Sven Sieloff / Inka Schneider / Katrin Felsmann / Svenja Reuter / Till Kahnwald / Sebastian Rehm / Mathias Schulz

Neue Technologien in der Automobilbranche

Studienarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2003 GRIN Verlag ISBN: 9783638247610

Dieses Buch bei GRIN:

Sven Sieloff, Inka Schneider, Katrin Felsmann, Svenja Reuter, Till Kahnwald, Sebastian Rehm, Mathias Schulz						
Neue Technologien in der Automobilbranche						

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com

Universität Lüneburg Institut für Betriebswirtschaftslehre Marketing und Technologiemanagement

Seminar zum "Technologiemanagement"

Neue Technologien in der Automobilbranche

Sommersemester 2003

Verfasser:
Inka Schneider Katrin Felsmann Svenja Reuter

Till Kahnwald Sebastian Rehm Sven Sieloff

Mathias Schulz

Abbildungsverzeichnis

Abbildung 1: Bioenergie für Europa	8
Abbildung 2: Biodieselproduktion und Vermarktung in Deutschland,	
Situation und Perspektive	11
Abbildung 3: 24 Stunden-Rennen mit alternativen Kraftstoffen	15
Abbildung 4: Niedertemperaturvergaser	23
Abbildung 5: Carbo-V [®] -Vergaser	24
Abbildung 6: Verfahrensschema Carbo-V [®]	25
Abbildung 7: Co ₂ -Kreislauf mit SunFuel [®]	28
Abbildung 8: Dezentrale - Zentrale Kraftstoffgewinnung	32
Abbildung 9: Entwicklung der Werkstoffverteilung im Automobilbau	61
Abbildung 10: Alternative Kraftstoffe/Antriebe – Bewertungskriterien	83
Abbildung 11: Das Brennstoffzellensystem: Die Brennstoffzelle	
und ihre Interaktion im Automobil (Fahrzeugtechnik)	88
Abbildung 12: Brennstoffzellenstack	88
Abbildung 13: Der Aufbau der Brennstoffzelle	88
Abbildung 14: Die Brennstoffzellenchemie 1	89
Abbildung 15: Die Brennstoffzellenchemie 2	89
Abbildung 16: Die Brennstoffzellenchemie 3	89
Abbildung 17: Die Brennstoffzellenchemie 4	90
Abbildung 18: Die Brennstoffzellenchemie 5	90
Abbildung 19: Die Brennstoffzellenchemie 6	90
Abbildung 20: Die Brennstoffzellenchemie 7	91
Abbildung 21: Die Brennstoffzellenchemie 8	91
Abbildung 22: Die Brennstoffzellenchemie 9	91

Inhaltsverzeichnis

A. Einleitung	5
B. Neue Technologien in der	
Automobilbranche	7
Automobilitaliene	/
1. Rapsölmethylester	8
1.1 Einführung	
1.1.1 Technologie Rapsölmethylester	
1.1.2 Herstellungsverfahren	8
1.2 Rahmenbedingungen	
1.2.1 Fortgeführte Subventionszahlungen beim Rapsanbau	
1.2.2 Genormte Qualität nach DIN	
1.2.3 Mineralölsteuerbefreiung	11
1.2.4 Flächendeckender Verkauf von Biodiesel	
1.3 Entwicklung bis heute	
1.4 Zukunftschancen des Rapsölmethylesters	
1.4.1 Begrenzte Anbaufläche für Ölpflanzen (in Deutschland Raps)	
1.4.2 Nachhaltige Verwendung von Kraftstoffen	
1.4.3 Rapsölmethylester als Nischenprodukt	
1.5.1 Automobilhersteller	
1.5.1 Automobiliersteher 1.5.2 Bundesregierung Deutschland und die EU	
1.5.3 Institute und Vereinigungen	
1.5.4 Events	
1.6 Vor- und Nachteile des Biodiesel	
1.6.1 Vorteile	
1.6.1.1 Cetanzahl	
1.6.1.2 Nahezu schwefelfrei	16
1.6.1.3 Partikelemission bei der Verbrennung	17
1.6.1.4 Natürliche Schmierfähigkeit	17
1.6.1.5 Wintertauglichkeit	17
1.6.1.6 Biodiesel ist kein Gefahrgut	
1.6.1.7 Geschlossener CO2-Kreislauf	
1.6.2 Nachteile	
1.6.2.1 Geringerer Energiegehalt	
1.6.2.2 Geruchsbildung	
1.6.2.3 Kostengünstigere Alternativen für CO2-Minderung	
1.7 Fazit	19
2 Diagon/Erdans	21
2. Biogas/Erdgas	
2.1 Einführung: Herstellung, Funktionsweise und Technologie	
2.1.1 Was ist Erdgas?	
2.1.2 Woher kommt Erdgas?	
2.1.3 Wie funktionieren Erdgasfahrzeuge?	
2.2 Entwicklung und Bedeutung bis heute 2.3 Zukunftsaussichten	
∠.J ∟ukuiiitouuooi∪iitoii	<i>∠</i> ⊅

