Christoph Dienel

Experimentelle Untersuchung klein-skaliger, atmosphärischer Turbulenz mit Hilfe einer Heißfilmsonde im Flugversuch

G

R

Studienarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit, Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2007 GRIN Verlag ISBN: 9783638785853

Dieses Buch bei GRIN:

Christoph Dienel

Experimentelle Untersuchung klein-skaliger, atmosphärischer Turbulenz mit Hilfe einer Heißfilmsonde im Flugversuch

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/ http://www.facebook.com/grincom http://www.twitter.com/grin_com Experimentelle Untersuchung klein-skaliger, atmosphärischer Turbulenz mit Hilfe einer Heißfilmsonde im Flugversuch

In-flight measurements of microscale atmospheric turbulence by means of hot-film anemometry

Studienarbeit von Christoph Dienel

Technische Universität Darmstadt Fachbereich Maschinenbau Fachgebiet Strömungslehre und Aerodynamik

Kurzfassung der Studienarbeit

In Anbetracht der Tatsache, dass Segelflugzeuge mit laminaren Tragflügelprofilen, beim Einflug in Bereiche turbulenter Luft, eine Senkung der Flugleistung erfahren, sollen die Mechanismen, die für diesen Effekt verantwortlich sind untersucht werden. Die Verringerung der Flugleistung hängt mit der Rezeptivität – die Anfälligkeit der Grenzschicht gegenüber äußeren Störungen – zusammen, die zur Transition der laminaren in eine turbulente Grenzschicht führt. Unter diversen Störungen, die die Transition einleiten können werden hier hauptsächlich Turbulenzelemente in der unteren Atmosphäre verantwortlich gemacht. Aufgrund der weitestgehend unbekannten Struktur dieser klein-skaligen Wirbelelemente, wurden in der vorliegenden Untersuchung Anstrengungen unternommen um diese Wirbel zu beschreiben. Unter vielen möglichen Messtechniken wurde die Hitzdrahtanemometrie als geeignet erachtet. Nach der Kalibrierung der Vier-Draht-Heißfilmsonde im Eifelkanal der TU Darmstadt wurde die gesamte Anlage an dem Forschungsflugzeug G109b des Fachgebiets Strömungslehre und Aerodynamik montiert und in Betrieb genommen. Die Datenerfassung fand an drei Sommernachmittagen in einer Höhe von etwa 1100m statt. Eine Software zur Auswertung wurde entwickelt, die es ermöglicht Auf- bzw. Abwinde zu identifizieren und Turbulenzgrade bzw. charakteristische Wirbelgrößen über die Messdauer zu berechnen. Diese graphisch dargestellten Ergebnisse ermöglichen ein nachträgliches Analysieren und Vergelichen der einzelnen Abbildungen, woraus sich einige Zusammenhänge ableiten lassen.

Inhaltsverzeichnis

Kurzfassung	i
Inhaltsverzeichnis	ii
Abbildungsverzeichnis	iv
Tabellenverzeichnis	vii
Nomenklatur	viii
1 Einleitung	1
2 Stand der Technik	
3 Grundlagen	5
3.1 Meteorologie	6
3.1.1 Thermik	6
3.1.2 Turbulenz	9
3.2 Profilumströmung	11
3.3 Messtechnik	13
3.3.1 Überblick über Geschwindigkeitsmesssonden	13
3.3.2 Hitzdrahtanemometrie	14
3.3.3 Die Vier-Draht-Sonde	19
3.3.4 Erfassung der Umgebungsdaten	22
4 Versuchsdurchführung	24
4.1 Kalibrierung	
4.2 In-flight Messungen	
4.3 Auswertung	
5 Diskussion der Ergebnisse	
5.1 Ergebnisse der Kalibrierung	42
5.1.1 Geschwindigkeitskalibrierung	42
5.1.2 Pitch-Winkel-Kalibrierung	47
5.1.3 Yaw-Winkel-Kalibrierung	48
5.2 Ergebnisse der Auswertung der in-flight Messungen	50
5.2.1 Energiebilanz	50

5.2.2 Turbulenzgradverteilung	
5.2.3 Turbulenzgrößenverteilung	
5.3 Die Anlage in Betrieb	60
6 Fazit und Ausblick	
6.1 Überblick	62
6.2 Ergebnisse	
6.3 Ausblick	
Quellenangaben	
A Ergebnisse	I
A.1 Ergebnisse der Kalibrierung	I
A.2 Ergebnisse der Auswertung	III
A.3 Durchgeführte Messungen	XVIII
B Die Anlage	XIX
B.1 Befehle zum Betreiben der Anlage	XIX
B.2 Angaben zum Eifelkanal der TU Darmstadt	XIX
B.3 Angaben zur Heißfilmsonde	XX
B.4 Platzierung der Sonde	XXI
C Quellcodes	XXII
C.1 Programm: EAverages_end.m	XXII
C.2 Programm: ABn_end.m	XXIV
C.3 Programm: Auswertung_end.m	XXIX
C.4 Programm: Flugverlauf_end.m	XXXIV

