants of Preferable Classi�cation
Systems . . . . . . . . . . . . . . . . . . . 43

3



2.2 Loss Models . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 The Individual Model . . . . . . . . . . . 44

2.2.2 The Collective Model . . . . . . . . . . . 47

2.3 Optimal Estimation and Credibility Theory . . . 50

2.3.1 Limited Fluctuation Theory . . . . . . . . 51

2.3.2 Greatest Accuracy Theory � a Bayesian
Approach . . . . . . . . . . . . . . . . . . 54

3 Clustering in Actuarial Mathematics 58

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . 58

3.2 Distance and Similarity . . . . . . . . . . . . . . 64

3.2.1 Object Distance . . . . . . . . . . . . . . 64

3.2.2 Cluster Distance . . . . . . . . . . . . . . 70

3.2.3 Cluster Inhomogeneity . . . . . . . . . . . 76

3.3 Cluster Criterions . . . . . . . . . . . . . . . . . . 78

3.4 Clustering Algorithms . . . . . . . . . . . . . . . 82

3.4.1 Heuristic Algorithms . . . . . . . . . . . . 82

3.4.2 A Quadratic Optimization Model . . . . . 84

3.5 Actuarial Problems from Cluster Analysis . . . . 86

3.5.1 Assessing Clustering Solutions . . . . . . 87

3.5.2 Selection of Tari� Variables . . . . . . . . 90

3.5.3 The Number-of-Classes-Problem . . . . . 96

3.5.4 Determining Cluster Cardinalities in Ac-
tuarial Applications . . . . . . . . . . . . 100

4



4 Cross-Classi�cation 111

4.1 Proceeding . . . . . . . . . . . . . . . . . . . . . 111

4.2 Premium Pricing and CC . . . . . . . . . . . . . 114

4.2.1 The Method of Bailey and Simon . . . . . 117

4.2.2 The Method of Marginal Totals . . . . . . 118

4.2.3 The Method of Least Squares . . . . . . . 119

4.2.4 The Method of �Marginal Averages� . . . 119

4.2.5 Direct Method . . . . . . . . . . . . . . . 120

4.2.6 Generalized Linear Models . . . . . . . . 120

4.3 Cross-Classi�cation and Cluster
Analysis . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Territory Classes . . . . . . . . . . . . . . 123