	2.4 Promotoren	. 30
	2.5 Vor- und Nachteile	. 32
	2.5.1 Vorteile	. 32
	2.5.2 Nachteile	. 33
	2.6 Fazit	. 34
a	C = C = 1	
3	. Sunfuel	
	3.1 Einführung: Technologie und Herstellung	
	3.1.1 Was ist SunFuel®?	
	3.1.2 Biomasse als Ausgangsstoff	. 36
	3.1.3 Die Firma CHOREN	
	3.1.4 Das technische Verfahren	
	3.1.5 Die Fischer-Tropsch-Synthese	
	3.2 Entwicklung bis heute	
	3.3 Zukunftschancen	
	3.3.1 Schonung der Umwelt	
	3.3.2 Die Rolle der Landwirtschaft	
	3.3.3 Die Rolle der Technologieführerschaft und Verbesserung der Motorentech	
	3.4 Ausgewählte Stakeholder und Projekte	
	3.5 Evaluation der Technologie	
	3.5.1 Vorteile	
	3.5.1.1 CO2-neutraler Kreislauf und Umweltschutz	
	3.5.1.2 Designerkraftstoff	
	3.5.1.3 Vorteile für die Landwirtschaft	
	3.5.1.4 Sofort mögliche Nutzung	
	3.5.2 Nachteile	
	3.5.2.1 Kosten	
	3.5.2.2 Zentral vs. Dezentral	
	3.6 Fazit	
	111 00 1 D 00 11	
4	. Wasserstoff und Brennstoffzellen	
	4.1 Einführung: Herstellung des Energieträgers Wasserstoff und	
	Brennstoffzellentechnologie	. 48
	4.1.1 Herstellung des Energieträgers Wasserstoff	. 48
	4.1.1.1 Die Erzeugung und Bereitstellung von Wasserstoff durch	
	Dampfreformierung	
	4.1.1.2 Die Erzeugung und Bereitstellung von Wasserstoff durch Elektrolyse	
	4.1.2 Brennstoffzellentechnologie	
	4.1.2.1 Verbrennungsmotoren	
	4.1.2.2 Brennstoffzellen	
	4.1.2.2.1 Das Brennstoffzellensystem: Die Brennstoffzelle und ihre Interaktion	
	im Automobil (Fahrzeugtechnik)	
	4.1.2.2.2 Der Aufbau der Brennstoffzelle	
	4.1.2.2.3 Die Brennstoffzellenchemie	
	4.2 Entwicklung und Bedeutung der Wasserstoff- und Brennstoffzellentechnologie	
	bis heute	
	4.2.1 Historie des Wasserstoffs	
	4.2.2 Bisherige Verwendung von Wasserstoff 4.2.3 Historie der Brennstoffzelle	. 55 56
	4 / 1 DISTORE DEL DIEURIO I TEUE	יחי

4.3 Zukunft der Wasserstoff- und Brennstoffzellentechnologie	56
4.4 Ausgewählte Stakeholder und Projekte	
4.5 Evaluation der Wasserstoff- und Brennstoffzellentechnologie	61
4.5.1 Vorteile	61
4.5.2 Nachteile	62
4.6 Fazit	63
5. Technologien im Bereich der Sicherheitstechnik	65
5.1 Einführung	
5.2 Entwicklung bis heute	
5.2.1 Meilensteine automobiler Sicherheit	
5.2.2 Entwicklungen im Bereich der aktiven Sicherheit	
5.2.2.1 Fahrsicherheit	
5.2.2.2 Wahrnehmungssicherheit	
5.2.2.3 Bedien- und Konditionssicherheit	
5.2.3 Sicherheitstechnologien im Bereich der passiven Sicherheit	
5.3 Zukunftschancen	
5.4 Ausgewählte Stakeholder und Projekte	
5.5 Vor- und Nachteile / Fazit	
0.0 + 0.2	
6. Werkstoff- und Produktionstechnologien	7.5
6.1 Werkstoffe	
6.1.1 Stahl	
6.1.2 Leichtmetalle	
6.1.2.1 Aluminium	
6.1.2.2 Magnesium	
6.1.3 Kunststoffe	
6.1.4 Elastomere	
6.2 Produktionskonzepte	82
6.2.1 Tailored Blanks/Tailored Tubes	
6.2.2 Metallschäume und Sandwichstrukturen	
6.2.3 Hybridbauweise	
6.3 Fertigungstechnologien	
6.3.1 Herstellungs- bzw. Formgebungsverfahren	
6.3.1.2 Pressgießen	
6.3.1.3 Thixoforming	
6.3.2 Fügetechniken	
6.3.2.2 Kleben	
6.3.2.3 Punktschweißkleben	
6.3.2.4 Durchsetzfügen	
6.4.1 Virtual Prototyping	
6.4.1 Virtual Prototyping	87 88
V T 4 NADIM LIVIUMVIIME	00

