Rainer Hagl

Elektrische Antriebstechnik

4., aktualisierte Auflage

HANSER

Elektrische Antriebstechnik

Ihr Plus - digitale Zusatzinhalte!

Auf unserem Download-Portal finden Sie zu diesem Titel kostenloses Zusatzmaterial. Geben Sie dazu einfach diesen Code ein:

plus-2bu4m-wmib6

plus.hanser-fachbuch.de

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Rainer Hagl

Elektrische Antriebstechnik

4., aktualisierte Auflage

Über den Autor:

Prof. Dr.-Ing. Rainer Hagl, Technische Hochschule Rosenheim

Print-ISBN: 978-3-446-47911-1 E-Book-ISBN: 978-3-446-48037-7

Alle in diesem Werk enthaltenen Informationen, Verfahren und Darstellungen wurden zum Zeitpunkt der Veröffentlichung nach bestem Wissen zusammengestellt. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Werk enthaltenen Informationen für Autor:innen, Herausgeber:innen und Verlag mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor:innen, Herausgeber:innen und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor:innen, Herausgeber:innen und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt also auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benützt werden dürften.

Die endgültige Entscheidung über die Eignung der Informationen für die vorgesehene Verwendung in einer bestimmten Anwendung liegt in der alleinigen Verantwortung des Nutzers.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtgestaltung – mit Ausnahme der in den §§ 53, 54 UrhG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2024 Carl Hanser Verlag GmbH & Co. KG, München

www.hanser-fachbuch.de Lektorat: Frank Katzenmayer Herstellung: Frauke Schafft

Coverkonzept: Marc Müller-Bremer, www.rebranding.de, München

Covergestaltung: Max Kostopoulos

Titelmotiv: © shutterstock.com/asharkyu Satz: le-tex publishing services GmbH, Leipzig

Druck: CPI Books GmbH, Leck

Printed in Germany

Vorwort

Dieses Fachbuch stellt eine Einführung in ein umfangreiches Spezialgebiet dar. Produktionsmaschinen und viele Konsumgüter können ihre Aufgaben nur mittels elektrischer Antriebe erfüllen. Daher sind zumindest Grundkenntnisse in diesem Gebiet unumgänglich, um Maschinen, aber auch eine Vielzahl an Produkten des täglichen Lebens zu dimensionieren bzw. zu optimieren.

Das Fachbuch ist insbesondere für die Bachelorausbildung von Studierenden der Ingenieurwissenschaften in den Studienschwerpunkten

- Automatisierungstechnik,
- Elektro- und Informationstechnik,
- Gebäudetechnik.
- Produktionstechnik,
- Maschinenbau.
- Mechatronik.
- Medizintechnik

konzipiert. Es eignet sich ebenso für technisch Interessierte, die sich in das Gebiet der elektrischen Antriebstechnik einarbeiten wollen. Leistungselektronische Themen werden nur am Rande behandelt. Die Auslegung elektrischer Maschinen stellt ebenso keinen Schwerpunkt des Buches dar.

Zunächst werden in der Einführung die wichtigsten Anforderungen an elektrische Antriebe und Hauptunterscheidungsmerkmale vorgestellt. Die Aufgaben der einzelnen Komponenten werden beschrieben, wichtige Grundbeziehungen abgeleitet und gängige Begriffe erläutert.

Die folgenden Kapitel beschäftigen sich mit dem Aufbau und der Wirkungsweise einzelner Komponenten eines elektrischen Antriebes. Hauptschwerpunkt ist das Kennenlernen von in Produktionsmaschinen gängigen Motoren und deren Steuerung. Für die einzelnen Motoren werden die Grundlagen erarbeitet, um einen für eine vorgegebene Antriebsaufgabe passenden Motor auswählen zu können. Übergreifende Themen werden in separaten Kapiteln zusammengefasst. Für das Teilgebiet Servoantriebstechnik werden grundlegende Zusammenhänge dargestellt.

Neben der mathematischen Herleitung wird jeweils auch versucht, die Wirkprinzipien und Zusammenhänge beschreibend darzustellen. Das Buchprojekt wurde von vielen Unternehmen, die Produkte für den Bereich der elektrischen Antriebtechnik anbieten, vor allem durch Bildmaterial, unterstützt. Dadurch war es möglich, neben theoretischen Zusammenhängen exemplarisch auch gängige Industriekomponenten vorzustellen. Den Kapiteln zugeordnete Übungen auf *plus.hanser-fachbuch.de* ermöglichen eine Überprüfung des Lernfortschrittes.

Notwendige Voraussetzung, um dem Lehrinhalt folgen zu können, sind grundlegende Kenntnisse der Elektrotechnik und der technischen Mechanik.

Eine Vielzahl engagierter und konstruktiver Rezensionen hat zur Beseitigung von Fehlern in der vierten Auflage geführt. Hierfür möchten sich der Autor und der Verlag herzlich bedanken. Allerdings konnten nicht alle Anregungen berücksichtigt werden, da diese zum Teil konträr waren. Bitte haben Sie dafür Verständnis.

Im Buch haben sich sicherlich auch in dieser überarbeiteten Auflage Fehler eingeschlichen. Vielleicht ist das eine oder andere auch nicht ganz verständlich. Über Rückmeldungen zu Fehlern oder Verbesserungsvorschläge würde ich mich freuen, da diese zu einer kontinuierlichen Verbesserung führen. Sie können mir diesbezüglich gerne eine E-Mail an

rainer.hagl@th-rosenheim.de

senden. Für Ihre Unterstützung möchte ich mich bereits im Voraus bei Ihnen bedanken.

Danksagung

In den vergangenen Jahren habe ich viele positive Rückmeldungen zum Lehrbuch erhalten. Hierfür möchte ich mich sehr herzlich bedanken. Die Rückmeldungen zu Verbesserungen und Erweiterungen von Dozenten an anderen Hochschulen, Kollegen und Studierenden an der Technischen Hochschule Rosenheim waren äußerst konstruktiv. Die meisten Wünsche und Korrekturen sollten nun in der vierten Auflage eingearbeitet sein.

Für die kritische Durchsicht der gesamten zweiten Auflage, die sehr vielen Anregungen und fachlichen Diskussionen möchte ich mich insbesondere bei Dr. Michael Roth bedanken. Bei Herrn Dr. Eduard Dechant, Herrn Dr. Johannes Hilverkus, Frau Dr. Julia Holzleitner, Herrn Martin Krettek, Herrn Markus Märkl und Herrn Christian Brunner aus dem Team "Mechatronische Systeme" an der Technischen Hochschule Rosenheim möchte ich mich für die Durchsicht von Kapiteln des Manuskriptes herzlich bedanken. Viele Firmen haben mich mit Bildern von aktuellen Produkten oder Darstellungen, die ich so vom Zeitaufwand nicht in der Lage gewesen wäre zu erstellen, unbürokratisch und meist sehr schnell unterstützt. Für diese Unterstützung möchte ich mich ebenfalls bedanken. In den letzten Auflagen kamen die praxisnahen Bilder von im Bereich der elektrischen Antriebstechnik tätigen Unternehmen bei den Lesern sehr gut an und haben die Verständlichkeit der Inhalte des Lehrbuches unterstützt.

Prof. Dr.-Ing. Rainer Hagl

Januar 2024

Formelsymbole und Einheiten

Im gesamten Manuskript wurde versucht, durchgängige und eindeutige Formelsymbole zu verwenden. Bei der ersten Verwendung eines Formelsymbols werden dessen Bezeichnung auf Deutsch und Englisch, sowie die dazugehörige SI-Einheit und gegebenenfalls wichtige daraus abgeleitete Einheiten, angegeben.

M_{Mo}	Motordrehmoment	Motor torque	Nm
M_{L}	Lastdrehmoment	Load torque	Nm
M_{Ac}	Beschleunigungsdrehmoment	Acceleration torque	Nm

Zur Erhöhung der Übersichtlichkeit werden an manchen Stellen diese Angaben wiederholt. Eine Übersicht mit den für die hier behandelten Themen relevanten SI-Einheiten findet sich im Anhang A.1 unter "Weiterführende Informationen".

