Christine Richter

Aufklärung der Struktur-Wirkungsbeziehungen von CpG-Aund CpG-C-Oligodesoxynukleotiden als Grundlage für die Entwicklung immunstimulatorischer Nanopartikel

Doktorarbeit / Dissertation

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2006 GRIN Verlag ISBN: 9783638858946

Dieses Buch bei GRIN:

Christine Richter

Aufklärung der Struktur-Wirkungsbeziehungen von CpG-A- und CpG-C-Oligodesoxynukleotiden als Grundlage für die Entwicklung immunstimulatorischer Nanopartikel

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/

http://www.facebook.com/grincom

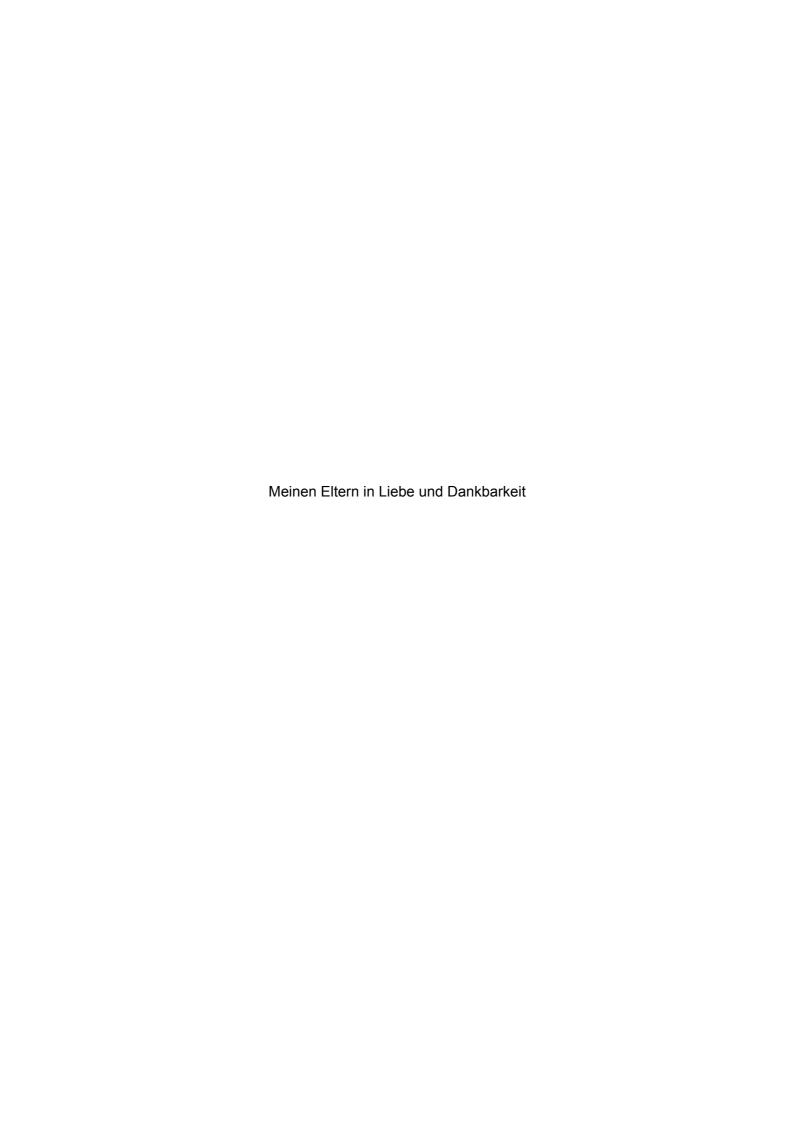
http://www.twitter.com/grin_com

Aus der Abteilung für Klinische Pharmakologie

Medizinische Klinik Innenstadt

der

Ludwig-Maximilians-Universität München


Aufklärung der Struktur-Wirkungsbeziehungen von CpG-A- und CpG-C-Oligodesoxynukleotiden als Grundlage für die Entwicklung immunstimulatorischer Nanopartikel

