Christoph Holzapfel

Quality Function Deployment als Mittel zur Optimierung und Beschleunigung von Entwicklungsprozessen

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2009 GRIN Verlag ISBN: 9783640463527

Dieses Buch bei GRIN:

Quality Function Deployme und Beschleunigung von E	ent als Mittel zur Optimierung Entwicklungsprozessen

Christoph Holzapfel

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com

Realisierung von Optimierungs- und Beschleunigungspotenzialen durch gezielte Methodenkombination bei der qualitätsorientierten Gestaltung des Entwicklungsprozesses unter Verwendung von Quality Function Deployment

Diplomarbeit-I zur Erlangung des akademischen Grades Diplom Wirtschaftsingenieur (Dipl.-Wirtsch.-Ing.)

Am Lehrstuhl für Qualitätsmanagement Fachbereich Maschinenbau

der

Universität Kassel

vorgelegt von

Christoph Holzapfel

Kassel, den 16.06.2009

I Vorwort

Die vorliegende Arbeit beschäftigt sich im Kern mit dem Einsatz der Qualitätsmethode Quality Function Deployment in Entwicklungsprozessen und gibt einen Überblick zu den Forschungstätigkeiten des Einsatzes dieser Methode. Das Thema bietet für mich die Gelegenheit, mich mit einem an Bedeutung zunehmendem Thema des Qualitätsmanagements vertieft zu beschäftigen. Mein Interesse für Qualitätsmanagement und Qualitätsmethoden wurde bereits in den Vorlesungen von Herrn Prof. Roland Jochem an der Universität Kassel geweckt, weshalb ich mich entschied, meine Diplomarbeit an dem Lehrstuhl für Qualitätsmanagement der Universität Kassel zu schreiben.

Während meiner Praktikumstätigkeit konnte ich dann bei dem Einsatz von einigen Qualitätsmethoden mitwirken, wodurch ich erste praktische Erfahrungen sammeln konnte und der Blick für die Funktionalität von Methoden geschärft wurde, was mir beim Verfassen dieser Arbeit als sehr hilfreich erschien. Zudem kristallisierte sich für mich das Thema der Qualitätsmethoden im Produktentwicklungsprozess immer mehr heraus.

In diesem Zusammenhang möchte ich insbesondere meinem Diplomarbeitsbetreuer Herrn Dipl.-Wirtsch.-Ing. Dennis Geers für die gegebenen Freiheiten und Unterstützung bei der Wahl des Diplomarbeitsthemas, den zahlreichen Hilfestellungen und anregenden Diskussionen danken.

Weiterhin möchte ich Herrn Prof. Roland Jochem und Dipl.-Wirtsch.-Ing. Dennis Geers für die unkomplizierte und an den Studenten orientierte Art bei der Vorgehensweise der Diplomarbeitswahl und –durchführung danken. Ebenso gilt Herrn Prof. Roland Jochem und Herrn Prof. Konrad Spang mein Dank für die Übernahme der Tätigkeiten als Erstund Zweitprüfer.

Schließlich möchte ich meinen Eltern insbesondere für die finanzielle Unterstützung während meiner Diplomarbeitsphase danken.

Christoph Holzapfel

II Inhaltsverzeichnis

I	Vorwort	III
П	Inhaltsverzeichnis	IV
Ш	ll Abbildungs- und Tabellenverzeichnis	VI
IV	V Abkürzungsverzeichnis	VIII
	Einleitung	
•	1.1 Problemstellung und Zielsetzung	
	1.2 Aufbau der Arbeit	
2	Determinanten des Entwicklungsprozesses	3
_	2.1 Der Produktentwicklungsprozess (PEP)	
	2.2 Externe Herausforderungen	
	2.3 Interne Herausforderungen	7
	2.3.1 Empirische Hintergründe	7
	2.3.2 Technische Änderungen	10
	2.3.3 Komplexität in Produkten	13
3	Methoden im Entwicklungsprozess	17
	3.1 Kausalitätsmethoden	
	3.1.1 Fehlermöglichkeits- und Einflussanalyse (FMEA).	18
	3.1.2 Fehlerbaumanalyse (FTA)	30
	3.2 Entwicklungseffizienzsteigernde Methoden	
	3.2.1 Design of Experiments (DoE)	
	3.2.2 Theorie des erfinderischen Problemlösens (TRIZ)	
	3.2.3 Quality Function Deployment (QFD)	52
4		
	4.1 Einführung in Quality Function Deployment	
	4.1.1 Was ist QFD?	
	4.1.2 Geschichte des QFD	
	4.1.3 QFD-Ansätze	
	4.2 Rahmenbedingungen für QFD	
	4.2.1 Qualitätsphilosophie	
	4.2.2 Interdisziplinäres Teamwork	
	4.2.4 Rechnergestützte Hilfsmittel	
	4.3 Vorgehensweise	
	4.3.1 Phase 0: Die Kundenanforderungen als Ausgangs	
	4.3.2 Phase 1: Produktplanung	
	4.3.3 Phasen 2 bis 4 des HoQ	
	4.4 Nutzen- und Aufwandsbetrachtung der QFD-Anwendung	
5		_
•	5.1 Methodenverknüpfung nach Grasse	
	5.2 Modularisierung	