Inhalt

1	Ein	führu	ıng	13
	1.1	Einsat	tzgebiete	14
	1.2	Aufgal	ben und Betriebszustände elektrischer Maschinen	16
	1.3	Beweg	gungsarten und Bewegungsgleichungen	18
	1.4	Antrie	ebe mit fester oder variabler Drehzahl	21
	1.5	Antrie	ebsprinzipien	26
2	Ме	chani	ische Übertragungselemente	30
	2.1	Leistu	ngsbilanz und Wirkungsgrad	33
	2.2	Drehz	ahlanpassung und Antriebsoptimierung	33
	2.3	Wand	lung einer Drehbewegung in eine Linearbewegung	36
		2.3.1	Gewindetrieb	36
		2.3.2	Zahnriemen	37
		2.3.3	Zahnstange-Ritzel	37
	2.4	Wirku	ingsgrade	38
	2.5	Umre	chnung auf einen Bezugspunkt	38
		2.5.1	Elektromechanische Linearachse mit starrer Kopplung	39
		2.5.2	Elektromechanische Drehachse mit starrer Kopplung	40
	2.6	Besch	leunigungsvermögen und Gleichlaufverhalten	41
	2.7	Dynar	misches Verhalten	44
		2.7.1	Grundlagen	44
		2.7.2	Linearachse mit elastischer Kopplung	46
3	Grı	undla	gen elektrischer Maschinen	56
	3.1	Analo	gien	56
	3.2	Physik	kalische Effekte bei elektromagnetischen Maschinen	57
		3.2.1	Lorentzkraft	57
		3.2.2	Induktion und Lenz'sche Regel	58
		3.2.3	Reluktanzprinzip	60
		3.2.4	Selbstinduktion	62
		3.2.5	Dynamisches Verhalten	62
	3.3	Magne	etfelderzeugung und magnetische Werkstoffe	63
	3.4	Leistu	ingsverluste	66

	3.5	Belastungsprofile, Einschaltdauer und Betriebsarten	68
	3.6	Wärmeklassen	73
	3.7	Schutzarten	73
	3.8	Energieeffizienz	74
	3.9	Bauformen und Befestigung	79
	3.10	Bemessungsgrößen	82
4	Gle	ichstrommotoren	84
	4.1	Drehmomenterzeugung und Drehmomentgleichung	84
	4.2	Spannungsinduktion und Spannungsgleichung	88
	4.3	Komponenten	89
	4.4	Fremderregter Gleichstrommotor	92
		4.4.1 Elektrisches Ersatzschaltbild und beschreibende Gleichungen	92
		4.4.2 Statisches Verhalten	94
		4.4.3 Feldschwächung	97
		4.4.4 Leistungssteuerung	98
	4.5	Selbsterregter Gleichstrommotor	107
	4.6	Permanenterregter Gleichstrommotor	110
	4.7	Bürstenloser Gleichstrommotor und EC-Motor	112
5	Sch	nrittmotoren	117
5	Sch 5.1	Aufbau und Eigenschaften	117 117
5			
5	5.1	Aufbau und Eigenschaften	117
5	5.1 5.2	Aufbau und Eigenschaften	117 118
5	5.15.25.3	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb	117 118 120
5	5.15.25.35.4	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl	117 118 120 121
5	5.15.25.35.45.5	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb	117 118 120 121 121
5	5.1 5.2 5.3 5.4 5.5 5.6	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb	117 118 120 121 121 122
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment	117 118 120 121 121 122 123
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten	117 118 120 121 121 122 123 124
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten Reluktanzschrittmotor	117 118 120 121 121 122 123 124 125
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten Reluktanzschrittmotor Hybridschrittmotor	117 118 120 121 121 122 123 124 125 126
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten Reluktanzschrittmotor Hybridschrittmotor Betriebsdiagramm	117 118 120 121 121 122 123 124 125 126 127
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten Reluktanzschrittmotor Hybridschrittmotor Betriebsdiagramm Schrittmotoren im geregelten Betrieb	117 118 120 121 121 122 123 124 125 126 127
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten Reluktanzschrittmotor Hybridschrittmotor Betriebsdiagramm Schrittmotoren im geregelten Betrieb	117 118 120 121 122 123 124 125 126 127 129
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 Gru	Aufbau und Eigenschaften Wechselpolschrittmotor Vollschrittbetrieb Schrittwinkel und Schrittzahl Halbschrittbetrieb Mikroschrittbetrieb Haltedrehmoment und Selbsthaltedrehmoment Dynamisches Verhalten Reluktanzschrittmotor Hybridschrittmotor Betriebsdiagramm Schrittmotoren im geregelten Betrieb Indlagen Drehstromantriebe Drehspannung und Drehstrom	117 118 120 121 121 122 123 124 125 126 127 129 130

	6.5	Vergleich Stern- und Dreieckschaltung	138
	6.6	Magnetisches Drehfeld	139
	6.7	Wicklungsaufbau	145
	6.8	Umrichter	147
	6.9	Energiemanagement bei umrichterbetriebenen Antrieben	153
7	Syr	nchronmotoren	157
	7.1	Aufbau und Wirkungsweise	157
	7.2	Elektrisches Ersatzschaltbild	161
	7.3	Spannungsinduktion und Drehmomenterzeugung	162
	7.4	Drehmoment-Drehzahl-Diagramm	165
	7.5	Leistungsschild	168
	7.6	Komponenten eines Servoantriebes	169
	7.7	2-phasige Motoren	170
8	Asy	nchronmotoren	172
	8.1	Aufbau und Wirkungsweise	172
	8.2	Spannungsinduktion und Drehmomenterzeugung	175
	8.3	Elektrisches Ersatzschaltbild	176
		8.3.1 Einphasiger Transformator	176
		8.3.2 Einphasiges Ersatzschaltbild	180
		8.3.3 Stromortskurve	182
	8.4	Motorkennlinie und Motorkenngrößen	186
	8.5	Normmotoren	190
	8.6	Anlaufstrombegrenzung	191
	8.7	Drehzahlvariable Antriebe	193
	8.8	Frequenzumrichter	194
	8.9	Zentrale und dezentrale Antriebstechnik	196
	8.10	Feldorientierte Regelung	198
	8.11	Betrieb am Wechselspannungsnetz	198
9	Ele	ktromagnetische Direktantriebe	203
	9.1	Bauformen	207
	9.2	Krafterzeugung und Anziehungskräfte	207
	9.3	Flachmotoren und U-förmige Motoren	209
	9.4	Tubulare Linearmotoren	213
		9.4.1 Aufbau und Funktionsweise	213
		9.4.2 Eigenschaften und Anwendungsgebiete	214
		9.4.3 Vergleich zwischen pneumatischem und elektrischem Antrieb	215
		9.4.4 Antriebssysteme	216

	9.5	Tauch	spulenantriebe	217
		9.5.1	Wirkprinzip und Funktionsweise	217
		9.5.2	Bauformen	220
		9.5.3	Eigenschaften	221
		9.5.4	Einsatzgebiete und Antriebssysteme	221
10	Pos	sition	smessgeräte	224
			ignale und Signalauswertung	226
	10.2	Messg	enauigkeit	231
	10.3	Unter	scheidungsmerkmale	236
	10.4	Übert	ragung der Positionsinformation	241
	10.5	Photo	elektrische Messgeräte	245
	10.6	Magn	etische Messgeräte	246
	10.7	Induk	tive Messgeräte	248
	10.8	Thern	nische Effekte	250
11	Ser	voan	triebe	254
	•		derungen und Kenngrößen	255
	11.2	Kaska	dierte Regelung	260
	11.3	Strom	regelung	264
	11.4	Beweg	gungsprofile	270
			llierung mechanischer Übertragungselemente	273
	11.6	Mecha	anisch steife Antriebe	275
	11.7	Mecha	anisch elastische Antriebe	284
	11.8	Feldo	rientierte Regelung	291
		11.8.1	Raumzeiger und Koordinatensysteme	292
		11.8.2	Permanenterregter Drehstrom-Synchronmotor	299
Α	Anl	nang		306
			rführende Informationen	306
			Einführung	306
			Grundlagen elektrischer Maschinen	307
		A.1.3	Gleichstrommotoren	312
		A.1.4	Grundlagen Drehstromantriebe	314
		A.1.5	Synchronmotoren	318
			Asynchronmotoren	320

	Inhalt	11
	A.1.7 Positionsmessgeräte	320
	A.1.8 Servoantriebe	321
A.2	Formelzeichen und Einheiten	322
A.3	Griechisches Alphabet	335
A.4	Verwendete Konvertierung und Reihenfolge	336
A.5	Übersicht Symbole und Abkürzungen	337
Literat	ur	338
Index		339

Inhalte auf *plus.hanser-fachbuch.de*:

- Übungsaufgaben für jedes Kapitel
- Lösungen

Den Zugangscode finden Sie auf der ersten Seite des Buches.