4.3.2 Type of Vehicle . . . . . . . . . . . . . . . 127

4.3.3 Contiguous Clustering Problems . . . . . 128

5 A New Classi�cation System 132

5.1 Consequences of Our Previous Analysis . . . . . 132

5.2 Problems Associated with CC . . . . . . . . . . . 133

5.3 The MC . . . . . . . . . . . . . . . . . . . . . . . 135

6 Empirical Investigation 142

6.1 Organization of the Data . . . . . . . . . . . . . 142

6.1.1 Description of the Data Sets . . . . . . . 142

6.1.2 Construction of a Suitable Collective . . . 145

6.2 Risk Analysis . . . . . . . . . . . . . . . . . . . . 148

6.3 Application of MC . . . . . . . . . . . . . . . . . 153

5



6.4 Application of CC . . . . . . . . . . . . . . . . . 156

6.5 Economic Evaluation . . . . . . . . . . . . . . . . 161

6.5.1 Criteria . . . . . . . . . . . . . . . . . . . 161

6.5.2 Calculations . . . . . . . . . . . . . . . . . 164

6.6 Discussion and Outlook . . . . . . . . . . . . . . 166

A Data 169

A.1 Random Number Generator . . . . . . . . . . . . 169

A.2 Claim Data . . . . . . . . . . . . . . . . . . . . . 170

A.3 The Collective . . . . . . . . . . . . . . . . . . . 171

Bibliography 182

6



List of Figures

6.1 Composition of the collective K . . . . . . . . . . 147

6.2 The marginal distribution of age . . . . . . . . . 148

6.3 The marginal distribution of rank . . . . . . . . . 149

6.4 Marginal claims expenditures regarding age . . . 151

6.5 Marginal claims expenditures regarding rank . . 152

6.6 Claims expenditures regarding age and rank . . . 153

6.7 Index values of HG and F for risks aged 22-26 years154

6.8 Index values of 26- and 31-year-old risks with
ranks OF, F and SU . . . . . . . . . . . . . . . . 155

6.9 Graphical representation of the collective (with
γ = 0.1) . . . . . . . . . . . . . . . . . . . . . . . 156

6.10 MC � actual and predicted claims expenditures . 166

6.11 CC � actual and predicted claims expenditures . 167





List of Abbreviations

a.s. almost surely
CC Cross classi�cation
cf. compare
e.g. for example
�g. �gure
i.e. that is
i.i.d. independent and identically distributed
MAE Mean absolute error
MC Multidimensional credibility-based algorithm
MSE Mean squared error
TWSS Total within group sum of squares
vs. versus
w.l.o.g. without loss of generality





Chapter 1

Introduction

1.1 Exploratory Focus

The crucial aspect of pricing insurance premiums is � compared
to other products such as cars or computers � that the cost
of the good protection/insurance is not known beforehand; the
cost (namely the claim sizes) for the insurance company will not
be known until some date in the future. Thus, insurers have to
develop alternative approaches to determine adequate prices for
their products. Accurate pricing is a critical issue for at least two
reasons. First, the overall level of premiums has to guarantee
safety and pro�t objectives: Too low premiums do not ensure
the insurer's liability to cover the claims and thus guarantee
its solvency or are not able to ensure the compliance of certain
pro�t margins, whereas too high premiums banish customers.
A liquid insurer is not only important to the insurer itself but
also to the policyholders since they are given the guarantee to
receive payments in case of a claim event. Second, it is particu-
larly important to get the relative premium structure right. An
important aspect within this context is adverse selection: If
an insurer charges too little for high risk groups and too much
for low risk groups, it will eventually lose low risk customers



and gain high risk customers (such customer �uctuations are
very likely since insurance markets have become highly compet-
itive in the past decades, see [Völ08]). This obviously has a
substantial in�uence on portfolio performance as the high risks
cost too much and yield too low accruals of funds and the low
risk groups are likely to terminate their policies. Increasing the
overall level of premiums to raise pro�tability again even wors-
ens the situation as it compounds the drawback of too low and
too high premiums. This leads to a spiral of losing low risk
customers and attracting high risk customers. Thus the relative
levels of premiums have to be �xed correctly in order to be com-
petitive, and this is the main aspect of statistical approaches to
premium pricing.

All ideas being developed in the course of this investigation
are valid for all branches of non-life insurance. Typically, we
shall illustrate our arguments by examples from motor third
party insurance since tari�s within this branch partition their
portfolios to a � compared to other branches of insurance �
greater extent and since we shall carry out an empirical analy-
sis related to car insurance. So our �rst observation regarding
adverse selection relates to (German) motor insurance as well,
cf. [Sie71]: As is known, the Nazi regime intended to increase
the level of motorization of the German population. Against
this background, it enforced a uniform tari�1 (��at rate�) for
motor insurance.2 As the civil road tra�c almost vanished due
to the outbreak of war in 1939, one cannot judge whether or
not this uniform tari� would have coped with the situation be-
fore 1939. After the war, the existing uniform tari� had been
adapted by insurance �rms initially. However, it turned out
quite early that one had to charge increased contributions. The
problem of adverse selection described above was compounded
by such an increasement. The di�erentation of rates in motor
insurance has become inevitable.

Having noticed the necessity to install a risk-di�erentiating

1In fact, there was a very course di�erentation according to type of vehicle,
power and insured sum

2Legal foundation: P�ichtversicherungsgesetz
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tari�, we pose the question how this can be achieved. The key
is to make use of the (strong) law of large numbers. In our
context, we think of random variables Xi (i ∈ N) as claim
sizes. Before we formulate the laws of large numbers, let us
review two important concepts of convergence coming up in this
context: P -almost sure convergence of the sequence (Xn)n∈N of
real random variables on a probability space (Ω,A, P ) towards
a real random variable X on (Ω,A, P ) means

P{ lim
n→∞

Xn = X} = 1

and P -stochastic convergence means

lim
n→∞

P{|Xn −X| ≥ ε} = 0 (ε > 0).

De�nition 1.1.1 Let (Xn)n∈N be a sequence of integrable real
random variables on a probability space (Ω,A, P ).