5.2.1 Ansatz nach Pfeifer (ProQEngineering)	91
5.2.2 Weitere Ansätze	93
5.3 Schnittstellen der QFD zur Methodenerweiterung	94
5.4 QFD-Methodenerweiterung	96
5.4.1 Methoden der Kundenanforderungserfassung	96
5.4.1.1 Eigenschaftengenerierung	97
5.4.1.2 Eigenschaftenstrukturierung	100
5.4.1.3 Eigenschaftengewichtung	102
5.4.2 HoQ-Korrelationen und TRIZ	109
5.4.3 QFD und FMEA / FTA	115
5.4.4 QFD und DoE	118
5.4.5 QFD und Pugh Concept Selection	123
5.5 Unternehmensspezifische Aufwandsanpassung	125
6 Zusammenfassung und Ausblick	129
VI Literaturverzeichnis	131

III Abbildungs- und Tabellenverzeichnis

Abb. 1: Begriffsabgrenzungen im Produktlebenslauf	3
Abb. 2: Herausforderungen im PEP	4
Abb. 3: Untersuchte Unternehmen	8
Abb. 4: Verlauf der Entwicklungskosten	13
Abb. 5: Komplexität als Merkmal der Systemstruktur	13
Abb. 6: Produkttypen nach Komplexität	14
Abb. 7: Qualitativer Verlauf der Gesamtzuverlässigkeit	15
Abb. 8: Befragung nach Qualitätsmethoden	18
Abb. 9: Entstehungsgeschichte der FMEA	20
Abb. 10: Systemstruktur Anpassungsgetriebe	24
Abb. 11: Funktionsstruktur des Anpassungsgetriebes	25
Abb. 12: Ursache-Wirkungs-Beziehung	26
Abb. 13: Fehlfunktionen des Anpassungsgetriebes	27
Abb. 14: FMEA-Formblatt	29
Abb. 15: FMEA-Vorgehensweise der Audi AG	30
Abb. 16: Arbeitsschritte der Fehlerbaumerstellung	31
Abb. 17: Knoten ohne Nachfolger	33
Abb. 18: UND-Verknüpfung	34
Abb. 19: ODER-Verknüpfung	34
Abb. 20: Vergleich des Gesamtaufwandes zwischen DoE-Methoden	37
Abb. 21: Versuchsplan mit orthogonalen Feldern	37
Abb. 22: Versuchsplan und Lineare Graphen	39
Abb. 23: Widerspruchsmatrix	49
Abb. 24: Fokussierung auf das IER	51
Abb. 25: Japanischer QFD-Begriff	54
Abb. 26: Historische Entwicklung von QFD	57
Abb. 27: Matrix der Matrizen nach Bob King	58
Abb. 28: Mehrstufige Qualitätsplanung mit dem HoQ	60
Abb. 29: Querschnitt eines HoQ	64
Abb. 30: Kano-Modell der Kundenanforderungen	66
Abb. 31: Die 10 Schritte des 1. HoQ	71
Abb. 32: Abbildung der Kundenforderung in einem Qualitätsplan	75
Abb. 33: Berechnung der absoluten Bewertung	77

Abb.	34: Korrelation der Qualitätsmerkmale, Schritt 6 Phase I	78
Abb.	35: Schritte 7, 8 und 9 des HoQ	79
Abb.	36: Teilematrix	81
Abb.	37: Prozessmatrix	82
Abb.	38: Reduzierung des Änderungsaufwandes durch mehr Systematik	84
Abb.	39: Nutzen von QFD	86
Abb.	40: Basismodulidentifikation der betrachteten QM-Methoden	92
Abb.	41: Beispiel einer Vergleichsmatrix einer AHP	105
Abb.	42: Beispiel der Gewichtungsberechnung	106
Abb.	43: Beispiel eines HoQ für eine Waschmaschine	111
Abb.	44: Ausschnitt des 2.HoQ	112
Abb.	45: 2.HoQ der Bauteile	113
Abb.	46: Schnittstellen zwischen QFD und FMEA/FTA	116
Abb.	47: Ermittlung kritischer Bauteile	117
Abb.	48: Das HoQ zur Selektion von Faktoren	122
Abb.	49: Pugh Concept Selection Matrix	124
Abb.	50: Methodenkombinationen im Nutzen-Aufwands-Kalkül	126
Abb.	51: Aufwandsanpassung durch Methodenkombination	128
Tab.	1: Zusammenhang von FMEA-Arten	21
Tab.	2: Vergleich der Vorgehensweisen	23
Tab.	3: Methoden des DoE	36
Tab.	4: Beispiel Versuchsplan	41
Tab.	5: Reaktionstabelle	41
Tab.	6: Varianzanalysetabelle	42
Tab.	7: Formeln zur Varianzanalyse	42
Tab	8: Die 40 innovativen Prinzipien nach Altschuller	47