Abbildungsverzeichnis

Abbildung 3.1:	Schematische Darstellung einer Thermiksäule	8
Abbildung 3.2:	Turbulenzentstehung	10
Abbildung 3.3:	Zeit-Raum-Verhalten von Turbulenzelementen	11
Abbildung 3.4:	konventionelle Hitzdrahtsonde	15
Abbildung 3.5:	Elektrischer Kreis einer Hitzdrahtsonde	15
Abbildung 3.6:	Aufbau der verwendeten Vier-Draht-Sonde	19
Abbildung 3.7:	Schematische Darstellung der Vier-Draht-Sonde	21
Abbildung 4.1:	Pitch-Winkel und Yaw-Winkel	25
Abbildung 4.2:	Wertepaare (U E) aus der Geschwindigkeitskalibrierung	30
Abbildung 4.3:	Approximation an gemessenen Wertepaaren (Geschw.kal)	31
Abbildung 4.4:	Aus der Pitch-Winkel-Kalibrierung ermittelten Wertepaare (U E)	32
Abbildung 4.5: A	Approximation an gemessenen Wertepaaren (Pitch-Winkel)	32
Abbildung 4.6:	Auflösung um den Arbeitspunkt	36
Abbildung 4.7:	Geschwindigkeitsverlauf: Superposition	37
Abbildung 4.8:	Spannungsschwankungen der Drähte 1 bis 4 Turbulenzblock	38
Abbildung 4.9:	Flussdiagramm: Ermittlung der Turbulenzgröße	39
Abbildung 4.10:	Durchfliegen eines Eddys: Erfasste "Turbulenzgröße"	39
Abbildung 4.11:	Flussdiagramm: Ermittlung des Turbulenzgrades	40
Abbildung 5.1:	Approximation an gemessenen Wertepaaren	43
Abbildung 5.2:	Approximation an gemessenen (ohne U=0m/s)	44
Abbildung 5.3:	Direkter Vergleich der Regressionen	45
Abbildung 5.4:	Direkter Vergleich der Regressionen (Vergrößert)	45

Abbildung 5.5: Direkter Vergleich der Drähte 1 und 4	46
Abbildung 5.6: Approximation an gemessenen Wertepaaren (Pitch-Winkel)	48
Abbildung 5.7: Energiebetrachtung am Flugzeug.	50
Abbildung 5.8: Verlauf der Gesamtenergie	51
Abbildung 5.9: Flugverlauf in der geodätischen x,y-Ebene für 14_07_06	53
Abbildung 5.10: Geschwindigkeitsverlauf für die Messung 14_07_06	53
Abbildung 5.11: Ermittelte Turbulenzgrade; Turbulenzgrade nach Zanin	55
Abbildung 5.12: Turbulenzgradverteilung für die Messung 14_07_06	56
Abbildung 5.13: Turbulenzgradverteilung der Messung 14_07_06 (vergrößert)	57
Abbildung 5.14: Turbulenzverteilung der Messung 14_07_06	58
Abbildung 5.15: Histogramm für die Häufigkeit der Turbulenzgrößen	59
Abbildung A.1: Geschwindigkeitskalibrierung	Ι
Abbildung A.2: Pitch-Winkel-Kalibrierung	II
Abbildung A.3: Kalibrierungsmatrix	II
Abbildung A.4: Energieverlauf der Messung 14_07_04	III
Abbildung A.5: Geschwindigkeitsverlauf der Messung 14_07_04	III
Abbildung A.6: Flugverlauf der Messung 14_07_04	IV
Abbildung A.7: Turbulenzgradverteilung der Messung 14_07_04	IV
Abbildung A.8: Turbulenzgrößenverteilung der Messung 14_07_04	V
Abbildung A.9: Histogramm der Turbulenzgrößen der Messung 14_07_04	V
Abbildung A.10: Energieverlauf der Messung 14_07_05	VI
Abbildung A.11: Geschwindigkeitsverlauf der Messung 14_07_05	VI
Abbildung A.12: Flugverlauf der Messung 14_07_05	VII
Abbildung A.13: Turbulenzgradverteilung der Messung 14_07_05	VII
Abbildung A.14: Turbulenzgrößenverteilung der Messung 14_07_05	VIII
Abbildung A.15: Histogramm der Turbulenzgrößen der Messung 14 07 05	VIII

Abbildung A.16:	Energieverlauf der Messung 14_07_07	IX
Abbildung A.17:	Geschwindigkeitsverlauf der Messung 14_07_07	IX
Abbildung A.18:	Flugverlauf der Messung 14_07_07	Х
Abbildung A.19:	Turbulenzgradverteilung der Messung 14_07_07	Х
Abbildung A.20:	Turbulenzgrößenverteilung der Messung 14_07_07	XI
Abbildung A.21:	Histogramm der Turbulenzgrößen der Messung 14_07_07	XI
Abbildung A.22:	Energieverlauf der Messung 05_09_09	XII
Abbildung A.23:	Geschwindigkeitsverlauf der Messung 05_09_09	XII
Abbildung A.24:	Flugverlauf der Messung 05_09_09	XIII
Abbildung A.25:	Turbulenzgradverteilung der Messung 05_09_09	XIII
Abbildung A.26:	Turbulenzgrößenverteilung der Messung 05_09_09	XIV
Abbildung A.27:	Histogramm der Turbulenzgrößen der Messung 05_09_09	XIV
Abbildung A.28:	Energieverlauf der Messung 08_09_05	XV
Abbildung A.29:	Geschwindigkeitsverlauf der Messung 08_09_05	XV
Abbildung A.30:	Flugverlauf der Messung 08_09_05	XVI
Abbildung A.31:	Turbulenzgradverteilung der Messung 08_09_05	XVI
Abbildung A.32:	Turbulenzgrößenverteilung der Messung 08_09_05	XVII
Abbildung A.33:	Histogramm der Turbulenzgrößen der Messung 08_09_05	XVII
Abbildung B.1:	Vier-Draht-Heißfilmsonde	XX
Abbildung B.2:	Positionierung der Sonde bei der Kalibrierung	XXI
Abbildung B.3:	Positionierung der Sonde bei den in-flight Messungen	XXI