Einführung

Die Aufgabe von Antrieben besteht darin, Bewegungen zu erzeugen. Der Motor ist die wichtigste Komponente eines Antriebes. Er liefert die für eine lineare Bewegung erforderliche Kraft oder das für eine drehende Bewegung erforderliche Drehmoment. Hierzu wird dem Motor Energie zugeführt und in diesem in mechanische Energie umgewandelt. Bei der Energiewandlung werden unterschiedliche physikalische Effekte genutzt.

Antriebe werden nach Wirkprinzipien der eingesetzten Motoren (Bild 1.1) unterteilt in:

- Elektrische Antriebe
- Fluidische Antriebe
- Thermodynamische Antriebe

Motoren in elektrischen Antrieben nutzen meist elektromagnetische Effekte aus. Für spezielle Antriebsaufgaben gibt es Motoren, die auf anderen Effekten basieren. Fluidische Antriebe arbeiten mit komprimierbaren Flüssigkeiten (z. B. Hydrauliköl) oder Gasen. Werden komprimierbare Flüssigkeiten verwendet, spricht man von hydraulischen Antrieben. Pneumatische Antriebe verwenden üblicherweise Luft. Der bekannteste Vertreter aus dem Bereich der thermodynamischen Antriebe ist der Verbrennungsmotor, speziell der Otto- und der Dieselmotor. Je nach zu lösender Antriebsaufgabe ist das eine oder andere Wirkprinzip besser geeignet.

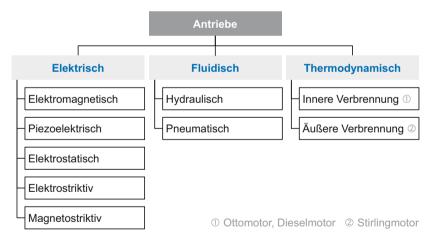


Bild 1.1 Klassifizierung von Antrieben

Manchmal steht die für den Motor erforderliche Energie nicht direkt zur Verfügung. Typische Beispiele sind Geräte oder Maschinen im mobilen Bereich. So wird bei einem Bagger die für die Antriebe notwendige Energie mit einem Verbrennungsmotor erzeugt. Zunächst findet eine Wandlung der im Kraftstoff gespeicherten Energie in mechanische Energie statt, aus der dann die Energie für die fluidischen Antriebe erzeugt wird. Es gibt auch Mischformen, welche zwei Wirkprinzipien zur Erzeugung der mechanischen Bewegung nutzen. Hierzu zählen Hybridan-

triebe in Kraftfahrzeugen, bei denen je nach Betriebszustand ein Verbrennungsmotor und ein Elektromotor unabhängig voneinander oder gemeinsam die Bewegung erzeugen.

Häufig müssen Kräfte bzw. Drehmomente in einem Antriebsstrang übertragen und/oder umgeformt werden, wozu mechanische Antriebselemente erforderlich sind. Motor und mechanische Antriebselemente, die im Antriebsstrang dem Motor nachgeschaltet sind, beeinflussen sich gegenseitig. Zur gesamtheitlichen Optimierung dieses Systems sind daher Kenntnisse sowohl aus dem Bereich der Mechanik als auch der Elektrotechnik erforderlich.

Die meisten Antriebsaufgaben werden heute mit elektrischen Antrieben gelöst. Hauptgründe hierfür sind:

- Elektrische Energie steht beinahe überall zur Verfügung.
- Elektrische Antriebe erzeugen im Vergleich zu vielen anderen Antriebsprinzipien praktisch keine Verschmutzung.
- Elektrische Antriebe sind einfach zu regeln.
- Elektrische Antriebe sind energieeffizient.
- Es stehen wartungsfreie Lösungen zur Verfügung (wartungsfrei in diesem Zusammenhang bedeutet, dass keine Wartung innerhalb der festgelegten Lebensdauer erforderlich ist).
- Elektrische Antriebe haben vergleichsweise niedrige Geräuschemissionen.

■ 1.1 Einsatzgebiete

Elektrische Antriebe werden in einer Vielzahl von Produkten des täglichen Lebens (Konsumgüter), aber auch in Maschinen und Anlagen (Investitionsgüter), eingebaut. Exemplarisch zeigen die Bilder 1.2 bis 1.7 einige Beispiele aus den Bereichen Kraftfahrzeugbau und Produktionsmaschinen.

Bild 1.2 Stellantriebe in Kraftfahrzeugen (© Robert Bosch GmbH)

In Produktionsmaschinen, wie Werkzeugmaschinen, Maschinen zur Herstellung von Halbleitern, Maschinen zur Kunststoffverarbeitung, Holzbearbeitungsmaschinen oder Druckmaschinen, haben elektrische Antriebe maßgeblichen Einfluss auf die statischen und dynamischen Maschineneigenschaften. Sie beeinflussen insbesondere:

- die Präzision des Produkts, wie z. B. die Maßhaltigkeit von Werkstücken oder Druckqualität von Prospekten und Zeitschriften
- die Mengenleistung der Maschine in Erzeugnissen pro Zeiteinheit

Bild 1.3 Fahrantrieb in Kraftfahrzeugen (© BMW AG, Press Club, Hi4 M50)

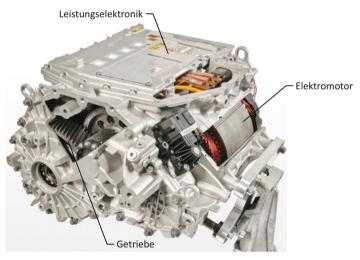
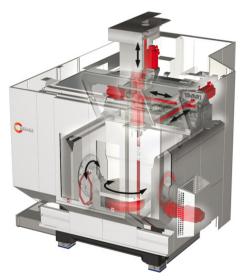



Bild 1.4 Elektromechanische Antriebseinheit eines Elektrofahrzeuges (© BMW AG, Press Club)

Bild 1.5 Elektrische Antriebe in einem Motion Control System für Fertigungsmaschinen der Halbleiterindustrie (© ETEL S.A.)

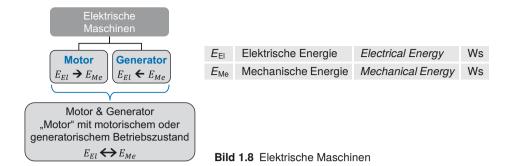

Bild 1.6 Elektrische Vorschubantriebe und Hauptantrieb in Werkzeugmaschinen (© Hermle AG, 5-Achsen Bearbeitungszentrum)

Bild 1.7 Druckmaschinen (© Koenig & Bauer AG)

■ 1.2 Aufgaben und Betriebszustände elektrischer Maschinen

Bei elektrischen Maschinen unterscheidet man Motoren und Generatoren (Bild 1.8). Motoren wandeln elektrische in mechanische Energie um. Sie liefern die Kraft oder das Drehmoment zur Steuerung der Bewegung einer Masse.

Ein Generator wandelt im Gegensatz zum Motor mechanische Energie in elektrische Energie um. Die wichtigste Anwendung von Generatoren sind Kraftwerke zur Stromerzeugung. Bei den meisten Kraftwerkstypen wird in Wasser- oder Dampfturbinen zunächst mechanische Energie erzeugt und anschließend in elektrische Energie gewandelt.

In einigen Fällen wird eine elektrische Maschine zur Energiewandlung in beide Richtungen genutzt, d. h. sie wird als Motor oder Generator betrieben. Bei einem Bremsvorgang wird in der elektrischen Maschine die in den mechanischen Antriebselementen gespeicherte potentielle oder kinetische Energie in elektrische Energie gewandelt. Die zurückgewandelte Energie kann für anschließende Beschleunigungsvorgänge gespeichert oder anderen Verbrauchern zur Verfügung gestellt werden. Daraus resultiert eine Reduzierung des Energieverbrauches bzw. eine Erhöhung des Gesamtwirkungsgrades. Elektrische Maschinen, welche primär der Bewegungserzeugung dienen, bezeichnet man umgangssprachlich als Motor, der wechselweise einen motorischen oder generatorischen Betriebszustand zulässt. Wird eine elektrische Maschine primär zur Stromerzeugung eingesetzt, spricht man von einem Generator. Die Maschine kann zeitweise im motorisierten Betriebszustand betrieben werden. Dabei kann überschüssige elektrische Energie (z. B. aus Windkraftanlagen oder Photovoltaikanlagen) in mechanische Energie gewandelt werden, wie dies in Pumpenspeicherkraftwerken geschieht. Die Betriebszustände Motorbetrieb bzw. Generatorbetrieb sind in Bild 1.9 (links) abhängig vom Vorzeichen der Motordrehzahl und des Motordrehmomentes gezeigt.