IV Abkürzungsverzeichnis

Abb. Abbildung Abk. Abkürzung

ACA adaptive Conjoint Analyse

AHP analytischer Hierarchieprozess

ARIZ Algorithmus zum Lösen erfinderischer Probleme

ASI American Supplier Institute

BIP Bruttoinlandsprodukt bzw. beziehungsweise

CA Conjoint Analyse

CAD Computer Aided Design
CAI Computer Aided Innovation

d.h. das heisst

DFSS Design for Six Sigma

DoE Design of Experiments

ebd. ebenda

EDL externer Dienstleister

EDV elektronische Datenverarbeitung

et al. und andere f. folgende ff. fortfolgende

FMEA Fehlermöglichkeits- und Einflussanalyse FQS Forschungsgemeinschaft Qualität e.V.

FTA Fehlerbaumanalyse
HoQ House of Quality
HUD Head Up Display

IAO Fraunhofer Institut für Arbeitswirtschaft und Organisation

ICQFD International Council of QFD

IER ideales Endresultat

KMU kleine und mittlere Unternehmen

Mrd. Milliarde

NASA National Aeronautics and Space Administration

o.S. ohne Seite

OEM Original Equipment Manufacturer

OESA Original Equipment Suppliers Association

OLS Orthogonal Least Squares
PCS Pugh Concept Selection

PEP Produktentwicklungsprozess

QFD Quality Function Deployment

QM Qualitätsmanagement RPZ Risikoprioritätszahl

S. Seite

SE Simultaneous Engineering
SPC Statistical Process Control

Tab. Tabelle

TQM Total Quality Management

TRIZ Theorie des erfinderischen Problemlösens

u.a. unter anderem

u.U. unter Umständen

USAF United States Air Force

v.v. und umgekehrt

VDA Verband der Automobilindustrie

VDI Verein deutscher Ingenieure

vgl. vergleiche

VoC Voice of Customer

z.B. zum Beispiel

Einleitung 1

1 Einleitung

1.1 Problemstellung und Zielsetzung

Aufgrund des in den vergangenen Jahren gestiegenen Wettbewerbsdrucks, den übersättigten Märkten und den gestiegenen Kundenanforderungen, sehen sich Unternehmen in der Situation, immer mehr an den Kunden orientierte Produkte zu entwickeln – und das in immer kürzerer Zeit. Es besteht die Gefahr, Abstriche bezüglich der Entwicklungsqualität hinnehmen zu müssen. Diese kann sich in mangelnder Produktreife und damit in einer verspäteten Markteinführung widerspiegeln. Erhöhte Kosten durch späte Änderungen, entgangene Umsätze und Imageverluste sind die Folge. Es wird ersichtlich, dass Qualität mehr denn je ein wichtiger Faktor zur Erzielung von Wettbewerbsvorteilen darstellt.

Die Grundsteine vieler Fehler, die ausschlaggebend sind für Qualitätseinbußen, werden bereits in der Entwicklung gelegt und haben daher ebenfalls eine große Auswirkung darauf, welche Qualität produziert wird und letztendlich den Kunden erreicht. Zahlreiche Untersuchungen bestätigen die steigende Anzahl der Entwicklungsfehler und die damit einhergehende gestiegene Bedeutung zur Bekämpfung dieser.² So wundert es z.B. nicht, dass vermutete 80% der Herstellkosten in der Entwicklung stecken.³

Nicht zuletzt aufgrund dieser problematischen Situation wird die Notwendigkeit eines vermehrten Einsatzes präventiver Maßnahmen zur Vermeidung von Qualitätsmängeln offensichtlich.

Die Forderung lautet daher: "QM in die Entwicklung!"4

Das Qualitätsmanagement bietet eine Reihe von entwicklungsbegleitenden Methoden, die gezielt auf eine qualitätsorientierte Gestaltung der Entwicklungstätigkeiten ausgerichtet sind und damit eine Lösung der angesprochenen Problemsituation darstellen.

Eine besondere Herausforderung bei der Implementierung und Anwendung der Qualitätsmethoden im Produktentstehungsprozess liegt in dem hohen Aufwand der Methoden, die mitunter von Unternehmen als sehr komplex angesehen werden. Da das Nutzen-Aufwandsverhältnis nicht immer klar ist, verzichten viele Unternehmen, insbeson-

¹ Vgl. Dippe (2008) S.2f.

² Vgl. z.B. Dippe (2008) S.2

³ Vgl. Droz (1992) S.34ff.

⁴ Dudenhöffer (2004) S.1