C. Mineralölkonzerne	89
Die Mineralölindustrie in der Gegenwart	89
1.1 Einleitung	89
1.2 Der Weltmineralölmarkt und die Weltenergieversorgung	90
1.3 Die Reichweite der fossilen Ressourcen	90
2. Neue Technologien der Erdöl- und Erdgasgewinnung	91
2.1 Fortschritte in der Exploration	91
2.2 Fortschritte in der Förderung	92
2.3 Fortschritte in der Aufbereitung	92
2.4 Die "neue" Reichweite der Ressourcen	93
3. Mineralölkonzerne als Verfechter der fossilen Brennstoffe?	93
3.1 Interessen	93
3.2 Forschung	94
3.3 Beteiligungen	95
3.4 Chancen	96
4. Fazit	96
D. Fazit	98
Anhang	99
Literaturverzeichnis	107

A. Einleitung

Die Erkenntnisse verdichten sich, dass der Höhepunkt der Fördermengen von Erdöl in absehbarer Zukunft erreicht sein wird (Begrenztheit der fossilen Energieträger). Wird auch danach noch für Jahrzehnte Erdöl verfügbar sein, so werden die Ölpreise jedoch weiter deutlich steigen. Mobilität und Transport sind existenziell abhängig von einer gesicherten Kraftstoffversorgung: der Handlungsbedarf zur langfristigen, nachhaltigen Sicherung der Energieversorgung ist immanent.

Nachhaltigkeit hat in vielen Gesellschaftsbereichen zu einem Umdenken geführt. Auch die Automobil- und Erdölindustrie suchen neue Wege, um diesen Anforderungen gerecht zu werden. Es gibt Schätzungen, wonach weltweit 800 verschiedene Definitionen von Nachhaltigkeit im Umlauf sind. Im vergangenen Jahrzehnt kristallisierte sich als breit akzeptierte Übereinkunft heraus, unter Nachhaltigkeit die gelungene Balance zwischen drei Interessenpolen zu verstehen: wirtschaftlicher Entwicklung, ökologischen Belangen und sozialen Erfordernissen. Damit wird deutlich, dass es nicht um objektiv festlegbare Kennziffern und Grenzwerte geht, sondern um Abwägungen und Werteentscheidungen, die jede Gesellschaft für sich zu treffen hat.

Gleichzeitig gilt es, die Zielsetzungen des Klimaschutzes zur Verminderung der erfüllen. Treibhausgasemissionen zu In ihrer Gesamtheit tragen Verbrennungsprodukte der fossilen Brennstoffe Erdöl, Erdgas und Kohle, die heute den Großteil des Energiebedarfs decken, den Hauptteil zur Luft-, Wasser- und Bodenverschmutzung bei. Um die Umwelt dauerhaft zu schonen, muss das Übel an der Wurzel gepackt, also das Kohlenstoffdioxid ausgeschaltet werden: gesucht wird ein Energieträger, der die fossilen Brennstoffe ersetzen kann. Zur Erfüllung der CO₂-Reduktionsziele muss damit begonnen werden, den Einsatz von neuen Kraftstoffen und alternativen Antriebssystemen mit höherer Effizienz und geringeren Schadstoffemissionen vorzubereiten.

Die baldige Abkehr von der heutigen fossilen Energiewirtschaft ist folglich zwingend. Zukunftsfähige alternative Kraftstoffe müssen den folgenden Anforderungen genügen:

- Schonung endlicher Ressourcen, d.h. stärkere Nutzung erneuerbarer Energien

- Verringerung der Emissionen, d.h. Schutz der Umwelt
- Sicherung der langfristigen Energieversorgung sowie eines gegen externe Störungen resistentes Energieversorgungssystem zur Sicherung von Mobilität, Produktion, Konsum, Wärme und Komfort (Nachhaltigkeit)
- Eignung für Verbrennungsmotoren und alternative Fahrzeugantriebe (z.B. Brennstoffzellen)

In der vorliegenden Seminararbeit werden schwerpunktmäßig verschiedene alternative Antriebstechnologien vorgestellt sowie Entwicklungen im Bereich der Sicherheits- und Herstellungstechnologie sowie die Rolle der Mineralölindustrie im sich wandelnden Energiemarkt betrachtet.