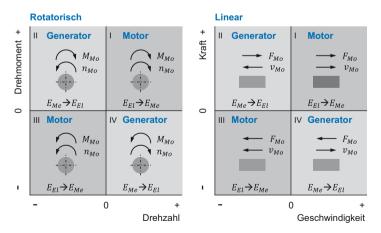


Bild 1.9 Motorischer und generatorischer Betriebszustand für rotatorische oder lineare Bewegung

Sind Motordrehmoment und Motordrehzahl gleichsinnig gerichtet, so wird die Maschine motorisch betrieben, im umgekehrten Fall generatorisch. Im Quadranten I ist der Motor rechtsdrehend (im Uhrzeigersinn), während er sich im Quadranten III links dreht (gegen den Uhrzeigersinn). Die Blickrichtung ist dabei von vorn auf die Motorwelle. Bei einem Motor, der unmittelbar eine Linearbewegung erzeugt, gilt entsprechendes für die Motorkraft und die Motorgeschwindigkeit (Bild 1.9, rechts).

■ 1.3 Bewegungsarten und Bewegungsgleichungen

Ein Unterscheidungsmerkmal bei Antrieben ist die zur Lösung der Antriebsaufgabe erforderliche Bewegungsart (Bild 1.10):

- linear bzw. translatorisch
- drehend bzw. rotatorisch

Die Bewegung einer Masse wird durch deren Bewegungsgrößen beschrieben (Tabelle 1.1). Eine lineare Bewegung hat die Bewegungsgrößen Position, Geschwindigkeit und Beschleunigung. Eine rotatorische Bewegung wird durch Winkelposition, Winkelgeschwindigkeit und Winkelbeschleunigung beschrieben. Weitere Analogien zwischen linearen und rotatorischen Bewegungen sind im Anhang unter "Weiterführende Informationen" (A.1) aufgeführt.

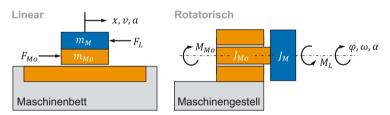


Bild 1.10 Formelzeichen

X	Position	Position	m
V	Geschwindigkeit	Velocity	m/s
а	Beschleunigung	Acceleration	m/s ²
φ	Winkelposition	Angular position	rad
ω	Winkelgeschwindigkeit	Angular speed	rad/s
α	Winkelbeschleuingung	Angular acceleration	rad/s ²

Tabelle 1.1 Bewegungsgrößen

Aufgabe eines Antriebes ist es, die anzutreibende Masse bzw. das anzutreibende Massenträgheitsmoment innerhalb vorgegebener Bewegungsgrößen zu führen. Auch der bewegte Teil des Motors hat eine Masse bzw. ein Massenträgheitsmoment. Zunächst soll der Idealfall, dass die Elastizität zwischen der anzutreibenden Masse und dem Motor vernachlässigt werden kann, betrachtet werden. Da die mechanische Verbindung zwischen den beiden Massen dabei als

starr betrachtet wird, spricht man von einer "starren Kopplung". Der Fall einer "elastischen Kopplung" von Massen wird später betrachtet (Kapitel 2).

Die bewegte Masse setzt sich aus der Summe aller Einzelmassen, die zu bewegen sind, zusammen. Sie wird daher als gesamte zu bewegende Masse bezeichnet. In dem in Bild 1.10 dargestellten Beispielfall ist die Gesamtmasse:

$$m_{\rm T} = m_{\rm M} + m_{\rm Mo} \tag{1.1}$$

m_{T}	Gesamte zu bewegende Masse	Total mass to be moved	kg
m_{M}	Anzutreibende Masse	Mass to be moved	kg
m_{Mo}	Masse des bewegten Motorteils	Mass of moved motor part	kg

Entsprechendes gilt für eine rotatorische Bewegung. Im Folgenden werden Massenträgheitsmomente immer als Trägheitsmomente bezeichnet. Im in Bild 1.10 dargestellten Beispielfall ist das gesamte zu bewegende Trägheitsmoment:

$$J_{\rm T} = J_{\rm M} + J_{\rm Mo} \tag{1.2}$$

J_{T}	Gesamtes zu bewegendes Trägheitsmoment	Total inertia to be moved	kg m ²
J_{M}	Trägheitsmoment der anzutreibenden Masse	Inertia of mass to be moved	kg m ²
J_{Mo}	Trägheitsmoment des bewegten Motorteils	Inertia of moved motor part	kg m ²

Für eine punktförmige Masse mit Abstand r zum Drehpunkt berechnet sich das Trägheitsmoment zu:

$$J = mr^2 (1.3)$$

Das wichtigste Trägheitsmoment bei Antrieben ist das eines Zylinders bzw. Hohlzylinders. Das Trägheitsmoment des Hohlzylinders (Bild 1.11) berechnet sich abhängig von der Materialdichte (Tabelle 1.2) zu:

$$J = \frac{\pi l \rho}{32} \left(d_1^4 - d_2^4 \right) \tag{1.4}$$

 ρ Dichte *Density* kg/m³

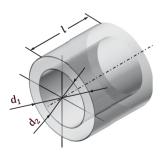


Bild 1.11 Hohlzylinder

 Aluminium
 2710
 kg/m³

 Stahl
 7850
 kg/m³

 Kupfer
 8940
 kg/m³

Tabelle 1.2 Dichte von Materialien

Die Summe der Kräfte, die der Motorkraft entgegenwirken, wird als Lastkraft bezeichnet. Entsprechendes gilt für die Drehmomente (Tabelle 1.3).

F_{L}	Lastkraft	Load force	N
F_{Mo}	Motorkraft	Motor force	N
M_{L}	Lastdrehmoment	Load torque	Nm
M_{Mo}	Motordrehmoment	Motor torque	Nm

Tabelle 1.3 Kräfte und Drehmomente

Beispiele für Lastkräfte bzw. Lastdrehmomente sind (Tabelle 1.4):

F_{P}	Prozesskraft	Process force	N
F_{W}	Gewichtskraft	Weight force	Ν
F_{F}	Reibungskraft	Friction force	Ν
M_{P}	Prozessdrehmoment	Process torque	Nm
M_{W}	Gewichtsdrehmoment	Weight torque	Nm
M_{F}	Reibungsdrehmoment	Friction torque	Nm

Tabelle 1.4 Lastkräfte und Lastdrehmomente

Die Bewegungsgleichung für die in Bild 1.10 gezeigte lineare Bewegung lautet:

$$m_{\rm T}\ddot{x} = m_{\rm T}a = F_{\rm Ac} = F_{\rm Mo} - F_{\rm L}$$
 (1.5)

Die Kraft, die zum Beschleunigen zur Verfügung steht, wird auch als Beschleunigungskraft F_{Ac} bezeichnet. Das Kräftegleichgewicht an der zu bewegenden Masse in Bewegungsrichtung lautet:

$$F_{Mo} - F_{L} - F_{Ac} = 0 ag{1.6}$$

F_{Mo}	Motorkraft	Motor force	Ν
F_{L}	Lastkraft	Load force	Ν
F_{Ac}	Beschleunigungskraft	Acceleration force	Ν

Ist die Motorkraft betragsmäßig größer als die Lastkraft, so wird die anzutreibende Masse beschleunigt. Im umgekehrten Fall wird die anzutreibende Masse verzögert. Bei Gleichheit der beiden Kräfte bleibt die Geschwindigkeit konstant. Der Motor eignet sich dadurch zur Steuerung von Bewegungen. Es lässt sich eine Unterscheidung in folgende zwei Betriebszustände durchführen:

Stationärer Betriebszustand (Stationärer Fall)

$$F_{\text{Mo}} = F_{\text{L}}$$
, $F_{\text{Ac}} = 0$ und $v = \text{konstant}$

Instationärer Betriebszustand (Instationärer oder transienter Fall)

$$F_{\text{Mo}} \neq F_{\text{L}}$$
, $F_{\text{Ac}} \neq 0$ und $v \neq \text{konstant}$

Die Bewegungsgleichung für die in Bild 1.10 gezeigte rotatorische Bewegung lautet:

$$J_T \ddot{\varphi} = J_T \alpha = M_{\text{Ac}} = M_{\text{Mo}} - M_{\text{L}} \tag{1.7}$$

Das Drehmoment, das zum Beschleunigen zur Verfügung steht, wird auch als Beschleunigungsdrehmoment M_{Ac} bezeichnet. Das Drehmomentgleichgewicht lautet:

$$M_{\rm Mo} - M_{\rm L} - M_{\rm Ac} = 0 ag{1.8}$$

M_{Mo}	Motordrehmoment	Motor torque	Nm
M_{L}	Lastdrehmoment	Load torque	Nm
M_{Ac}	Beschleunigungsdrehmoment	Acceleration torque	Nm

Anstatt Winkelgeschwindigkeiten werden bei elektrischen Antrieben fast ausschließlich Drehzahlen angegeben. Der Zusammenhang zwischen beiden Größen lautet:

$$\omega = 2\pi n \tag{1.9}$$

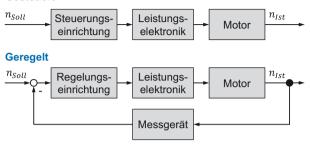
n Drehzahl Speed 1/s

Die Drehzahl wird üblicherweise in Umdrehungen pro Minute [1/min] oder als "revolutions per minute" [rpm] angegeben.

Für die beiden von der linearen Bewegung bekannten Betriebszustände gilt:

- Stationärer Betriebszustand (Stationärer Fall) $M_{\text{Mo}} = M_{\text{L}}, M_{\text{Ac}} = 0 \text{ und } n = \text{konstant}$
- Instationärer Betriebszustand $M_{\text{Mo}} \neq M_{\text{L}}, M_{\text{Ac}} \neq 0 \text{ und } n \neq \text{konstant}$

Erfolgt zwischen dem Motor und der anzutreibenden Masse mittels mechanischer Antriebselemente eine Anpassung der Drehzahl oder eine Bewegungswandlung von einer drehenden in eine lineare Bewegung, so müssen alle die Bewegung beschreibenden Größen auf einen gemeinsamen Punkt im Antriebsstrang (Bezugspunkt) bezogen werden. Dies wird in Kapitel 2 behandelt.


1.4 Antriebe mit fester oder variabler Drehzahl

Im einfachsten Fall wird zur Lösung einer Antriebsaufgabe der Elektromotor an das zur Verfügung stehende Spannungsnetz angeschlossen. Falls für den Prozess andere Drehmomente oder Drehzahlen benötigt werden als der Elektromotor bereitstellt, so werden dem Motor mechanische Antriebselemente, wie z.B. Getriebe, nachgeschaltet. Die einzige Steuerungsmöglichkeit ist das Ein- bzw. Ausschalten des Motors. Abhängig von der Drehmoment- bzw. Kraftbelastung des Motors stellt sich eine Drehzahl bzw. Geschwindigkeit ein. Da die Motordrehzahl während der Projektierung festgelegt wird, bezeichnet man diese als Antriebe mit fester Drehzahl.

Bei Antrieben mit variabler Drehzahl, welche auch drehzahlveränderliche Antriebe genannt werden, ist die Drehzahl während des Betriebes veränderbar. Die gewünschte Drehzahl (Solldrehzahl: $n_{\rm Soll}$) wird z.B. in einem Programm, in einer graphischen Bedienoberfläche oder mittels eines Potentiometers festgelegt. Drehzahlveränderliche Antriebe gibt es in zwei Ausführungen (Bild 1.12). Bei geregelten Antrieben wird die tatsächliche Drehzahl (Istdrehzahl: $n_{\rm Ist}$) gemessen, mit der gewünschten Drehzahl verglichen und die Abweichung zwischen beiden Werten mittels eines Reglers minimiert. Dieser Vergleich ist bei gesteuerten Antrieben

nicht vorhanden, weshalb Abweichungen zwischen gewünschter Drehzahl und tatsächlicher Drehzahl nicht erkannt werden. Die Aufgaben der im Bild dargestellten Komponenten werden im weiteren Verlauf dieses Abschnitts erläutert.

Gesteuert

Bild 1.12 Drehzahlvariable Antriebe – gesteuert oder geregelt

Es gibt eine Vielzahl von Prozessen, bei denen eine sich zeitlich schnell ändernde Größe sehr präzise eingehalten werden muss. Am häufigsten muss die Position eines Maschinenelementes möglichst schnell und genau einem vorgegebenen (programmierten) Weg-Zeit-Verlauf folgen. Drehzahlgeregelte Antriebe, welche diese Anforderungen erfüllen, werden Servoantriebe genannt. Sie lassen sich im Vergleich zu anderen drehzahlvariablen Antrieben im Wesentlichen wie folgt charakterisieren:

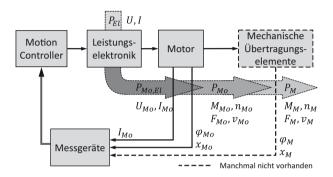
- Regelung der für die Antriebsaufgabe relevanten Größe
- geringe statische und dynamische Abweichung zwischen gewünschter und tatsächlicher Größe

Beispiele für Einsatzgebiete von Servoantrieben mit hohen Anforderungen an die Antriebseigenschaften sind Werkzeugmaschinen oder Maschinen zur Halbleiter- und Elektronikproduktion. In beiden Fällen wird meist die Position geregelt. Zur Lösung derartiger Anforderungen sind neben dem Motor noch weitere Komponenten, welche meist speziell auf die im Vergleich zu anderen Antriebsaufgaben hohen Anforderungen ausgelegt sind, erforderlich.

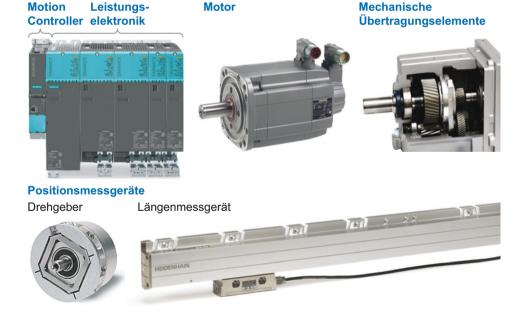
Ein Servoantrieb setzt sich aus folgenden Komponenten zusammen (Bild 1.13):

Motor zur Wandlung von elektrischer in mechanische Energie (Energiewandler). Erzeugung des für die Antriebsaufgabe erforderlichen Drehmoments bzw. der erforderlichen Kraft.

Leistungselektronik, die den Leistungsfluss in den Motor so steuert, dass die vorgegebene Kraft bzw. das vorgegebene Drehmoment bereitgestellt wird. Neben der Aufgabe der Leistungssteuerung hat die Leistungselektronik in einigen Fällen zusätzlich die Aufgabe der Energieumformung. Dies ist notwendig, wenn die dem Antrieb zur Verfügung stehende Spannung in zur Steuerung des Motors geeignete Spannung umzuformen ist (z. B. 230 V in 24 V oder Wechsel- in Gleichspannung).


Regelungs- und Steuerungseinrichtung (Motion Controller) zur Signalverarbeitung und Ermittlung der Stellsignale für die Leistungselektronik aus vorgegebenen Prozessdaten. Die Signalverarbeitung erfolgt meist digital auf leistungsfähigen Prozessoren mittels Software. Gleiches gilt für die gesamte Prozessführung und Prozessüberwachung. Anstatt der Bezeichnung Regelungs- und Steuerungseinrichtung ist die englische Bezeichnung Motion Controller für diese Komponente sehr verbreitet.

Mechanische Übertragungselemente wie z. B. Getriebe sind häufig erforderlich, um eine optimale Anpassung des Arbeitspunktes des Motors an den Arbeitspunkt der Antriebsaufgabe


zu gewährleisten. Ein Arbeitspunkt für ein drehendes Maschinenelement ist definiert durch Drehmoment und Drehzahl (M, n). Im linearen Fall ist er durch Kraft und Geschwindigkeit (F, ν) festgelegt.