Dissertation

zum Erwerb des Doktorgrades der Humanbiologie an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

vorgelegt von

Christine Richter

1 EINLEITUNG 8

1.1	Das humane Immunsystem	8
	1.1.1 Die angeborene und die adaptive Immunität	8
	1.1.2 Toll-like Rezeptoren - Erkennungssysteme der angeborenen Immunität	9
	1.1.3 Typ-I Interferon - ein Effektor der angeborenen Immunität	13
	1.1.4 Dendritische Zellen - Mittler zwischen der angeborenen und der adaptiven	
	Immunität	14
	1.1.5 B-Zellen - Effektorzellen der adaptiven Immunität	16
1.2	CpG-Oligodesoxynukleotide	17
	1.2.1 Geschichtlicher Hintergrund: Von bakteriellen Lysaten zu synthetischer	
	CpG-DNA	
	1.2.2 Wirkung und Wirkmechanismen von CpG-DNA	19
	1.2.3 Definition von drei Klassen synthetischer CpG-ODN: CpG-A, CpG-B und CpG-C	21
	1.2.4 Therapeutischer Einsatz von CpG-Oligodesoxynukleotiden	
1.3	Ziele dieser Arbeit	25
2	MATERIAL UND METHODEN	27
2.1	Geräte, Chemikalien und Reagenzien	27
	2.1.1 Geräte	
	2.1.2 Verbrauchsmaterialien	
	2.1.3 Chemikalien	
	2.1.4 Reagenziensätze	28
	2.1.5 Materialien für die Zellkultur	28
	2.1.6 Zytokine	29
	2.1.7 Zellkulturmedien, Puffer und Lösungen	29
	2.1.7.1 Medien und Puffer für die Zellkultur	29
	2.1.7.2 Puffer und Lösungen für die Gelelektrophorese	29
	2.1.8 Antikörper für die Durchflusszytometrische Analyse	30
2.2	Oligodesoxynukleotide	30
	2.2.1 Zur Zellstimulation eingesetzte Sequenzen	30
	2.2.2 Zur Gelelektrophorese eingesetzte Sequenzen	31
	2.2.3 Temperatur-Präinkubation von ODN 2216	34
	2.2.4 Temperatur-Präinkubation von ODN M362	34

2.3	Polyvalente	Linker	35
	2.3.1 Polyvale	ente Linker - CpG-DNA	35
	2.3.2 Trivaler	ite Linker - palindromische RNA	36
	2.3.3 Poly-L-	Arginine als Transfektionsreagenzien	36
	2.3.3.1	Herstellung des 'Master-Mixes' zur Transfektion	36
2.4	Zellulär – im	munologische Methoden	37
	2.4.1 Isolation	n der gewünschten Zellpopulation	37
	2.4.1.1	Mononukleäre Zellen des peripheren Blutes	37
	2.4.1.2	Plasmazytoide dendritische Zellen	38
	2.4.1.3	Gesamt B-Zellen (CD19 ⁺)	39
	2.4.2 Herstell	ung autologen Serums	39
	2.4.3 Zellkultu	Jr	39
	2.4.4 Durchflu	usszytometrie (FACS-Analyse)	40
	2.4.4.1	Grundprinzip der FACS-Analyse	40
	2.4.4.2	Durchflusszytometrische Bestimmung der Reinheit von	
		plasmazytoiden dendritischen Zellen und B-Zellen	41
	2.4.5 Enzyme	e-linked immunosorbent assay (ELISA)	42
	2.4.5.1	Zytokine	42
	2.4.5.2	Proliferation (BrdU-ELISA)	42
2.5	Molekularbio	ologische Methoden	43
	2.5.1 Gelelek	trophorese	43
	2.5.1.1	Prinzip der Gelelektrophorese	43
	2.5.1.2	Prinzip der Detektion von Digoxigenin-markierten	
		Oligodesoxynukleotiden	44
	2.5.1.3	Prinzip der Detektion von DNA durch Ethidiumbromidfärbung	45
	2.5.1.4	Durchführung der Gelelektrophorese	45
	2.5.1.5	Blotting und Detektion Digoxigenin-markierter	
		Oligodesoxynukleotide	45
	2.5.1.6	Färbung mit Ethidiumbromid	46
	2.5.1.7	Auswertung der Gelbilder	47
	2.5.2 Partikel	größenbestimmung durch Zetapotenzialmessung	47
	2.5.2.1	Grundprinzip	47
	2.5.2.2	Durchführung der Messung	48
2.6	Statistische	Analyse	48
2.7	Software		48

