Jörg Krause

Konvergente Geschäftsprozessmodellierung für die Softwareentwicklung mit ARIS und UML

Diplomarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2003 GRIN Verlag

ISBN: 9783638258333

Jörg Krause

Konvergente Geschäftsprozessmodellierung für die Softwareentwicklung mit ARIS und UML

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

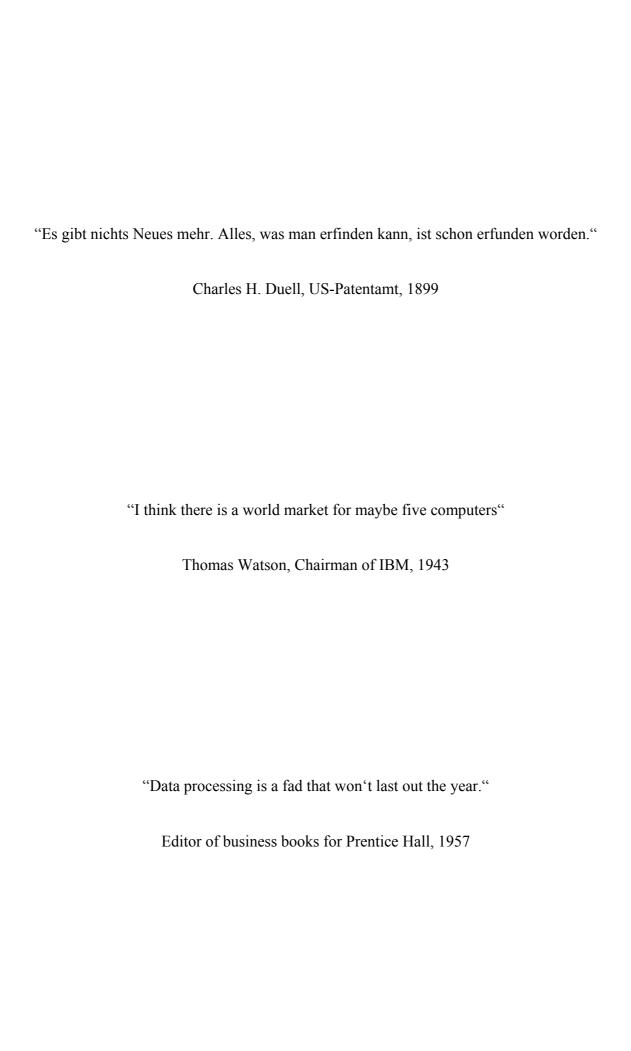
Besuchen Sie uns im Internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com

Konvergente Geschäftsprozessmodellierung für die Softwareentwicklung mit ARIS und UML


Diplomarbeit

zur Erlangung des Grades eines Diplom Kaufmannes

an der Wirtschaftswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin

Verfasser: Jörg Krause

Inhaltsverzeichnis

Inhalts	sverzeichnis	I
Abbild	lungsverzeichnis	III
Tabello	enverzeichnis	IV
Abkür	zungsverzeichnis	IV
1 E	inleitung	1
1.1	Stakeholder und Probleme im Gesamtprozess	3
1.2	Geschäftsprozessmodellierung	4
1.3	Der Softwareentwicklungsprozess	6
1.4	Model Driven Architecture	9
2 M	Iodellierung mit ARIS und UML	12
2.1	Schaffung von Konvergenz in der GPM	12
2.2	Geschäftsprozessmodellierung mit ARIS	14
2.2	2.1 Einsatzgebiete von ARIS	15
2.2	2.2 Sichten und Beschreibungselemente der GPM mit ARIS	17
2.2	2.3 Verbindung von Prozess- und Datensicht	18
2.2	2.4 Statik und Dynamik der ARIS Modellierung	20
2.3	Modellierung mit UML	21
2	3.1 Einsatzgebiete der UML	21
2	3.2 Systembeschreibung mit UML	22
2	3.3 GPM unter Verwendung der UML	23
2.4	ARIS-Integration der UML	26
2.5	Integration durch objektorientierte Erweiterung der EPK	29
3 Ü	bertragung der Geschäftsprozessmodelle	31
3.1	Transformationen gemäss MDA	31
3.2	Mapping	33
3.3	Refinement und Konsistenzgestaltung	35
4 Sc	oftwareumsetzung und Bewertung	36