Messgeräte zur Erfassung der Istwerte von Größen, die geregelt oder überwacht werden, wie z.B. Position, Strom, Temperatur. In den meisten Fällen sind die Messgeräte in den Motor oder die Antriebseinheit eingebaut.

Zusätzlich sind in Bild 1.13 der Leistungsfluss und der Signalfluss dargestellt. Komponenten für Servoantriebe in Produktionsmaschinen zeigt Bild 1.14.

Bild 1.13 Leistungsfluss und Signalfluss eines Servoantriebs

Bild 1.14 Komponenten für Servoantriebe in Produktionsmaschinen (© Siemens AG (Motion Controller, Leistungselektronik und Motor); © Lenze SE (Mechanische Übertragungselemente); © Dr. Johannes Heidenhain GmbH (Positionsmessgeräte))

Bei Servoantrieben wird eine der folgenden drei Größen vorgegeben:

- Position bzw. Winkelposition
- Geschwindigkeit bzw. Drehzahl
- Kraft bzw. Drehmoment

Gesteuerte Antriebe sind für eine genaue Einhaltung der vorgegebenen Größe aus folgenden Gründen ungeeignet:

- Ihre Dynamik reicht nicht aus, um schnellen Änderungen der vorgegebenen Größe, z. B. der Drehzahl, zu folgen.
- Auftretende Lastkräfte bzw. Lastdrehmomente bewirken unzulässig hohe Abweichungen von der vorgegebenen Größe. Bei Industrierobotern sind dies z. B. Gewichtskräfte, die durch die kinematische Anordnung als variable Drehmomente auf die Motoren wirken.

Bei geregelten Antrieben ist die zu regelnde Größe die Regelgröße, z. B. die Position. Für die Regelgröße wird ein Sollwert vorgegeben (Bild 1.15). Der Istwert der Regelgröße wird mit einem Messgerät gemessen. Das Messgerät stellt die Messgröße zur Verfügung. Die Messgröße sollte möglichst genau mit dem Istwert übereinstimmen. Idealerweise sind beide Größen identisch (y=x). Das zu regelnde System ist die Regelstrecke. In der Regeleinrichtung wird die Messgröße mit dem Sollwert verglichen, woraus sich die Regelabweichung (e=w-y) ergibt. Der Regler berechnet daraus ein Stellsignal, das eine Minimierung der Abweichung bewirkt. Neben der Änderung des Sollwertes können auch andere Größen zu einer Abweichung der Regelgröße vom Sollwert führen. Diese Größen werden Störgrößen genannt. Eine Störgröße bei einem Antrieb in einer Werkzeugmaschine ist z. B. die Bearbeitungskraft bei der Zerspanung. Der Antrieb eines Aufzugs hat z. B. das Gewicht zusteigender Personen als Störgröße. Die im Weiteren verwendeten Größen und deren Formelzeichen zeigt Tabelle 1.5 im Überblick.

Bild 1.15 Regelkreis

Größe	Formelzeichen
Istwert	X
Sollwert	W
Messgröße	У
Regelabweichung	е
Stellgröße	и
Störgröße	Z
Messgröße Regelabweichung Stellgröße	y e u

Tabelle 1.5 Größen im Regelkreis und ihre Formelzeichen

Es gibt auch Prozesse, bei denen ein Antrieb abhängig von Prozesszuständen unterschiedliche Größen regeln muss. Ein Beispiel hierfür ist der Prozess des Kunststoffspritzgießens, bei dem zwischen Geschwindigkeitsregelung während des Einspritzvorgangs und Kraftregelung im Nachrückvorgang umgeschaltet wird.

Bei positionsgeregelten elektrischen Antrieben werden üblicherweise folgende Größen gemessen:

Position: Bei einem rotatorischen Motor wird die Winkelposition der Motorwelle und bei einem Linearmotor die Position der anzutreibenden Masse gemessen. Durch Differentiation der Position wird ein Drehzahl- bzw. Geschwindigkeitsmesswert ermittelt. Eine zweite Messung der Position in der Wirkkette möglichst nahe am Produktions- oder Messprozess, zur Erhöhung der Maschinen- oder Messgenauigkeit, ist optional.

Strom bzw. Ströme: Die Bestromung des Motors wird immer gemessen. Unter anderem werden der Stromistwert bzw. die Stromistwerte für den Stromregler und zur Überwachung der Leistungselektronik und des Motors benötigt.

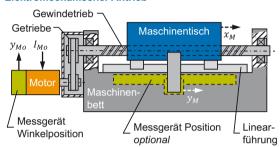
Motortemperatur: Die Messung der Motortemperatur erfolgt zur Vermeidung einer Überhitzung und damit Beschädigung des Motors. Es wird entweder im Motor die Überschreitung eines zulässigen Temperaturwertes detektiert und als Schaltsignal ausgegeben, oder die gemessene Temperatur an die Steuerungseinrichtung übertragen und dort weiterverarbeitet.

Die Regler für Position, Drehzahl und Strom sind heute durchgängig digital ausgeführt. Im Vergleich zu analogen Reglern ist bei digitalen Reglern der Regelkreis nicht permanent geschlossen, sondern nur zu bestimmten Zeitpunkten, den sogenannten Abtastzeitpunkten. Bei digitalen Reglern ist zwischen den Abtastzeitpunkten keine Regelung vorhanden. Das System befindet sich dann in einem gesteuerten Zustand. Die Zeitdauer zwischen den Abtastzeitpunkten wird Abtastzeit genannt und ist konstant.

Ist die Abtastzeit groß, d. h. der Regelkreis ist nur selten geschlossen, so kann das Antriebsverhalten nur schlecht beeinflusst werden. Da das Antriebverhalten maßgeblich von der Abtastzeit bestimmt wird, gleichzeitig aber die Kosten der Regelungseinrichtung mit einer Erniedrigung der Abtastzeit steigen, muss für die jeweilige Antriebsaufgabe immer ein Kompromiss zwischen den konträren Zielen niedrigster Abtastzeit und niedrigste Kosten gefunden werden. Typische Abtastzeiten bei elektrischen Antrieben sind im Bereich zwischen 31,25 μ s und 250 μ s. Häufig erfolgt die Angabe der Leistungsfähigkeit der Regelungseinrichtung als Abtastfrequenz.

$$f_{\rm S} = \frac{1}{T_{\rm S}} \tag{1.10}$$

T_{s}	Abtastzeit	Sampling time	S
$f_{\rm s}$	Abtastfrequenz	Sampling frequency	Hz


Digitale Regeleinrichtungen (Motion Controller) für elektrische Antriebe basieren heute meist auf einem Rechner mit leistungsfähigem Prozessor (Hardware), auf dem der Regelalgorithmus, der als Programm (Software) realisiert ist, abläuft. Da die Abarbeitung der Regelalgorithmen in einem eng tolerierten zeitlichen Takt erfolgen muss, muss die Hard- und Software für Echtzeitaufgaben ausgelegt sein (Echtzeitrechner).

1.5 Antriebsprinzipien

Neben der Bewegungsart (linear oder rotatorisch) ist bei elektrischen Antrieben das Antriebsprinzip ein weiteres wichtiges Unterscheidungsmerkmal (Bild 1.16 und Bild 1.17). Man unterscheidet:

- elektromechanische Antriebe
- elektrische Direktantriebe

Elektromechanischer Antrieb

Direktantrieb

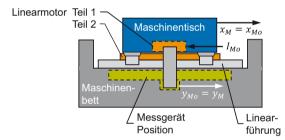


Bild 1.16 Unterscheidungsmerkmale linearer elektrischer Antriebe

Sowohl bei linearen (Bild 1.16 und Bild 1.18) als auch bei rotatorischen Bewegungsachsen (Bild 1.17) werden zum weitaus größten Anteil einem rotatorischen Motor mechanische Antriebskomponenten, wie Getriebe, Gewindetriebe, Zahnriemen oder Zahnstange-Ritzel, nachgeschaltet, um auf wirtschaftliche Weise die für die jeweiligen Antriebsaufgaben erforderlichen Kräfte bzw. Drehmomente zu erzeugen. Diese Antriebskomponenten werden mechanische Übertragungselemente genannt. Bei linearen Bewegungsaufgaben werden mechanische Übertragungselemente auch dazu genutzt, um aus der rotatorischen Bewegung des Motors eine Linearbewegung zu erzeugen. Elektrische Antriebe, bei denen zur Erfüllung der Antriebsaufgabe dem Elektromotor mechanische Übertragungselemente nachgeschaltet sind, werden als elektromechanische Antriebe bezeichnet. Die Drehzahl des Motors ist nicht identisch mit derjenigen der anzutreibenden Masse. Entsprechendes gilt für die Winkelposition.