3	ERGEBNISS	E	49
3.1	Untersuchun	g der Struktur-Wirkungsbeziehungen von CpG-A und CpG-C	49
	3.1.1 Untersu	chung des Klasse A Oligodesoxynukleotids 2216	49
	3.1.1.1	CpG-A bildet Nanopartikel im Größenbereich von Viren	. 49
	3.1.1.2	Entwicklung der Temperatur-Präinkubationsmethode zur	
		experimentellen Kontrolle der Multimerisierungen	50
	3.1.1.3	Strukturelle Analyse: CpG-A multimerisiert im physiologischen	
		Milieu	. 51
	3.1.1.4	Identifizierung des zentralen Palindroms als notwendiges Elemen	t
		zum Aufbau größerer Partikel aus G-Tetraden	. 53
	3.1.1.5	Identifizierung der Natriumionen als wichtiges stabilisierendes	
		Element zum Aufbau der G-Tetraden	. 54
	3.1.1.6	Große Partikel sind die Voraussetzung zur raschen Induktion hoh	er
		Mengen von Interferon-alpha in plasmazytoiden dendritischen	
		Zellen	. 55
	3.1.1.7	Die Präinkubation von PDCs mit Interferon-beta verstärkt die	
		Induktion von Interferon-alpha durch Einzelstränge	57
	3.1.1.8	B-Zellen werden von kleinen Partikeln und Einzelsträngen des	
		ODN 2216 nicht aktiviert	. 58
	3.1.1.9	Strukturelle Analyse: Die Multimere öffnen ihre Bindungen bei	
		pH < 6	. 59
	3.1.2 Untersu	chung des Klasse C Oligodesoxynukleotids M362	60
	3.1.2.1	Strukturelle Analyse bei 4 °C: Die Stabilität der Duplices hängt	
		von den anwesenden Natrium- oder Magnesiumionen ab	61
	3.1.2.2	Strukturelle Analyse bei 37°C: Weder Duplices noch Hairpins sind	t
		im physiologischen Milieu stabil	62
	3.1.2.3	Übertragung der Ergebnisse der strukturellen Analyse auf den	
		Zellversuch	65
3.2	Design immu	ınstimulatorischer Partikel unter Einsatz wirksamer	
	Strukturele	mente von CpG-A und CpG-C	66
	3.2.1 Polyvale	ente Linker - palindromische CpG-DNA	. 66
	3.2.1.1	Strukturelle Analyse	. 67
	3.2.1.2	Starke Induktion von Interferon-alpha in PBMCs nach Transfektio	n
		mit Poly-L-Arginin	. 68
	3.2.1.3	Screening verschieden langer Poly-L-Arginine als	
		Transfektionsreagenzien	. 69

		3.2.1.4	Poly-L-Arginin verbessert die endozytotische Aufnahme der	
			Polyvalenten Linker	. 70
		3.2.1.5	Untersuchung der CpG-Abhängigkeit des immunstimulatorischen	
			Effektes	. 71
		3.2.1.6	Wirkung der transfizierten Polyvalenten Linker auf plasmazytoide	
			dendritische Zellen und B-Zellen	. 71
	3.2.2	Trivalen	te Linker - palindromische RNA	. 73
		3.2.2.1	Strukturelle Analyse: PVL-RNA multimerisieren zu definiert	
			aufgebauten, großen Strukturen	. 74
		3.2.2.2	Induktion von Interferon-alpha in PBMCs nach Transfektion mit	
			Poly-L-Arginin	. 75
4	DISK	USSION		77
4.1	Meth	odendis	kussion	77
	4.1.1	Möglich	keiten und Grenzen der Gelelektrophorese zur Simulation	
		physiolo	ogischen Milieus	. 77
	4.1.2		- heinlichkeit von strukturellen Veränderungen der PVL-Partikel durc	
			bation mit Poly-L-Arginin	
4.2	Strul		kungsbeziehungen von ODN 2216 (CpG-A)	80
	4.2.1	Zusamn	nenspiel aus Poly-Guanin-Sequenzen, Palindrom und monovalent	en
		Katione	n (Na ⁺ /K ⁺) zur Strukturbildung im physiologischen Milieu	. 80
		4.2.1.1	Bildung von G-Tetraden aus Poly-Guanin-Motiven	. 81
		4.2.1.2	Multimerisierungen von G-Tetraden-Grundstrukturen zu größeren	1
			Partikeln mit Hilfe des zentralen Palindroms	. 81
		4.2.1.3	Stabilisierung der G-Tetraden durch zentral eingelagerte	
			monovalente Kationen (Na ⁺ /K ⁺)	. 82
	4.2.2	Definier	ter Partikelaufbau trotz konzentrationsabhängiger Umlagerungen	. 83
	4.2.3	Die Mul	timerisierung zu höhermolekularen Strukturen ist die Voraussetzur	ng
		für die h	ohe Induktion von Interferon-alpha in plasmazytoiden dendritische	en
		Zellen		. 84
	4.2.4	Erklärur	ngsmodelle für die hohe Induktion von Interferon-alpha durch große	е
		2216-Pa	artikel	. 85
		4.2.4.1	Aktivierung eines autokrinen feedback-loops für Interferon-alpha	
			durch CpG-A	. 86
		4.2.4.2	Clustering und Crosslinking von TLR 9	
	4.2.5	TLR 9-E	Bindung einzelsträngiger ODN 2216 während der endosomalen	
		Azidifizi	eruna	88