4.1 R	eischmann Toolbus	37		
4.2 Pl	haidros eaSE	38		
4.2.1	Einsatzfelder	41		
4.2.2	Anwendungsentwicklung	42		
4.2.2	2.1 Systemvoraussetzungen	42		
4.2.2	2.2 Benutzeroberflächen	42		
4.2.2	2.3 Datenorganisation und Datenablage	45		
4.2.2	2.4 Modellierung	47		
4.2.3	Beurteilung und Fazit	55		
4.3 A	RIS-ROSE-Bridge	58		
4.3.1	Vorgehens- und Modellierungskonzept	58		
4.3.2	Modellierungskonzepte und Konventionen	60		
4.3.2	2.1 Modellierung mit Filter	60		
4.3.2	2.2 Modellierung der Sichten	61		
4.3.3	Überführung und Technik	63		
4.3.4	Beurteilung und Fazit	70		
5 Zusai	mmenfassung und Ausblick	74		
Anhang	Anhang			
Literaturvo				
Onlinequel	Onlinequellen und sonstige			
Verwendet	Verwendete Software			

Abbildungsverzeichnis

Abbildung 1: Stakeholder bei der Anwendungsentwicklung	3
Abbildung 2: MDA Metamodell	9
Abbildung 3: (e) EPK-Elemente	19
Abbildung 4: Beispiel use case in Rational Rose	24
Abbildung 5: aus Aktivitäten abgeleitete Klasse	25
Abbildung 6: Beispiel-eEPK	27
Abbildung 7: aus eEPK generiertes UML Klassendiagramm- nur Funktionen	28
Abbildung 8: Beispiel activity diagram und aus der zugehörigen eEPK der ARIS-	29
Abbildung 9: Konvergenz zwischen Modellen beim Einsatz der GPM	32
Abbildung 10: Der Workspace Inspector in eaSE	43
Abbildung 11: Der Web Workspace in eaSE	44
Abbildung 12: Win Workspace in eaSE	45
Abbildung 13: Navigation und Datenablagestruktur	46
Abbildung 14: Aufruf der eaSE Importschnittstelle	48
Abbildung 15: Klassendiagramm (Rose) und Fehlermeldung beim Import	48
Abbildung 16: Workflow - Modellierungselemente in eaSE	49
Abbildung 17: Beispiel-Workflow modelliert in eaSE	50
Abbildung 18: VBS zum Modellierungsbeispiel	51
Abbildung 19: UML – Modellierungselemente in eaSE	52
Abbildung 20: UML Klassendiagramm zum Beispiel-Workflow	53
Abbildung 21: Einfügen von vordefinierten UML-Elementen	53
Abbildung 22: Teil-Metamodell für die Workflow-Erstellung	54
Abbildung 23: Zusammenhänge zwischen DrUP, Modellen und Modellierungstools	59
Abbildung 24: Attributdefinition Granularität	60
Abbildung 25: zu überführende Beispiel eEPK	62
Abbildung 26: Beispiel eERM für den Informationsträger "Beschwerdemail"	62
Abbildung 27: erzeugte Infrastruktur in Rose	64
Abbildung 28: erzeugtes Klassendiagramm (aus eERM)	65
Abbildung 29: use cases bei eEPK Funktionsattribut "typisch"	66
Abbildung 30: Ablage und use cases bei eEPK Funktionsattribut "grob"	67
Abbildung 31: Ablage und activity Diagramm bei eEPK-Funktionsattribut "fein"	68

Abbildung 32: übertragener Informationsträger und Verbindungsstruktur 69

Tabellenverzeichnis

Tabelle 1 : EPK und mögliche daraus ableitbare UML Modelle34Tabelle 2 : getestete ARIS Elemente und Überführungsergebnisse70

Abkürzungsverzeichnis

ARIS Architektur integrierter Informationssysteme

BE Business Engineering

BPR Business Process Reengineering

CASE Computer Aided Software Engineering

CORBA Common Object Request Broker Architecture

CWM Common Warehouse Meta Model

DrUP Dresdner Unified Process

GP Geschäftsprozess

GPM Geschäftsprozessmodellierung

(e)EPK (erweiterte) Ereignisgesteuerte Prozesskette

(e)ERM (erweitertes) Entity Relationship Model

IDE Integrated Development Environment

IT Informationstechnologie

MDA Model Driven Architekture

MOF Meta Object Facility

OMA Object Management Architecture

OMG Object Management Group

RUP Rational Unified Process

UML Unified Modeling Language

UP Unified Process

VBS Visual Basic Script

XMI XML Metadata Interchange

XML Extensible Markup Language