$$n_{\text{Mo}} \neq n_{\text{M}}$$
 (1.11a)

$$\varphi_{MO} \neq \varphi_{M}$$
 (1.11b)

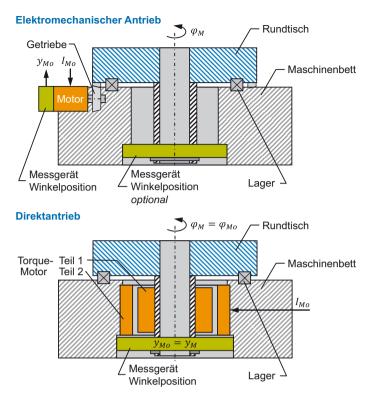


Bild 1.17 Unterscheidungsmerkmale rotatorischer elektrischer Antriebe

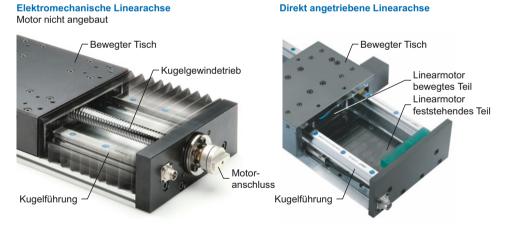


Bild 1.18 Linearachse; links: elektromechanisch, rechts: direkt angetrieben (© SKF GmbH)

Bei elektrischen Direktantrieben verzichtet man bewusst auf mechanische Übertragungselemente. Der Motor ist bei elektrischen Direktantrieben starr mit der anzutreibenden Masse verbunden. Die zu bewegende Masse und der Motor haben eine gemeinsame Lagerung und bei Drehachsen zusätzlich eine gemeinsame Welle. Die Geschwindigkeit bzw. Drehzahl des Mo-

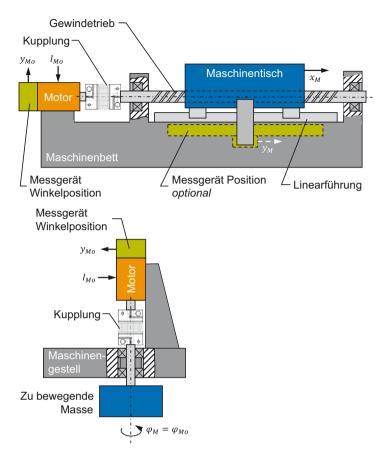


Bild 1.19 Oben: direkt gekoppelte Linearachse, unten: direkt gekoppelte Drehachse

tors ist, sofern Materialelastizitäten vernachlässigt werden, identisch mit derjenigen der anzutreibenden Masse. Entsprechendes gilt für die Position bzw. Winkelposition.

$$v_{\text{Mo}} = v_{\text{M}} \quad \text{bzw.} \quad n_{\text{Mo}} = n_{\text{M}} \tag{1.12a}$$

$$x_{\text{Mo}} = x_{\text{M}}$$
 bzw. $\varphi_{\text{Mo}} = \varphi_{\text{M}}$ (1.12b)

Wird zur Bewegungserzeugung ein rotatorischer Motor verwendet, so gibt es eine Ausführung, welche zwischen den beiden vorgestellten Prinzipien angesiedelt ist. Dabei werden mechanische Übertragungselemente nicht zur Anpassung von Drehzahlen bzw. Drehmomenten zwischen Motor und anzutreibender Masse genutzt (Bild 1.19). Um Achsversatz zwischen den Antriebswellen, Fluchtungsfehler etc. auszugleichen, wird zwischen dem Motor und der anzutreibenden Masse eine Kupplung eingebaut. Im Gegensatz zu Direktantrieben ist der Motor elastischer mit der anzutreibenden Masse verbunden. Charakteristisch ist auch, dass die anzutreibende Masse und der Motor jeweils eine eigenständige Lagerung besitzen. Antriebe mit einem derartigen Aufbau werden direkt gekoppelte Antriebe genannt.

Im rotatorischen Fall ist, sofern die Elastizität der Kupplung und der anderen mechanischen Elemente in Antriebsstrang gering ist, die Drehzahl und Winkelposition des Motors auch bei transienten Vorgängen ungefähr identisch mit derjenigen der anzutreibenden Masse.

$$n_{\text{Mo}} \approx n_{\text{M}}$$
 (1.13a)

$$\varphi_{\text{Mo}} \approx \varphi_{\text{M}}$$
(1.13b)

Für die meisten Betrachtungen können die Drehzahlen und die Positionen jeweils gleichgesetzt werden.

2

Mechanische Übertragungselemente

Das Bauvolumen und die Kosten eines Elektromotors sind, bei ansonsten gleichen Konstruktionsbedingungen, im Wesentlichen vom Drehmoment abhängig, das der Motor zur Verfügung stellen muss. Die Motordrehzahl beeinflusst die Motorkosten erst ab Drehzahlen von ca. 15 000 min⁻¹ nennenswert. Unter der Annahme gleicher Konstruktionsbedingungen ist die Motorkraft proportional zur Fläche, die zur Krafterzeugung beiträgt. Für einen Linearmotor gilt:

$$F_{\text{Mo}} = c_A A_{\text{F}} \tag{2.1}$$

c_A	Konstante Motorkraft zu krafterzeugen-	Constant motor force to force ge-	N/m ²
	der Fläche	nerating area	
A_{F}	Krafterzeugende Fläche	Force generating area	m ²

Bei rotatorischen Motoren ist die krafterzeugende Fläche die Mantelfläche eines Zylinders (Bild 2.1).

$$A_{\rm T} = \pi d_{\rm T} l_{\rm T} \tag{2.2a}$$

d_{T}	Drehmomenterzeugender Durchmesser	Torque generating diameter	m
I_T	Drehmomenterzeugende Länge	Torque generating length	m

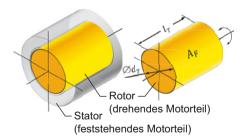


Bild 2.1 Krafterzeugende Fläche

Das Drehmoment berechnet sich nach Gl. (2.2b) durch die erzeugte Kraft multipliziert mit dem Hebelarm. Es ist proportional zum Volumen, das zur Drehmomenterzeugung beiträgt.

$$M_{\text{Mo}} = F_{\text{Mo}} \frac{d_{\text{T}}}{2} = c_{\text{A}} A_{\text{F}} \frac{d_{\text{T}}}{2} = c_{A} \pi l_{\text{T}} \frac{d_{\text{T}}^{2}}{2}; \quad \text{mit } V_{\text{T}} = \pi l_{\text{T}} \frac{d_{\text{T}}^{2}}{4}$$
 (2.2b)

V_{T}	Drehmoment erzeugendes Volumen	Torque generating volume	m^3
---------	--------------------------------	--------------------------	-------

Eine Veränderung des Motordrehmomentes kann entweder durch alleinige Änderung des Durchmessers oder der Länge oder durch gleichzeitige Änderung beider Größen erfolgen. Durch eine Änderung des Durchmessers und/oder der Länge wird gleichzeitig das Trägheitsmoment beeinflusst, wobei für die weitere Betrachtung davon ausgegangen wird, dass sich das innere Teil dreht (Innenläufermotor). Das Trägheitsmoment soll auf Basis eines Vollzylinders mit konstanter Dichte berechnet werden. Hohlräume oder unterschiedliche Materialen bei realen Maschinen werden dadurch berücksichtigt, dass eine mittlere Dichte angenommen wird. Für das Trägheitsmoment gilt:

$$J_{\text{Mo}} = \frac{\pi}{32} \, \rho_{\text{A}} \, l_{\text{T}} \, d_{\text{T}}^4 \tag{2.3}$$

 ρ_A Mittlere Dichte Averaged density kg/m³

Wird eine Verdoppelung des Motordrehmomentes gewünscht, kann dies z. B. über eine Verdoppelung der Länge oder das $\sqrt{2}$ -fache des Durchmessers erreicht werden. Bei einer Verdoppelung der Länge ergibt sich eine Verdoppelung des Trägheitsmomentes. Das Beschleunigungsvermögen des Motors bleibt damit konstant. Im Gegensatz dazu erhöht sich bei $\sqrt{2}$ -fachem des Durchmessers das Trägheitsmomentes auf das 4-Fache des ursprünglichen Wertes. Das Beschleunigungsvermögen sinkt auf die Hälfte des ursprünglichen Wertes.