(i) (Xn)n∈N is said to satisfy the weak law of large num-
bers if

lim
n→∞

1

n

n∑
i=1

(Xi − E(Xi)) = 0

holds in the sense of P -stochastic convergence.

(ii) (Xn)n∈N is said to satisfy the strong law of large num-
bers if

lim
n→∞

1

n

n∑
i=1

(Xi − E(Xi)) = 0 P − a.s.

Of course, the implication (ii) =⇒ (i) holds. There are various
conditions which can be shown to be su�cient for the occurrence
of a law of large numbers, cf. [Bau02]. The most prominent re-
sults are the theorems of Kolmogorov, the theorem of Khinchin
and the theorem of Etemadi,3 according to which the random
variables Xi (i ∈ N) particularly are assumed to be identi-
cally distributed.
3We mention another su�cient condition in the so called production law of

the insurance technology in Chapter 3.
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Proposition 1.1.2 (Khinchin) If the sequence (Xn)n∈N of in-
tegrable and pairwise uncorrelated random variables with vari-
ances V (Xn) obeys

lim
n→∞

1

n2

n∑
i=1

V (Xi) = 0,

it satis�es the weak law of large numbers.

Proof. See [Bau02]. �

We now state a very general condition.

Proposition 1.1.3 (Etemadi) Each sequence (Xn)n∈N of real,
integrable, identically distributed and pairwise independent ran-
dom variables obeys the strong law of large numbers.

Proof. See [Ete81]. �

Actually, there are two pertinent theorems of Kolmogorov. We
cite that one requiring identically distributed random variables
and thus providing a link to cluster analysis; it follows immedi-
ately from the theorem of Etemadi.

Corollary 1.1.4 (Kolmogorov) Each independent sequence
(Xn)n∈N of real i.i.d. random variables satis�es the strong law
of large numbers.

Aiming to make use of these statements, one has to lay the foun-
dations for applying them. For instance, one of the (su�cient)
conditions which is common to all stated theorems is to consider
(a) in�nitely many (b) identically distributed random variables
(the law of large numbers is a statement on convergence, i.e. the
behaviour of a �nite number of risks is not decisive, instead, a
sequence of in�nitely many risks is required). Cluster analy-
sis is an adequate aid to generate reasonably large families of
risks which we assume to have the same distribution. By con-
sidering such � in some degree � large families (�clusters�) of

14



identically distributed risks we expect the strong law of large
numbers to work. If we would like to make a statement on the
expected claim size of a risk (this quantity serves as fundament
of many premium calculation principles), the laws of large num-
bers justify to look at a (su�ciently large) group of risks having
the same distribution. We hope to obtain such a group by a
suitable clustering. So in other words, our considerations mean
to raise the statistical basis for estimation purposes. We will
continue discussing these ideas in conjunction with determining
suitable collective sizes later on.

So far, we have been concerned with the expected value of the
claims size distribution. We will see, however, that some pre-
mium principles such as the variance principle require to know
higher moments of the claim size distribution as well. The so-
called quantile principle even requires the actuary to know the
entire claim size distribution. To deal with these issues, the
Glivenko-Cantelli theorem (see [GS77]), an application of
the strong law of large numbers, produces relief. According
to the Glivenko-Cantelli theorem, the distribution function F
(which is independent of n) of Xn can be determined approxi-
mately in the sense of P -a.s. uniform convergence by means of
samples, i.e. by realizations of the sequence (Xn)n∈N and the
corresponding empirical distributions. Observe that the latter
statement again requires a sequence (Xn)n∈N of i.i.d. real ran-
dom variables, so performing a cluster analysis is appropriate
here, too.

Having recognized that the way to generate large homo-
geneous risk groups leads over the law of large numbers and
hence via cluster analysis, we pose the question in which man-
ner one ought to cluster in order to obtain preferable (or in
some sense �optimal�) classi�cation results. This question con-
stitutes the subject matter of our analysis. There are inde�-
nitely many methods to design a classi�cation scheme assign-
ing homogeneous risks the same tari� class. We put forward
arguments in favour of a particular approach to be developed
in the course of this research. Our new proposal will be re-
ferred to as MC (multidimensional credibility-based classi�ca-
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