	4.2.6 Interpretation der geringen B-Zell-Aktivierung durch CpG-A	. 88
4.3	Das Palindrom als zentrales Element in den Struktur-Wirkungsbeziehunge von ODN M362 (CpG-C)	en 89
	4.3.1 Eigenschaften Palindrom-basierter Strukturen von ODN M3624.3.2 Differenzielles Verhalten Palindrom-basierter Duplices im physiologischer	
	Milieu: Aktivität trotz Strukturlabilität	. 91
	4.3.3 Palindrom-basierte (Einzelstrang-) Effekte?	. 95
4.4	Design immunstimulatorischer Partikel unter Einsatz wirksamer	
	Strukturelemente von CpG-A und CpG-C	96
	4.4.1 Interpretation der strukturellen Analyse	. 97
	4.4.2 Modelle der durch die palindromischen Nukleinsäuren ermöglichten	
	Multimerisierungen trivalenter Linker	. 98
	4.4.3 Differenzielles Aufnahmevermögen für große Partikel bei plasmazytoiden	
	dendritischen Zellen und B-Zellen	. 99
	4.4.4 Verbesserte Aufnahme oder wirkungssteigernde Umlagerungen durch	
	Poly-L-Arginin?	
	4.4.5 Palindromische RNA als partikelaufbauendes Element	101
4.5	Ausblick	101
	4.5.1 G-Tetraden-basierter Strukturaufbau immunstimulatorischer Partikel	102
	4.5.2 Palindrom-basierter Strukturaufbau immunstimulatorischer Partikel	103
5	ZUSAMMENFASSUNG	105
6	LITERATURVERZEICHNIS	108
Ver	zeichnis der Abkürzungen und Akronyme	116
Ver	öffentlichungen	118
Dar	nksagung	119

1 EINLEITUNG

1.1 Das humane Immunsystem

Das Immunsystem (lateinisch: *immunis* = frei, unberührt) ist ein komplexes System aus Zellen, Molekülen und Mechanismen, dessen Hauptaufgabe darin besteht, den Körper vor Infektionen durch fremde Substanzen und Organismen, aber auch vor entarteten eigenen Zellen z. B. Tumoren zu schützen. Dieser Unterscheidung zwischen 'selbst' und 'fremd', wie auch 'harmlos' und 'gefährlich', folgen die direkte Bekämpfung der Krankheitserreger und der Aufbau eines wirkungsvollen Schutzsystems gegen das erneute Eindringen des Pathogens.

1.1.1 Die angeborene und die adaptive Immunität

Der Ablauf dieser Immunantwort kann grundsätzlich über zwei unterschiedlich aufgebaute immunologische Effektorsysteme erfolgen: 1) die angeborene (unspezifische) und 2) die adaptive (spezifische) Immunität. Die angeborene Immunität ist bereits auf der Entwicklungsstufe der Eukaryoten entstanden und dient der initialen Abwehr von Krankheitserregern. Sie kann diese jedoch nicht spezifisch erkennen und daher auch keinen Schutz gegen eine erneute Infektion (ein immunologisches Gedächtnis) entwickeln. Der Erkennungsprozess der angeborenen Immunität erfolgt über Rezeptoren, die in der sog. Keimbahn kodiert sind, wodurch ihre Spezifität genetisch festgelegt ist. Dies ist von großem Vorteil, weil gerade diese Rezeptoren, deren Spezifität sich unter dem Selektionsdruck der Evolution herausgebildet hat, nun von Generation zu Generation weiter gegeben werden. Sie werden pattern recognition receptors (PRRs) genannt und erkennen evolutiv hoch-konservierte Strukturen, die viele Mikroorganismen gemeinsam haben. Diese Strukturen werden als pathogenassociated molecular patterns (PAMPs) bezeichnet und sind nicht im Wirtsorganismus zu finden. Sie sind jedoch essentiell für das Überleben der Erreger oder manchmal deren Pathogenitätsdeterminanten.

Eine erste Barrierefunktion gegen extrazelluläre Erreger erfüllen die Epithelien, welche die inneren und äußeren Oberflächen des Körpers bedecken, die Opsonisierung durch Komplementaktivierung sowie die Erkennung und Beseitigung der Mikroorganismen durch Makrophagen. Bei intrazellulären Erregern gestaltet sich die Abwehr schwieriger. Eine wichtige Rolle spielen natürliche Killerzellen (NK-Zellen), die die befallenen Zellen erkennen und vernichten, und Interferone (IFN) - Zytokine, die den Körper in eine Art