Durch die Wahl der Länge und des Durchmesser des Motors ist es möglich, einen Motor auf hohes Beschleunigungsvermögen oder auf hohen Drehzahl- bzw. Geschwindigkeitsgleichlauf auszulegen. Abhängig von der Applikation ist das eine oder das andere erforderlich (Tabelle 2.1). Da ein Motor immer eine zu bewegende Masse antreibt, sind für eine Optimierung des Antriebes alle zu bewegenden Massen des Antriebsstranges zu berücksichtigen. Weitere Betrachtungen hierzu finden sich im Abschnitt 2.6 "Beschleunigungsvermögen und Gleichlaufverhalten".

Tabelle 2.1 Vergleich niedriges und hohes Trägheitsmoment des Motors

	Niedriges Trägheitsmoment	Hohes Trägheitsmoment
	Low-Inertia-Motor	High-Inertia-Motor
Vorteil	Hohes Beschleunigungsvermögen	Hoher Drehzahl- oder Geschwindig- keitsgleichlauf
Applikation (Beispiele)	 Handhabungstechnik Holzbearbeitungsmaschinen Maschinen für die Nahrungsmittelund Getränkeindustrie 	WerkzeugmaschinenDruckmaschinenMessmaschinen

Für die vom Motor bereitgestellte mechanische Leistung gilt:

$$P_{\text{Mo}} = M_{\text{Mo}} \,\omega_{\text{Mo}} = M_{\text{Mo}} \,2\pi \,n_{\text{Mo}} \tag{2.4}$$

Bei konstantem Drehmoment des Motors ist dessen Leistung an der Welle umso größer, je höher die Drehzahl ist. Daher sollte die Motordrehzahl möglichst hoch gewählt werden, so dass ohne Kostenerhöhung für den Motor und die zugehörige Leistungselektronik die Motorleistung gesteigert wird. Sind jedoch aufgrund vergleichsweise hoher Drehzahlen und/oder hoher Zentrifugalkräfte kostentreibende mechanische Maßnahmen am Motor erforderlich, ist eine gesonderte Wirtschaftlichkeitsbetrachtung erforderlich.

Die maximale Drehzahl von Elektromotoren ist oft höher als die von der Antriebsaufgabe geforderte maximale Drehzahl. In diesen Fällen ermöglichen mechanische Übertragungselemente zwischen dem Motor und der anzutreibenden Masse eine Anpassung des Arbeitspunktes des Motors an denjenigen der Antriebsaufgabe. Vernachlässigt man zunächst die Verluste im Antriebsstrang, so lautet die Leistungsbilanz:

$$\underbrace{M_{\rm Mo} \, 2\pi \, n_{\rm Mo}}_{\rm Antriebsseite} = \underbrace{M_{\rm M} \, 2\pi \, n_{\rm M}}_{\rm Abtriebsseite} \rightarrow M_{\rm Mo} = \frac{n_{\rm M}}{n_{\rm Mo}} \, M_{\rm M} \tag{2.5}$$

Das Motordrehmoment ergibt sich, abhängig vom Verhältnis der Drehzahlen von Abtriebsseite zu Antriebsseite, aus dem Drehmoment, das an der anzutreibenden Masse benötigt wird. Kann die Motordrehzahl größer als die Drehzahl der anzutreibenden Masse gewählt werden, ist eine Verringerung des erforderlichen Motordrehmoments möglich. Die Anpassung von Drehmomenten und Drehzahlen ist eine Aufgabe mechanischer Übertragungselemente. In elektrischen Antrieben ermöglichen sie eine technische und wirtschaftliche Optimierung des Motors und der Leistungselektronik (Bauvolumen und Kosten). Eine weitere Aufgabe von mechanischen Übertragungselementen in Antrieben kann die Wandlung einer Drehbewegung in eine Linearbewegung sein.

Innerhalb des Antriebsstrangs können mehrere mechanische Übertragungselemente hintereinander, d. h. in Serie, geschaltet sein. Für jedes mechanische Übertragungselement werden die in Tabelle 2.2 gezeigten Größen eingeführt.

Tabelle 2.2	Formelzeichen

Bewegungsart	Antriebsseite	\rightarrow	Abtriebsseite
$rotatorisch \rightarrow rotatorisch$	Drehmoment	$M_1 \rightarrow M_2$	Drehmoment
	Drehzahl	$n_1 \rightarrow n_2$	Drehzahl
rotatorisch → linear	Drehmoment	$M_1 \rightarrow F_2$	Kraft
	Drehzahl	$n_1 \rightarrow v_2$	Geschwindigkeit

Abhängig von der Art der Kraftübertragung (Bild 2.2) unterscheidet man in:

- reibschlüssige Übertragungselemente und
- formschlüssige Übertragungselemente

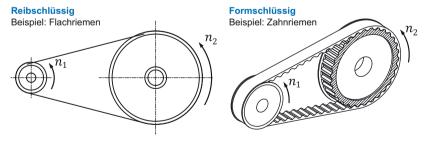


Bild 2.2 Reibschlüssige und formschlüssige Übertragungselemente

Bei reibschlüssigen Übertragungselementen erfolgt die Kraft- bzw. Drehmomentübertragung mittels Reibung. Prinzipbedingt kommt es bei reibschlüssigen Übertragungselementen zu Schlupf zwischen Antriebs- und Abtriebsseite. Sie eignen sich daher nicht für Positionier-

aufgaben. Bei Überschreitung des maximalen durch Reibung übertragbaren Drehmoments kommt es zum "Durchrutschen".

Formschlüssige Übertragungselemente nutzen Formelemente, wie Zähne, Kugeln, Ketten etc., zur Kraft- bzw. Drehmomentübertragung. Durch die ineinander greifenden Formelemente tritt kein Schlupf auf. Formschlüssige Übertragungselemente eignen sich daher für Positionieraufgaben. Im Weiteren werden nur formschlüssige Übertragungselemente behandelt.

2.1 Leistungsbilanz und Wirkungsgrad

In elektrischen Antrieben werden elektrische und mechanische Leistungen gewandelt, umgeformt und übertragen. Bei diesen Vorgängen entstehen mehr oder weniger große Verluste. Die Bezeichnung der Leistung für das jeweilige Antriebselement im Antriebsstrang erfolgt entsprechend zu den Drehmomenten bzw. Drehzahlen:

P_1	Leistung an der Antriebseite	Power at driving side	W
P_2	Leistung an der Abtriebsseite	Power at output side	W
P_{L}	Verlustleistung	Power loss	W

Die Leistungsbilanz ist die Summe der zugeführten und abgeführten Leistungen. Die Summe ist in einem abgeschlossenen System immer null (Energieerhaltungssatz).

$$\underbrace{P_1}_{\text{zugeführte}} \qquad \underbrace{-P_2 - P_L}_{\text{abgeführte}} = 0$$
Leistung
$$\underbrace{-P_2 - P_L}_{\text{Leistung}} = 0$$
(2.6)

Der Wirkungsgrad ist definiert zu:

$$\eta = \frac{P_2}{P_1}; \quad 0 \le \eta \le 1$$
(2.7)

 η Wirkungsgrad *Efficiency*

Bei hintereinandergeschalteten Antriebselementen sind zur Ermittlung des Gesamtwirkungsgrades die einzelnen Wirkungsgrade zu multiplizieren:

$$\eta = \prod_{i=1}^{n} \eta_i; \quad i = 1, ..., n \quad n: \text{Anzahl Antriebselemente im Antriebsstrang}$$
(2.8)

2.2 Drehzahlanpassung und Antriebsoptimierung

Zur Anpassung des Drehmomentes und der Drehzahl auf der Antriebsseite an das Drehmoment und die Drehzahl auf der Abtriebsseite werden bei elektromechanischen Antrieben Getriebe eingesetzt. Sie werden genutzt, um Drehmomente bzw. Kräfte umzuformen und zu übertragen (Bild 2.3). Man unterscheidet in: