Herbert Sigloch

Strömungsmaschinen

Grundlagen und Anwendungen

8., aktualisierte und erweiterte Auflage

HANSER

Sigloch Strömungsmaschinen

Ihr Plus - digitale Zusatzinhalte!

Auf unserem Download-Portal finden Sie zu diesem Titel kostenloses Zusatzmaterial. Geben Sie dazu einfach diesen Code ein:

plus-ze64g-4xsa5

plus.hanser-fachbuch.de

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Herbert Sigloch

Strömungsmaschinen

Grundlagen und Anwendungen

8., aktualisierte Auflage

HANSER

Über den Autor: Prof. Dipl.-Ing. Herbert Sigloch, Bad Überkingen

Print-ISBN: 978-3-446-47677-6 E-Book-ISBN: 978-3-446-47696-7

Alle in diesem Werk enthaltenen Informationen, Verfahren und Darstellungen wurden zum Zeitpunkt der Veröffentlichung nach bestem Wissen zusammengestellt. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Werk enthaltenen Informationen für Autor:innen, Herausgeber:innen und Verlag mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor:innen, Herausgeber:innen und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor:innen, Herausgeber:innen und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt also auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benützt werden dürften.

Die endgültige Entscheidung über die Eignung der Informationen für die vorgesehene Verwendung in einer bestimmten Anwendung liegt in der alleinigen Verantwortung des Nutzers.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtgestaltung – mit Ausnahme der in den §§ 53, 54 UrhG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2024 Carl Hanser Verlag GmbH & Co. KG, München www.hanser-fachbuch.de Lektorat: Dipl.-Ing. Natalia Silakova-Herzberg Herstellung: Frauke Schafft Coverkonzept: Marc Müller-Bremer, www.rebranding.de, München Titelmotiv: © gettyimages.de/loonger Satz: Dr. Steffen Naake, Limbach-Oberfrohna Druck: CPI Books GmbH, Leck Printed in Germany

Vorwort

Dieses Buch richtet sich an Studierende des Maschinenbaues sowie Ingenieure, die im Strömungsmaschinenbau in Konstruktion und Fertigung tätig sind. Der Schwerpunkt ist deshalb auf die Gemeinsamkeiten aller Strömungsmaschinen in ihrer Wirkung und Berechnung gelegt, die im Teil I des Buches zusammengefasst sind. Auf den Aufbau und die Anwendung der einzelnen Strömungsmaschinen, die **Turbo-Arbeitsmaschinen** (Kreiselpumpen und -verdichter) und **Turbo-Kraftmaschinen** (Wasser-, Dampf-, Gasund Windturbinen) sowie die **Antriebspropeller** und **Aggregate** (Strömungskupplungen und -wandler) wird in stark begrenztem Maße im Teil II des Buches eingegangen. Die Kreiselpumpen, mit denen fast jeder Ingenieur in seinem Berufsleben als Hersteller oder vor allem als Anwender in Kontakt kommt, werden schwerpunktmäßig betrachtet.

Das digitale Zusatzmaterial zu diesem Buch auf plus.hanser-fachbuch.de umfasst Arbeitstafeln (Stoffgrößen, Richtwerte, Diagramme), Ergänzungen, 70 Übungsbeispiele mit vollständigen Lösungen, Darstellungen ausgeführter Turbomaschinen verschiedener Hersteller und zugehörige Animationen.

Die Methode, die verschiedenen Strömungsmaschinentypen möglichst gemeinsam zu behandeln, rechtfertigt sich durch die Tatsache, dass alle Ausführungen auf dem gleichen Prinzip, der Anwendung des **Drallsatzes**, beruhen. Erst wenn die den Energiefluss mindernden, durch Reibung bedingten mechanischen Verluste, die immer der Bewegungsrichtung entgegen – also hemmend – wirken, in die Betrachtung einbezogen werden, was bei der technischen Anwendung immer notwendig ist, erfolgt eine Trennung in die Hauptgruppen **Arbeitsmaschinen** (Pumpen) und **Kraftmaschinen** (Turbinen). Um die fluidspezifischen Eigenschaften zu berücksichtigen, wird dann innerhalb der Hauptgruppen jeweils weiter in Strömungsmaschinen für inkompressible Fluide (Flüssigkeiten), die sog. **hydraulischen Strömungsmaschinen**, unterschieden. Im Text werden ausschließlich genormte Formelzeichen, Symbole und Maßeinheiten verwendet und, wo immer möglich, vom Maßsystem unabhängige Größengleichungen.

Die Bezeichnungen, Kennzeichen und Kenngrößen bei den Strömungsmaschinen werden in der Fachwelt nicht einheitlich angewendet. Wie jeweils an der betreffenden Textstelle im Buch begründet wird, ist deshalb teilweise ein Abweichen von den Bezeichnungen des einschlägigen Fachschrifttums notwendig, um Durchgängigkeit der Terminologie und Einheitlichkeit der Bezeichnungen zu erreichen, was insbesondere für den Lernenden wichtig ist. Die Abweichungen wurden jedoch so gering wie möglich gehalten und irritieren den erfahrenen Ingenieur sicher nicht. Vor allem bei den Turbomaschinentypen ist die Nummerierung nicht der Strömung, sondern dem Druckniveau folgend vorgenommen.

Der Verfasser bemühte sich, Bilder von Maschinen moderner Konzeption gemäß dem neuesten Stand der Technik zu verwenden, und erweiterte entsprechend den Abschnitt Windturbinen. Da ältere, einfachere Konstruktionen die Charakteristika jedoch oft deutlicher zeigen und deshalb für eine erste Betrachtung übersichtlicher sind, wurde verschiedentlich bewusst auf solche Ausführungen zurückgegriffen.

Obwohl das Manuskript mit höchster Sorgfalt abgefasst und der Satz peinlich genau geprüft wurde, sind Fehler letztlich nicht gänzlich auszuschließen. Deshalb werden Hinweise, Anregungen sowie Verbesserungsvorschläge aller Art immer dankbar angenommen.

Dank gilt allen an den zugehörigen Stellen erwähnten Unternehmen, die Bildmaterial und/oder Informationen zur Verfügung stellten. Dem Carl Hanser Verlag und Frau Dipl.-Ing. Natalia Silakova-Herzberg mit Team gebühren großer Dank für die gute Ausstattung des Buches und die vertrauensvolle Zusammenarbeit.

Bad Überkingen, 2023

Herbert Sigloch

Benutzungshinweise

Gleichungen, **Tabellen** und **Bilder** sind in diesem Werk kapitelweise nummeriert. Die Bezeichnung **Tafel** wird nur beim digitalen Zusatzmaterial auf plus.hanser-fachbuch.de verwendet und umfasst sowohl Tabellen als auch Hinweise, Ergänzungen und Diagramme für die Lösung von Turbomaschinenproblemen. Näherungsbeziehungen werden auch als **Formeln** bezeichnet.

Verwendete Abkürzungen:

- AM Arbeitsmaschinen
- KM Kraftmaschinen

StM Strömungsmaschinen (Turbomaschinen TuM)

- P Pumpen
 - KP Kreiselpumpen
 - KV Kreiselverdichter
- T Turbinen
 - DT Dampfturbinen
 - GT Gasturbinen
 - LT Luft-(Wind-)Turbinen
 - WT Wasserturbinen

HyM Hydraulische Strömungsmaschinen

- ThM Thermische Strömungsmaschinen
- **KoM** Kolbenmaschinen (KoP Kolbenpumpen, M Motore \rightarrow Otto, Diesel)
- **OW** Oberwasserspiegel
- UW Unterwasserspiegel

Beispiele im Text werden mit **B**, **Übungsaufgaben** mit **Ü** gekennzeichnet. Die Beispiele sind zur Veranschaulichung in den Text eingefügt und sofort gelöst. Die Übungsaufgaben sollen dem Leser das selbstständige Bearbeiten von Strömungsmaschinen-Berechnungen ermöglichen.

Zur besseren Übersicht werden im Text und in den Bildern sowie bei den Lösungen der Beispiele und Übungsaufgaben folgende **Abkürzungen** verwendet:

- **D** für Durchflussbeziehung, Druckstutzen
- **DP** für Drehpunkt
- **DS** für Drallsatz, Druckseite
- **EE** für Energiegleichung realer Strömungen (sog. Erweiterte Energiegleichung)
- ER für Energiegleichung der Relativströmung idealer Fluide
- ES für Energiesatz und allgemein E für Energie
- **HK** für Hauptgleichung der Kreiselradtheorie (EULER-Kreiselradgleichung)
- HT für Hauptgleichung der Tragflügeltheorie (KUTTA-JOUKOWSKY-Gleichung)
- IS für Impulssatz
- K für Kontinuitätsgleichung
- **KR** für Kontrollraum
- S für Saugstutzen
- SS für Saugseite

Bezugsstellen, die zur sinnvollen Anwendung der Gleichungen erforderlich sind, werden oft durch in **Kreise** gesetzte Ziffern gekennzeichnet und nach dem Abkürzungssymbol der betreffenden Gleichung aufgeführt. Es wurde versucht, möglichst viele Richtwerte anzugeben, die nach den Erfahrungen und Experimenten zu guten, d. h. energie- und abmessungsgünstigen Ergebnissen führen. Dabei sind in Klammern gesetzte Richtwertbereiche nur in Sonderfällen erreichbar, also einerseits einfache (niedrige Werte) und andererseits aufwendige (hohe Werte) Maschinenausführungen.

Übungsbeispiele (Übungsaufgaben):

Die Aufgabenstellungen zu den Übungsbeispielen sowie die vollständigen Lösungen der 70 Übungsbeispiele sind als digitales Zusatzmaterial auf plus.hanser-fachbuch.de abrufbar. Diese Lösungen beruhen immer nur auf dem Kenntnisstand, der bis zu der betreffenden Aufgabe vom Buch vermittelt worden ist. Fehlt bei den Texten der Beispiele die Angabe des Mediums, so ist bei Kreiselpumpen *Wasser* und bei Kreiselverdichtern *Luft* zugrunde zu legen. Bei nicht angegebenen Umgebungs- und Anfangswerten in den Aufgaben sind für den Umgebungs-, d. h. Barometerdruck, 1 bar und für die Umgebungs- bzw. Mediumtemperatur 20 °C zu setzen.

Berechnungen sollten nur so genau ausgeführt werden, wie es den Ausgangs-/Tabellen-/Diagrammwerten sowie dem Bekanntsein aller Einflussgrößen entspricht. Die Genauigkeit der Ergebnisse sollte somit der Genauigkeit der Vorgaben angepasst werden, wobei durch Überschlags- und Vergleichsrechnungen die Richtigkeit der Berechnungsergebnisse geprüft werden sollte.

Übersicht (Schema):

Energie-Wandler	StM → dynamisches Prinzip / AM (benötigen mechanische Energie)
(-Transformatoren)	∫ ➤ KoM → statisches Prinzip

Hochvakuum:

Die Wissenschaft benötigt weitgehend vollkommenes Vakuum für Experimente. Der Wirkungsgrad dieser dazu notwendigen Superturboverdichter steht dabei nicht im Vordergrund, sondern die Möglichkeit des Verwirklichens solcher extremer Hochvakuuma. Spezielle vielstufige Überschall-Turboverdichter erreichen bei mehrfacher Schallgeschwindigkeit mit Drehzahlen der Rotoren bis 100 000 Umdrehungen je Minute, bei bestmöglicher Kühlung, in ca. 5 Betriebsstunden in Hochvakuumkammern einen Druck von absolut etwa 0,000 001 bar (10^{-6}). Das entspricht dem Druck im Weltraum in 200 km Höhe über der Erde. Solche mehrstufigen, überschallschnell drehenden, in Magnetlagern geführten, hintereinander angeordneten Rotoren aus höchstwertigem Werkstoff, können sogar absolute Vakuumdrücke von 0,001 Milliardstel Bar ($10^{-4} \cdot 10^{-6} = 10^{-13}$) erreichen. Bei diesen Drücken befinden sich nur noch weniger als ca. 1000 Luftteilchen in einem Kubikzentimeter Volumen. Beim Umgebungsdruck (1 bar; 20 °C), dem mittleren Normalzustand, sind dies am Erdboden ca. 30 Trillionen ($30 \cdot 10^{18}$) Luftteilchen je Kubikzentimeter Volumen (cm³), also etwa das 30-Billiardfache ($30 \cdot 10^{15}$ -fache).

Grundsätzliches:

Die Wirkung und damit Berechnung von Strömungsmaschinen erfolgt gemäß den Erkenntnissen der Fluidmechanik. Diese fußt auf den Gleichgewichtsbedingungen der NEWTONschen Axiome (Grundsätze) – Trägheit, Wechselwirkung, Aktion – und den Erhaltungsbedingungen von Masse sowie Energie. Hinzu kommt die Thermodynamik bei thermischen Turbomaschinen (KV, DT, GT). Auch Werkstoff- und Festigkeitstechnik sind zu beachten. Grundlagen für die Konstruktion (Symbiose von Berechnung und Gestaltung) sind somit Geometrie sowie Physik und dazu Mathematik.

Alles, was nicht berechnet werden kann, was oft letztlich unmöglich oder zu kompliziert ist, wird gemessen. Das führt dann zu Mess-, Erfahrungs- und Richtwerten. Diese Näherungswerte fließen in die Berechnung ein. Kontrollversuche an der ausgeführten Maschine sind zur Sicherheit oft unerlässlich.

Erfahrungstatsachen sind letztlich nicht erklärbar, sondern nur erkennbar an deren Wirkung. Das sind statistische Globalaussagen gemäß der Atom- und Quantentheorie.

Maschinen- und Apparatetechnik:

Um technische und wirtschaftliche sowie umweltschonende Produkte vorteilhaft zu verwirklichen, sind geometrische und physikalische Bedingungen zu erfüllen, die zudem meist gekoppelt sind. Werkstoffe, Fertigung, Montage und Steuerung sind dabei zu beachten, also die gesamten Technischen Wissenschaften.

Physikalische Größen

- kennzeichnen die physikalischen Eigenschaften von Stoffen
- der Wert jeder physikalischen Größe, der Größenwert G, ist das Produkt aus Zahlenwert Z und Einheit E (Dimension), also G = {Z} · [E]

Hinweise zum digitalen Zusatzmaterial

Das digitale Zusatzmaterial zum Buch "Strömungsmaschinen" kann über die Webseite plus.hanserfachbuch.de abgerufen werden. Der entsprechende Zugangscode ist auf S. 1 abgedruckt.

Das folgende Material wurde im HTML-Format erstellt und kann mit gängigen Internet-Browsern angezeigt werden:

- Tafeln (Berechnungshilfen, Diagramme, Zahlenwerte, ...)
- Übungsbeispiele zu den Kapiteln 2 bis 11 mit Lösungen,
- Abbildungen und Animationen zu Verdichtern, Kompressoren, Gasturbinen, Dampfturbinen und Wasserturbinen,
- PowerPoint-Präsentation zu Kreiselpumpen sowie ein Berechnungsprogramm.

Weiterhin abrufbar sind ergänzende Kapitel zu den Themen:

- 1 Einfluss der Fluidlinien-Krümmung zu Abschnitt 2.5.2,
- 2 Flügel-Profile zu Abschnitt 2.5.3,
- 3 Numerische Strömungsmechanik zu Abschnitt 3.1,
- 4 Herleitung der Beziehungen (5-14) bis (5-21) zu Abschnitt 5.2.3 und 5.3.3,
- 5 Lösung des Integrals von Gl. (7-76) zu Abschnitt 7.2.1.5,
- 6 Spezifische verlustlose Druckenergie bei kompressiblen Fluiden zu Abschnitt 8.2,
- 7 Wärmetönung bei der technischen Arbeit von Gasen und Dämpfen zu Abschnitt 8.5.9,
- 8 Anlagenwirkungsgrade zu Abschnitt 8.5.9,
- 9 Energieaufteilung zu Abschnitt 8.5.9,
- 10 Förderungsabreißen zu Abschnitt 9.2.1.8 und 9.2.2.4,
- 11 Kondensationsbetrieb zu Abschnitt 9.3.3,
- 12 Geräuscherzeugung von Strömungseinrichtungen zu Abschnitt 10.3.2.3,
- 13 Druckaufbau in Strömungspumpen zu Abschnitt 10.3.4,
- 14 Thermodynamik der Gasturbinen zu Abschnitt 11.4,
- 15 Bauformen von Windkonvertern zu Abschnitt 11.5,
- 16 Berechnung von Turbomaschinen (Schema),
- 17 Hydrodynamische Leistungsübertragung.

Zum Anzeigen/Drucken dieser PDF-Dateien benötigen Sie den Adobe Reader.

Zur Anzeige der Animationen ist das Programm QuickTime Player, VLC Media Player, RealPlayer oder Windows Media Player bzw. Adobe Shockwave Player erforderlich.

Falls auf ihrem Computer noch kein für die Darstellung benötigtes Programm (s. o.) installiert ist, gibt es im Verzeichnis **Download** Hyperlinks zu den Herstellern der Programme mit kostenfreien aktuellen Versionen.

Inhaltsverzeichnis

Tei	ll Gr	rundlag	en	17
1	Allge	meines .		17
11	Reoriff	e Einheiter	n Abkürzungen	17
1.1	1 1 1	Regriffe		17
	1.1.1 1 1 2	Finheiten		18
	1.1.2	Formalza	iahan Symbolo und Abkürzungan	10
1 2	1.1.J	FUILIEIZE		12
1.2	Aurgat		cutung	23
1.5	Untertertuing 27 Winterne receive 20			
1.4	wirkun	igsweise	·····	29
	1.4.1	Grundsatz		29
	1.4.2	Einzelsch	autel (Flügel)	29
	1.4.3	Schaufelg	ritter (Schaufel)	31
1.5	Bauarte	en		35
	1.5.1	Vorbemer	kungen	35
	1.5.2	Hauptteile	e	35
	1.5.3	Bezeichn	ungen	35
	1.5.4	Aufteilun	g	36
1.6	Verglei	ch mit Kolł	penmaschinen	36
	1.6.1	Vorbemer	kungen	36
	1.6.2	Übereinst	immende Kennzeichen	37
	1.6.3	Unterschi	ede	37
2	Ström	nungsver	hältnisse	39
2.1	Zusami	mengesetzte	e Strömungen	39
	211	Grundsätz	zliches	39
	2.1.1 2.1.2	Radialrot	ationshohlräume	30
	2.1.2	2 1 2 1	Vorhemerkungen	30
		2.1.2.1	Daibungefraia Strömungen	20
		2.1.2.2	Reibungshehe Strömungen	39
	010	2.1.2.5		40
	2.1.3	Bellebige		41
~ ~	2.1.4			42
2.2	Relativ	bewegung	· · · · · · · · · · · · · · · · · · ·	42
2.3	Energie	egleichung	der Relativströmung	42
2.4	Instatic	onäre Ström	ung	44
	2.4.1	Grundsätz	zliches	44
	2.4.2	Energiegl	eichung der instationären Strömung	44
	2.4.3	Druckstol	3	46
		2.4.3.1	Vorbetrachtungen	46
		2.4.3.2	Physikalischer Ablauf	46
		2.4.3.3	Rohrleitung mit konstantem Querschnitt	47
		2.4.3.4	Rohrsystem mit veränderlichem Durchmesser	53
2.5	Laufrac	lströmunge	n	54
-	2.5.1	Bezeichn	ungen und Grundsätzliches	54
	2.5.2	Radial- F	Jalbaxial- und Diagonalräder	56
		2521	Strömungsverhältnisse	56
		2.5.2.1	Nahenverenging	58
		2.5.2.2	Radauerschnittsverengung	58
		2.2.2.5		50

	2.5.3	2.5.2.4 2.5.2.5 2.5.2.6 2.5.2.7 Axialrädet	Laufschaufelzahl	60 62 62 63 64
	21010	2.5.3.1 2.5.3.2 2.5.3.3	Vorbemerkungen	64 64 68
3	Energ	ieumsatz	z	73
3.1 3.2	Berechr Stromfa 3.2.1	hungsverfah dentheorie Hauptgleid 3.2.1.1	the second seco	73 74 74 74 74
		3.2.1.2 3.2.1.3 3.2.1.4 3.2.1.5	Spezifische Stufenarbeit ΔY und spezifische Stutzenarbeit Y Spaltdruckarbeit	85 87 88
3.3	Tragflüg 3.3.1 3.3.2	geltheorie Ideale Strö Reale Strö	Somung (KUTTA-JOUKOWSKY-Gesetz) Somung	90 90 93
4	Affinit	ätsregel	n und Kennziffern	99
4.1 4.2	Grundsä Ähnlich 4.2.1 4.2.2 4.2.3	ätzliches . keitstheorie Vorbemerl Ähnlichke Affinitätsr 4.2.3.1 4.2.3.2 4.2.3.3 4.2.3.4 4.2.3.5	e	99 99 99 100 100 100 101 102 103
4.3	Kennzif 4.3.1 4.3.2 4.3.3	Grundsätz Methoden Wichtige I 4.3.3.1 4.3.3.2 4.3.3.3 4.3.3.4 4.3.3.5 4.3.3.6 4.3.3.7	liches	105 105 106 106 106 108 109 111 111 120 121
5	Kavita	tion und	Überschall	124
5.1 5.2	Vorbem Kavitati 5.2.1	erkungen ion Ablauf, W 5.2.1.1 5.2.1.2	'irkung, Werkstoffe, Einflüsse Grundsätzliches Kavitationsablauf	124 124 124 124 124

		5.2.1.3 5.2.1.4	Werkstoffe Laufradgrößeneinfluss Kavitationsstufon	127 129
		5216	Kavitationsformen	129
		5217	Zusammenfassung	130
	522	Saughöhe	von Flüssigkeitsmaschinen	131
	5.2.2	Halteener	von Prussigkensmusenmen	131
	5.2.4	Saugzahl	S	136
	5.2.5	NPSH-We	ert	137
	5.2.6	Тнома-Z	ahl Th	138
	5.2.7	Festlegen	des Kavitationszustandes	139
5.3	Übersch	nall		140
	5.3.1	Grundsätz	liches, Bedeutung	140
	5.3.2	Dichteänd	erung im Saugstutzen	141
	5.3.3	Überschal	lgrenze, Schallziffer	143
c	Loufre			1 4 77
0	Laurra	aaiormen	l	14/
6.1	Radialm	naschinen		147
	6.1.1	Grundsätz	liches	147
	6.1.2	Wirkungst	freie Radialschaufel	147
	6.1.3	Einfluss de	er Saugkante	151
	6.1.4	Einfluss de	er Druckkante	152
		6.1.4.1	Grundsätzliches	152
		6.1.4.2	Unterscheidung	153
		6.1.4.3	Vergleich	153
		6.1.4.4	Anwendung	153
	6.1.5	Schaufelfo	ormen	155
		6.1.5.1	Grundsätzliches	155
		6.1.5.2	Pumpenschaufeln	155
		6.1.5.3	Turbinenschaufeln	160
6.2	Axialma	aschinen .		161
	6.2.1	Vorbemer	kungen	161
	6.2.2	Wirkungst	freie Axialschaufel	162
	6.2.3	Einfluss de	er Saugkante	163
	6.2.4	Einfluss de		163
		6.2.4.1	Grundsätzliches	163
		6.2.4.2	Unterscheidung	163
		6.2.4.3		164
	625	0.2.4.4 Seheufelf		104
	0.2.3	Schaulent		103
		0.2.3.1	Wesserturbinen	165
		0.2.3.2	Dempf und Gesturbinen	103 167
		0.2.3.3		107
7	Leitvo	orrichtun	gen	171
7.1	Grundsä	ätzliches.		171
7.2	Pumpen	leitvorricht	tungen	171
	7.2.1	Radialmas	schinen	172
		7.2.1.1	Einführung	172
		7.2.1.2	Ringspalt, Leitkanaleintrittsbreite	173
		7.2.1.3	Leitrad (beschaufelt)	174

		7.2.1.4	Leitring (schaufellos)	182
		7.2.1.5	Spiralgehäuse	183
		7.2.1.6	Rückführeinrichtungen	192
		7.2.1.7	Saugseitenleitvorrichtungen	194
	7.2.2	Axialmas	chinen	195
		7.2.2.1	Grundsätzliches	195
		7.2.2.2	Spalt zwischen Lauf- und Leitrad	197
		7.2.2.3	Leitschaufeldicke s_{Le}	197
		7.2.2.4	Leitschaufelzahl <i>z</i> _{Le}	197
		7.2.2.5	Leitschaufelkontur	197
7.3	Turbine	enleitvorrich	ntungen	199
	7.3.1	Grundsätz	liches	199
	7.3.2	Wassertur	binen	200
		7.3.2.1	Gleichdruckturbinen (Aktionswirkung)	200
		7.3.2.2	Überdruckturbinen (Reaktionswirkung)	203
	7.3.3	Dampf- u	nd Gasturbinen	209
		7.3.3.1	Vorbemerkungen	209
		7.3.3.2	Gleichdruckturbinen (Aktionswirkung)	211
		7.3.3.3	Überdruckturbinen (Reaktionsprinzip)	217
8	Spezi	fische St	utzenarbeit, Verluste, Leistungen, Wirkungsgrade	219
8.1	Vorberr	erkung		219
8.2	Spezifis	sche Stutzei	narbeit	219
83	Verluste			224
0.5	831	Grundsätz	liches	224
	832	Innere Ver	rluste	224
	0.5.2	8 3 2 1	Schauflungsverluste Z_{c_1}	224
		8322	Mengenstromverluste	224
		8323	Radreibungs- und Ventilationsverluste	235
		8324	Austauschverlust	241
		8325	Stoßverluste	241
		8326	Zusammenfassung	243
	833	Äußere Ve	arluete	··· 243
	834	Gesantve	rlust 7	245
81	U.J.+ Leistun	gen	$\operatorname{Hust} \boldsymbol{\mathcal{Z}}_{\operatorname{ges}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	245
0.7		Grundsätz	liches	245
	8/1/2	Theoretis	she Leistung	246
	8/3	Innere Lei	istungen	240
	8 A A	Äußere e	ffektive oder Kupplungs-Leistung	240
85	Wirkun	asarade		240
0.5	8 5 1	Grundsätz		247
	852	Lioforgrod	1 2	247
	0.J.Z 0 5 2	Schouflun	I Λ_L	247
	8.J.J 9 5 4		$g_{Swn} \kappa_{ungsgrad} \eta_{Sch} \dots \dots$	247
	0.J.4 0 5 5	Mochani-	$\frac{11 \times 119 \times 12}{11} \times 12 \times 12} \times 12 \times 12 \times 12} \times 12 \times 12$	247
	0.J.J 0 = 7	Eff-1-ti	$Wirkungsgrad \eta_m \dots \dots$	248
	8.J.0 057	Ellektiver	wilkungsgrad η_e	248
	ð.J./	weitere W	VIIKungsgrade bei inernischen Turboarbeitsmaschinen	249
	8.3.8 9.5.0	weitere W	virkungsgrade bei Turbokraftanlagen	249
	8.3.9	Anlagenw	/irkungsgrad $\eta_{\rm A}$	251
	8.5.10	Spezielle	wirkungsgrade	251

9	Betrie	bliches Ve	erhalten (Kennlinien, Kennfelder)	. 252
9.1 Grundsätzliches			. 252	
9.2	Betriebs	sverhalten de	er Strömungsarbeitsmaschinen	. 252
	9.2.1	Kreiselpum	ipen	. 252
		9.2.1.1	Drosselkurven	. 252
		9.2.1.2	Auslegungs- und Betriebspunkt	. 257
		9.2.1.3	Stabiler und labiler Betriebszustand	258
		9.2.1.4	Affinität der Drosselkurven	261
		9.2.1.5	Vergleich mit dem Kennverhalten der Kolbennumpen	264
		9.2.1.6	Muscheldiagramm	264
		9217	Kennlinien für Leistungen Wirkungsgrad und Haltedruckhöhe bzw. NPSA	265
		9218	Resonderheiten schnellläufiger Strömungspumpen	267
		9219	Kombination von Strömungsnumpen	270
		0 2 1 10	Romoniation von Strömungspumpen	270 271
	022	Vraisalvard	lichter	. 271
	9.2.2		Grundsötzliches	. 212
		9.2.2.1	Einflugg der Angeugwerhöltnigge	. 212
		9.2.2.2	Enniuss der Ansaugvernahmisse	. 215
		9.2.2.3	Instabilitaten (Stromungsabreißen)	. 215
0.2	D (1	9.2.2.4		. 278
9.3	Betriebs	svernalten de		. 278
	9.3.1	Grundsatzli	iches	. 278
	9.3.2	Wasserturb	inen	. 279
	9.3.3	Dampt- und	d Gasturbinen	. 281
		9.3.3.1	Vorbemerkungen	. 281
		9.3.3.2	Kegelgesetz	. 281
Teil	II Tu	rbomaso	chinenarten	285
Teil	II Tu	rbomaso	chinenarten	. 285
Teil 10	II Tu Übers	rbomaso icht über	chinenarten	. 285 . 285
Teil 10 10.1	II Tu Übers Grundsä	rbomaso icht über	chinenarten	. 285 . 285 . 285
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselt	rbomaso	chinenarten	. 285 . 285 . 285 . 285
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1	rbomaso icht über atzliches oumpen Vorbemerku	chinenarten	. 285 . 285 . 285 . 285 . 285
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2	rbomaso icht über itzliches oumpen Vorbemerku Laufradforr	chinenarten die Strömungspumpen (Turboarbeitsmaschinen)	. 285 . 285 . 285 . 285 . 285 . 285 . 285
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3	rbomaso icht über itzliches oumpen Vorbemerku Laufradforr Wirkungsgu	chinenarten die Strömungspumpen (Turboarbeitsmaschinen)	. 285 . 285 . 285 . 285 . 285 . 285 . 286 . 288
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über atzliches vorbemerku Laufradforr Wirkungsgu Läuferkräft	chinenarten die Strömungspumpen (Turboarbeitsmaschinen)	 . 285 . 285 . 285 . 285 . 285 . 286 . 288 . 290
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches oumpen Vorbemerku Laufradforr Wirkungsgr Läuferkräft 10 2 4 1	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e	 . 285 . 285 . 285 . 285 . 286 . 288 . 290 . 290
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft)	 . 285 . 285 . 285 . 285 . 285 . 286 . 288 . 290 . 290 . 295
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 10.2.4.2	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte	 285 285 285 285 286 288 290 290 295 295
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten	 . 285 . 285 . 285 . 285 . 286 . 286 . 288 . 290 . 290 . 295 . 295 . 296
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselg 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele	 285 285 285 285 285 286 288 290 290 295 296 297
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten søbeispiele Radial- und Halbaxialpumpen (Radform I und II)	 285 285 285 285 286 286 288 290 290 295 295 296 297 300
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen nen und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III)	 285 285 285 285 286 288 290 290 295 295 296 297 300
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselg 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 Saugverhalt Ausführung 10.2.6.1 10.2.6.2 10.2.6.3	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform IV)	 285 285 285 285 285 286 288 290 295 296 297 300 302 202
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.2 10.2.6.3 10.2.6.4	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform I und II)	 285 285 285 285 285 286 286 288 290 295 295 296 297 300 302 303 207
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.3 10.2.6.3 10.2.6.4 10.2.6.5	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform I und II) Sonder-Kreiselpumpen	 285 285 285 285 285 286 288 290 290 295 296 297 300 302 303 305
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselg 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.3 10.2.6.4 10.2.6.5 verdichter .	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform I V) Mehrstufige Radialpumpen (Radform I und II) Sonder-Kreiselpumpen	 285 285 285 285 285 286 288 290 290 295 296 297 300 302 303 305 319
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiseln 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 Kreiseln	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.3 10.2.6.4 10.2.6.5 verdichter . Vorbemerku	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform I V) Mehrstufige Radialpumpen (Radform I und II) Sonder-Kreiselpumpen	 285 285 285 285 285 286 286 288 290 295 295 295 296 297 300 302 303 305 319 319
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 Kreiselv 10.3.1 10.3.2	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.3 10.2.6.3 10.2.6.4 10.2.6.5 verdichter . Vorbemerku Besonderhe	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform IV) Mehrstufige Radialpumpen (Radform I und II) Sonder-Kreiselpumpen	 285 285 285 285 285 286 288 290 290 295 296 297 300 302 303 305 319 319 320
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselg 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 Kreiselv 10.3.1 10.3.2	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.2 10.2.6.3 10.2.6.4 10.2.6.5 verdichter . Vorbemerku Besonderhe 10.3.2.1	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform IV) Mehrstufige Radialpumpen (Radform I und II) Sonder-Kreiselpumpen	 285 285 285 285 285 286 288 290 290 295 296 297 300 302 303 305 319 319 320 320
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselg 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 Kreisely 10.3.1 10.3.2	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgi Läuferkräft 10.2.4.1 . 10.2.4.2 . Saugverhalt Ausführung 10.2.6.1 . 10.2.6.3 . 10.2.6.3 . 10.2.6.4 . 10.2.6.5 . verdichter . Vorbemerku Besonderhe 10.3.2.1 . 10.3.2.2 .	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform I und II) Sonder-Kreiselpumpen ungen eiten Aufbau	 285 285 285 285 285 286 286 290 290 295 295 296 297 300 302 303 305 319 320 320 320 320
Teil 10 10.1 10.2	II Tu Übers Grundsä Kreiselp 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 Kreiselv 10.3.1 10.3.2	rbomaso icht über itzliches vorbemerku Laufradforr Wirkungsgr Läuferkräft 10.2.4.1 10.2.4.2 Saugverhalt Ausführung 10.2.6.1 10.2.6.2 10.2.6.3 10.2.6.4 10.2.6.5 verdichter . Vorbemerku Besonderhe 10.3.2.1 10.3.2.2	chinenarten die Strömungspumpen (Turboarbeitsmaschinen) ungen men und Kenngrößen rad e Achsschub (Axialkraft) Radialkräfte ten gsbeispiele Radial- und Halbaxialpumpen (Radform I und II) Diagonal- oder Schraubenpumpen (Radform III) Axial- oder Propellerpumpen (Radform I und II) Sonder-Kreiselpumpen ungen eiten Orehzahl Aufbau Geräuschentwicklung	 285 285 285 285 285 286 288 290 290 295 295 296 297 300 302 303 305 319 319 320 320 320 320 320 322

	10.3.3	Unterteilu	ng	. 329
	10.3.4	Druckstuf	ung	. 329
	10.3.5	Laufräder	-Abstufung	. 330
	10.3.6	Ausführu	ngsbeispiele	. 330
		10.3.6.1	Ventilatoren	. 331
		10.3.6.2	Gebläse	. 337
		10.3.6.3	Kompressoren	. 340
10.4	Hinwei	se für das E	Berechnen von Strömungspumpen	. 348
	10.4.1	Grundsätz	liches	. 348
	10.4.2	Wellendu	rchmesser D_{We}	. 351
	10.4.3	Radialrad	-Abmessungen ($n_y \leq 0,12$)	. 353
		10.4.3.1	Nabendurchmesser D_N	. 353
		10.4.3.2	Saugmund	. 353
		10.4.3.3	Überschlägiges Festlegen der Laufradkanäle	. 354
		10.4.3.4	Stufenzahl <i>i</i>	. 355
		10.4.3.5	Laufschaufelzahl z_{La}	. 355
		10.4.3.6	Nachrechnen der Schaufelkanten	. 355
	10.4.4	Diagonalr	ad-Abmessungen $(n_y = 0, 120, 48)$. 355
	10.4.5	Axialrad-	Abmessungen $(n_y > 0,3)$. 355
	<i>.</i>			
11	Ubers	icht übe	r die Turbinen (Turbokraftmaschinen)	. 356
11.1	Grunds	ätzliches.		. 356
11.2	Wassert	turbinen		. 356
	11.2.1	Vorbemer	kungen	. 356
	11.2.2	Gleichdru	ck- oder Aktionsturbinen	. 359
		11.2.2.1	PELTON-, Becher-, Freistrahl- oder Tangential-Turbinen	. 359
		11.2.2.2	MICHELL-OSSBERGER- oder Durchströmturbine	. 363
	11.2.3	Überdruc	x- oder Reaktionsturbinen	. 364
		11.2.3.1	Gemeinsames	. 364
		11.2.3.2	FRANCIS-Turbinen	. 365
		11.2.3.3	Propeller- und KAPLAN-Turbinen	. 368
	11.2.4	Berechnu	ngshinweise	. 372
11.3	Dampft	urbinen	•••••	. 372
	11.3.1	Grundsätz	diches	. 372
		11.3.1.1	Dampfkraftprozess	. 372
		11.3.1.2	Einteilung	. 375
		11.3.1.3	Optimaler Energieumsatz	. 375
		11.3.1.4	Stufungsarten	. 3//
		11.3.1.3	Warmeruckgewinn	. 380
		11.3.1.0		. 381
		11.3.1./	Betriebsgroßen	. 381
		11.3.1.8	Grenzen	. 385
		11.3.1.9	Vergleich init anderen Turbonnaschnien	. 300
	1122	Detricher		. 200
	11.3.2		Anfahran Datriah Abstallan	. 390
		11.3.2.1		. 390
	11 3 3	11. <i>J.2.2</i> Δμεführu	Regolung	. 390 207
	11.3.3		Vorbemerkungen	. 392 307
		113.3.1	Gleichdruck- oder Aktionsturbinen	· 392
		11.3.3.3	Überdruck- oder Reaktionsturbinen	395

	11.3.4	Vergleich	Gleichdruck – Überdruck	398	
	11.3.5	5 Berechnungshinweise			
11.4	Gasturb	inen		401	
	11.4.1	Grundsätz	liches	401	
		11.4.1.1	Bezeichnungen	401	
		11.4.1.2	Wirkungsweise	401	
		11.4.1.3	Geschichtliches und Bedeutung	401	
	11.4.2	Vergleich	mit Dampfturbinen	402	
	11.4.3	Aufbau .		402	
		11.4.3.1	Bestandteile	402	
		11.4.3.2	Unterteilung	402	
	11.4.4	Thermody	namik	404	
	11.4.5	Besonderh	eiten	406	
		11.4.5.1	Bauteile	406	
		11.4.5.2	Werkstoffe	411	
		11.4.5.3	Brennstoffe	412	
		11.4.5.4	Lebensdauer	413	
	11.4.6	Eigenscha	ften, Anwendung, Ausführungsbeispiele	413	
		11.4.6.1	Vorbemerkungen	413	
		11.4.6.2	Stationäre Anlagen	414	
		11.4.6.3	Bewegliche Anlagen	417	
		11.4.6.4	Sonderausführungen	420	
11.5	Windtur	binen		422	
	11.5.1	Vorbemerk	kungen	422	
	11.5.2	Windangel	bot	423	
	11.5.3	Aerodynar	nische Grundlagen	424	
		11.5.3.1	Einführung	424	
		11.5.3.2	Windenergie und Windleistung	424	
		11.5.3.3	Windturbinenleistung	424	
	11.5.4	Axialkraft		425	
	11.5.5	Kennwerte	•	425	
	11.5.6	Ausführun	gshinweise	425	
12	Antrie	bsprope		427	
121	Vorhem	erkungen		427	
12.1	Strömur	ng Geschw	indigkeiten und Kräfte am Propellerblatt	427	
12.2	Vereinf	achte Prone		428	
12.5	Kennzal	hlen		430	
12.1	Anwend	lungsheding	ote Besonderheiten	430	
12.5	12 5 1	Flugzeugn	roneller	430	
	12.5.1	Schiffssch	rauben	431	
	12.5.2	Sonderbau	arten	431	
	12.3.3	Sonderodd			
13	Aggre	gate		433	
13.1	Vorbem	erkung		433	
13.2	Funktio	nsweise .		433	
13.3	Strömur	ngskupplun	gen	434	
	13.3.1	Aufbau un	d Arbeitsweise	434	
	13.3.2	Kenngröße	en und Eigenschaften	434	
	13.3.3	Ausführun	gen und Anwendungen	436	

13.4	Strömungsgetriebe	57
	13.4.1 Unterschied Kupplung – Getriebe 43	57
	13.4.2 Wirkungsweise	57
	13.4.3 Kenngrößen	;9
	13.4.4 Kennlinien	;9
	13.4.5 Anwendungsbereiche	0
	13.4.6 Ausführungsbeispiele 44	0
14	Literaturverzeichnis	12
14.1	Lehrbücher	12
14.2	Spezialwerke	2
14.3	Handbücher und Sonstige	4
15	Sachwortverzeichnis	15

Teil I Grundlagen

1 Allgemeines

1.1 Begriffe, Einheiten, Abkürzungen

Jeder Zweig der Wissenschaft und Technik prägt seine eigene Sprache. So auch die Strömungsmaschinen. Die wichtigsten Begriffe, Einheiten und Formelzeichen sind genormt. Die Normen, die das Gebiet der Strömungsmaschinen betreffen und berühren, sind in Tafel 4 (digitales Zusatzmaterial) gelistet.

1.1.1 Begriffe

Häufig verwendete Begriffe und deren Definition sind:

- Absolutgeschwindigkeit ... Strömungsgeschwindigkeit im Absolutströmungsfeld, also in Bezug auf den ruhenden Beobachter.
- Absolutströmung ... Auf das ruhende Koordinatensystem bezogenes, also vom ruhenden Beobachter gesehenes Strömungsfeld.
- Anströmgeschwindigkeit (ungestörte) ... Zuströmgeschwindigkeit in so weitem (theoretisch unendlichem) Abstand vor dem Schaufelgitter, dass sie von diesem noch nicht beeinflusst wird.
- Außenkranz ... Axialsymmetrische Schale (Kreisring), an der die Schaufeln außen enden.
- Austrittskante ... Schaufelkante, an der die Strömung die Schaufel (den Schaufelkanal) verlässt.
- **Axialschnitt** ... Spur (Zirkularprojektion) der Schaufeloberfläche in einer Axialebene.
- **Breite** ... Lichte Weite zwischen Außen- und Innenkranz des Rades.
- **Brettschnitt** (Schreinerschnitt, Achsnormalschnitt) ... Spur der Schaufeloberfläche in einer Ebene senkrecht zur Maschinenachse.
- **Deckscheibe** ... seitliche Abdeckscheibe der Laufschaufeln und somit des Laufrades.
- **Druckseite (-kante)** ... Schaufelseite (-kante), an welcher der höhere statische Druck herrscht.

- **Durchflussströmung** ... Relativ-Strömung durch das Laufrad, die den Durchsatz (Volumenstrom) bewirkt.
- **Eintrittsseite (-kante)** ... Schaufelseite (-kante), an der das Fluid einströmt.
- Fluid ... Sammelbegriff für inkompressible Medien (Flüssigkeiten) sowie kompressible Medien (Gase, Dämpfe), auf welche die Gesetze der Fluidmechanik und Thermodynamik anwendbar sind. Diese volumenbeständigen (tropfbaren) und nichtvolumenbeständigen (nichttropfbaren) Fluide werden auch als NEWTON'sche Fluide bezeichnet, da sie dem NEWTON'schen Fluidreibungsgesetz folgen.
- **Flussfläche** ... Zusammenfassung jeweils aller Flusslinien, die in einer zur Schaufelfläche parallelen Fläche liegen. Die Schaufelfläche ist daher ebenfalls eine Flussfläche.
- **Flusslinie** ... Relativstrombahn jedes Fluidteilchens durch das Rad, d. h. die Fluidteilchenbahn, welche ein sich mit dem Rad mitbewegend angenommener Beobachter sieht. Daher auch Spur der Schaufelfläche.
- Flutfläche ... Zirkularprojektion der Flussfläche und deshalb auch der Schaufelfläche.
- Flutlinie ... Zirkularprojektion der Flusslinie und damit der Spur der Schaufelfläche.
- Gerades (ebenes) Gitter ... Theoretisch unendlich viele, in einer Reihe angeordnete, kongruente Profile, die in Richtung der Gitterachse parallel zueinander verschoben sind und in konstantem Abstand (Teilung) zueinander stehen.
- **Geschwindigkeitsdreieck** (-plan) ... Geometrische Darstellung der vektoriellen Zusammenfassung der Geschwindigkeiten in einem Laufrad, insbesondere an den Schaufelkanten (Saugkante und Druckkante).
- **Gitterachse** ... Gerade Verbindungslinie durch die Mittelpunkte der Profilsehnen eines geraden Gitters.
- **homolog** ... gleichliegend, gleichlaufend, übereinstimmend, entsprechend.
- **Inducer** ... Vorsatzlaufrad zur Verbesserung des Saugverhaltens von Pumpen.

- **Innenkranz** ... Axial-, d. h. rotationssymmetrische Schale, an der die Schaufeln eines Schaufelrades innen enden.
- **Kanalwirbel** (Relativwirbel) ... Sekundäre Zirkulationsströmung in den Schaufelkanälen, ausgelöst durch unterschiedliche Drücke in den Schaufelzwischenräumen, d. h. zwischen Schaufelvorder- und -rückseiten.
- **koaxial** ... auf gleicher Achse.
- kohärent ... zusammenhängend.
- Kreisbogenprojektion ... Zirkularprojektion.
- **Kreisgitter** ... Reihe von *theoretisch unendlich vielen*, unendlich dünnen und *praktisch von endlich vielen* kongruenten Profilen, die durch Drehung um die Maschinenachse (Teilung) auseinander entstanden gedacht werden können.
- Laufrad ... Das auf der Welle befestigte und sich mit der Umfangsgeschwindigkeit drehende Schaufelrad.
- Leitrad (Leitvorrichtung) ... die fast immer ruhende und deshalb im Maschinen-Gehäuse befestigte, beschaufelte oder schaufellose Vorrichtung zur Fluidstromführung und -druckumsetzung.
- Lichte Weite eines Schaufelkanals ... Abstand zwischen Vorder- und Rückseite zweier benachbarter Schaufeln.
- **Meridianschnitt** (Hauptschnitt) ... Radschnitt durch die Achse in Achsrichtung und deshalb in der Aufrissebene dargestellt.
- Palisade ... Hindernisse dicht hintereinander.
- **Rad-Aufriss** ... Radansicht senkrecht zur Achse (Quersicht).
- **Rad-Grundriss** ... Radansicht in Achsrichtung (Axialsicht), wenn unterhalb des Aufrisses dargestellt. Meist bei Maschine mit senkrechter Welle verwendet.
- **Rad-Seitenriss** ... Radansicht in Achsrichtung (Axialsicht), wenn seitlich vom Aufriss dargestellt. Hauptsächlich bei waagrechter Wellenlage verwendet.
- **Relativströmung** ... Strömungsfeld in den Schaufelkanälen, bezogen auf das sich drehende Laufrad, also das Strömungsbild, welches von einem gedachten Beobachter gesehen wird, der sich mit dem Laufrad dreht.
- Relativwirbel ... Kanalwirbel.
- Schaufel-Rückseite ... Schaufelseite, auf welcher der niedrigere Druck herrscht.
- Schaufel-Vorderseite ... Schaufelseite, auf welcher der höhere Druck herrscht.

- Saugkante ... Laufschaufelkante im Gebiet geringeren Druckes, d. h. der Saugseite.
- Saugseite ... Schaufelaußenbereich im Gebiet mit dem niedrigeren statischen Druck.
- Schallgeschwindigkeit, charakteristische ... Durch Elastizität von Fluid und Materialwänden (Rohrwände usw.) innerhalb einer Rohrleitung bedingte Geschwindigkeit der Fortpflanzung von zeitlichen Druckänderungen.
- **Spezifische Energie** ... Energie je Masseneinheit, d. h. die in der Strömungsmaschine umgesetzte Energie, bezogen auf die Masse des Fluids.
- Spezifische Größen ... Größen, welche auf die Massen- bzw. Massenstromeinheit bezogen sind, also Quotient von Größe und Masse bzw. Massenstrom.
- **Spezifische Leistung** ... Leistung je Massenstromeinheit, d. h. der Quotient aus der in der Maschine umgesetzten Leistung und dem durchfließenden Fluid-Massenstrom.
- **Spezifischer Drallstrom** ... Drallstrom bezogen auf die Masseneinheit, d. h. Quotient von Drallstrom und Masse.
- **Stufe** ... Kombination von einem Laufrad mit einem Leitrad (Leitvorrichtung).
- **Teilung** ... Abstand zweier benachbarter Profilschnitte (Schaufelschnitte) auf gleichem Radius; bei geraden Gittern somit der konstante Abstand entsprechender, aufeinander folgender Profile.
- **Teilungsverhältnis** ... Quotient aus Gitterteilung und Profillänge (-tiefe).
- Umlenkdreieck ... Geschwindigkeitsdreieck.
- Verdrängungsströmung ... Drehströmung des Kanalwirbels, verursacht durch den Druckunterschied in jedem Laufradkanal. Liefert keinen Beitrag zur Durchsatzströmung.
- Wirbel ... Örtliche Drehströmung (Fluidrotation).
- **Zirkularprojektion** (Kreisbogenprojektion)...
- zeichnerisches Darstellungsverfahren, bei dem alle Punkte im Rad-Seitenriss um die Achse in die Aufrissebene (senkrechte Ebene) gedreht und dann orthogonal projiziert werden, ergibt den Meridianschnitt oder Aufriss des Rades.

Weitere Begriffe werden an jeweils günstiger Stelle eingeführt und definiert bzw. erklärt.

1.1.2 Einheiten

Alle im Strömungsmaschinenbau verwendeten dimensionsbehafteten Größen (Länge, Zeit, Masse, Kraft, Impuls, Drall, Energie, Leistung u. dgl.) lassen sich nach dem *Internationalen Einheitensystem* (SI ... Système International d'Unités) ausdrücken – sog. mks-System – durch

die SI-Basiseinheiten	für die Grundgrößen
Meter m	Länge L
Kilogramm kg ¹⁾	Masse <i>m</i>
Sekunde s	Zeit t
Kelvin K	Temperatur T

¹⁾ bzw. Gramm g

Alle anderen SI-Einheiten sind von den *Basiseinheiten* abgeleitet (DIN 1301 und DIN 58 122).

Außer Geschwindigkeit, Beschleunigung und Leistung werden alle *auf die Zeit bezogenen*, d. h. nach der Zeit differenzierten Größen mit dem *Wortzusatz* "Strom" versehen und durch einen hoch gestellten Punkt gekennzeichnet. Zum Beispiel:

V Volumen	<i>L</i> Drall
V Volumenstrom	<i>L</i> Drallstrom

Wichtige Größen mit von den Basiseinheiten abgeleiteten SI-Einheiten sind im Strömungsmaschinenbau:

Größe	SI-Einhe	it
Kraft	Newton	$N = kg \cdot m/s^2$
Druck	Pascal	$Pa = N/m^2$
	Bar	$bar = 10 \mathrm{N/cm^2}$
Energie, Arbeit, Wärme	Joule	$J=N\cdot m=kg\cdot m^2/s^2$
Leistung	Watt	$W = J/s = N \cdot m/s$
Spez. Drallstrom		$\mathbf{m} \cdot \mathbf{m}/\mathbf{s} = \mathbf{m}^2/\mathbf{s}$
Spez. Energie		$N \cdot m/kg = m^2/s^2$
Spez. Leistung		$\frac{W}{kg/s} = \frac{N \cdot m}{kg} = \frac{m^2}{s^2}$

1.1.3 Formelzeichen, Symbole und Abkürzungen

Zusammenstellung der wichtigsten verwendeten Formelzeichen und Symbole nach DIN 1304 Teil 1 und Teil 5:

Ge	ometri	ische	Größen	und	Me	engen
----	--------	-------	--------	-----	----	-------

Symbol	Größe	Symbol	Größe
<i>x</i> , <i>y</i> , <i>z</i>	Rechtwinklige Koordinaten	V	Volumen
<i>r</i> , φ	Polarkoordinaten	$W_{ m p}$	Polares Widerstandsmoment
r, φ, z	Zylinder-Koordinaten	α	Leitschaufelwinkel, Absolutströmungsrich-
<i>s</i> , <i>x</i>	Weg bzw. Koordinate längs Strömungsrich-		tung, d. h. Winkel der Absolutgeschwindig-
	tung, Schaufeldicke, Wanddicke		keit c gegenüber der positiven Umfangs-
z	Ortshöhe		Minkel zwischen \vec{c} und \vec{u}
a	Schaufelkanalweite	ρ	Vinkei Zwischen e und <i>u</i> .
A	Fläche, Querschnitt	ρ	tung d h Winkel der Relativgeschwindig-
<i>B</i> , <i>b</i>	Breite, lichte Weite, Schaufellänge		keit w gegenüber der negativen Umfangs-
D, d	Durchmesser		richtung (u-Richtung), also Winkel zwi-
H	Höhe, geodätischer Höhenunterschied,		schen \vec{w} und $-\vec{u}$.
	Fallhöhe, Förderhöhe	δ	Anstellung, d. h. Anstellwinkel
I _p	Polares Flächenträgheitsmoment	σ	Schaufelerstreckung am Umfang bzw.
$\mid L, l$	Länge, Profillänge		längs des Parallelkreises
m	Menge, Masse	<i>v</i> _N	Nabenverhältnis $v_{\rm N}$; $D_{\rm (i)}/D_{\rm (a)}$; $D_{\rm N}/D_{\rm SM}$
<i>R</i> , <i>r</i> , <i>ρ</i>	Radius, Halbmesser	i	Stufenzahl
s	Schaufeldicke	j	Flutzahl
S	Statisches Moment (1. Ordnung) der mittle-	р	Polpaarzahl von elektrischen Maschinen
	ren Flutlinie	z	Schaufelzahl
U	Umfang		

Symbol	Größe	Symbol	Größe
<i>t</i> , <i>T</i>	Temperatur	<i>u</i> , <i>U</i>	Innere Energie
h, H	Enthalpie	$w_{\rm G}, W_{\rm G}$	Gasarbeit
$\Delta h_{ m v}, \Delta H_{ m v}$	Verlustenthalpie	$w_{\rm t}, W_{\rm t}$	technische Arbeit des Gases
q, Q	Wärme	x	Dampfgehalt
s, S	Entropie		

Thermische und JOULE'sche Größen

Bemerkung: Kleinbuchstaben kennzeichnen spezifische Werte, d. h. auf die Masseneinheit bezogene Größen.

Kinematische Größen

Symbol	Größe	Symbol	Größe
a	Schallgeschwindigkeit, Beschleunigung		mit dem Rad umlaufenden Beobachter ge-
с	Strömungsgeschwindigkeit,		sehen würde
	Absolutgeschwindigkeit des strömenden	w _m	Meridiankomponente der Relativgeschwin-
	Fluids, d. h. Strömungsgeschwindigkeit ge-		digkeit, also die Geschwindigkeitskompo-
	genüber der ruhenden Umgebung		nente des Relativströmungsfeldes in der
c _m	Meridiankomponente (Durchsatzkompo-		Meridianebene
	nente) der Absolutgeschwindigkeit, also	Wu	Umfangskomponente der Relativgeschwin-
	der Absolutströmung		digkeit, d. h. Geschwindigkeitskomponente
$c_{\rm u}$	Umfangskomponente der Absolut-		der Relativströmung in Umfangsrichtung,
	geschwindigkeit		also tangential
$c_{\rm L}$	LAVAL-Geschwindigkeit	Γ	Zirkulation
f	Frequenz	₿ V	Volumenstrom, Volumen-Durchsatz,
n	Drehzahl		-Durchfluss, Förderstrom
и	Umfangsgeschwindigkeit	m	Mengenstrom, Massenstrom, Mengen-,
	(Führungsgeschwindigkeit)		Massen-Durchsatz, Mengen-, Massen-
w	Relativgeschwindigkeit, d.h. die Strö-		Durchfluss
	mungsgeschwindigkeit des Fluids in Be-	δ	Grenzschichtdicke
	zug auf das sich drehende Rad (Laufrad),	t	Zeit
	also Fluidgeschwindigkeit, die von einem	ω	Winkelgeschwindigkeit

Bemerkungen: Vektoren werden mit Vektorpfeil auf dem Symbolbuchstaben gekennzeichnet, z. B. \vec{c} , \vec{u} , \vec{w} usw. Das Symbol ohne Vektorpfeil bedeutet grundsätzlich den Betrag der Größe, also $c = |\vec{c}|, u = |\vec{u}|, w = |\vec{w}|$ usw. Dies gilt auch für die Vektoren bei kinetischen Größen wie Impuls, Drall usw. Mittelwerte werden durch einen Querstrich auf dem Symbol gekennzeichnet, z. B. \vec{c} , \vec{w} , \vec{r} usw.

Kinetische Größen

Symbol	Größe
E	Elastizitätsmodul
F	Kraft (allgemein)
$F_{\rm A}$	Dynamische Auftriebskraft (kurz Auftrieb),
	Querkraft
Fa	Axialkraft, Achskraft
F _G	Gewichtskraft
F _n	Normalkraft
Ft	Tangentialkraft
Fu	Umfangskraft
$F_{\rm W}$	Widerstandskraft (kurz Widerstand)
K	Festigkeitskennwert
Μ	Moment (allgemein)
$M_{\rm b}$	Biegemoment
T	Drehmoment, Torsionsmoment

Symbol	Größe
NPSH	NPSH-Wert
	(Net Positive Suction Head)
I	Impuls
İ	Impulsstrom
L	Drall, Impulsmoment
Ĺ	Drallstrom, Impulsmomentstrom
E	Energie
Ė	Energiestrom \equiv Leistung
p	Leistung
W	Arbeit ($W = m \cdot w$)
w	spezifische Arbeit ($w \equiv Y$)
Y	Spezifische Energie, (Arbeit),
	Spezifische Leistung (allgemein)
	Spezifische Stutzenarbeit

Symbol	Größe	Symbol	Größe
ΔY	Spezifische Stufenarbeit	Н	Druckhöhe, Höhe
$\Delta Y_{ m Sch}$	Spezifische Schaufelarbeit bei endlicher	$H_{ m H}$	Haltedruckhöhe
	Schaufelzahl	σ	Normalspannung (allgemein)
$\Delta Y_{\mathrm{Sch}\infty}$	Spezifische Schaufelarbeit bei unendlicher	$\sigma_{ m b}$	Biegespannung
	Schaufelzahl	$\sigma_{ m z}$	Zugspannung
$\Delta Y_{ m Sp}$	Spezifische Spaltdruckarbeit	au	Schubspannung, Scherspannung
ΔY_p	Spezifische Druckarbeit, die in einer ver-	$ au_{ m t}$	Torsionsspannung
	lustfreien (theoretischen) Maschine für ei-	η	Wirkungsgrad (allgemein)
	ne bestimmte Druckerhöhung aufgewendet	$\eta_{ m A}$	Anlagenwirkungsgrad
	werden muss bzw. bei einer bestimmten	$\eta_{ m C}$	CARNOT-Wirkungsgrad
	Druckabsenkung frei wird. Sie ist desnalb	$\eta_{ m e}$	Effektiver Wirkungsgrad
	ndentisch der Isentropen Arbeit, der Isentro- pen Enthalpiedifferenz also $AV = Ah$	$\eta_{ m G}$	Generatorwirkungsgrad
<i>V</i>	Spezifische Halteenergie	$\eta_{ m g}$	Gütegrad
7 7	Spezifische Verlustenergie (allgemein)	$\eta_{ m ges}$	Gesamtwirkungsgrad
2	kurz spezifische Verluste	$\eta_{ m h}$	Hydraulischer Wirkungsgrad
п	Druck (allgemein). Flächenpressung	$\eta_{ m i}$	Innerer Wirkungsgrad
P Dh	Barometerdruck (Atmosphärendruck)	$\eta_{ m m}$	Mechanischer Wirkungsgrad
$p_{\rm D}$	Druckseiten(-stutzen)-Druck	$\eta_{ m M}$	Motorwirkungsgrad
p_{D_2}	Dampfdruck. Siededruck	$\eta_{\mathrm{P}}, \eta_{\mathrm{e,P}}$	Pumpenwirkungsgrad
$p_{\rm E}$	Polpaarzahl von Elektromaschinen	$\eta_{ m RL}$	Rohrleitungswirkungsgrad
$p_{\rm S}$	Saugdruck, Saugseiten(-stutzen)-Druck	$\eta_{ m Sch}$	Schaufelwirkungsgrad
p_{Stat}	Statischer Druck	$\eta_{ m Sch,La}$	Laufschaufelwirkungsgrad
$p_{\rm dyn}, q$	Dynamischer Druck, Staudruck	$\eta_{ m Sch,Le}$	Leitschaufelwirkungsgrad
p_{ges}	Gesamtdruck	$\eta_{\mathrm{T}}, \eta_{\mathrm{e,T}}$	Turbinenwirkungsgrad
$p_{ m \ddot{u}}$	Überdruck	$\eta_{ m therm}$	thermischer Wirkungsgrad
p_{u}	Unterdruck	$\lambda_{ m L}$	Liefergrad

Bemerkung: Bei den Größen *Y*, ΔY und *Z* handelt es sich immer um spezifische Energien bzw. spezifische Leistungen (die gleichwertig sind), auch wenn dies nicht besonders erwähnt wird.

Verhältnisgrößen (Beiwerte und Kenngrößen)

Symbol	Größe	Symb	ol Größe
k	Beiwert	ζw	Widerstandsbeiwert
k _N	Nabenverengungsfaktor		(für Außenströmungen)
k _M	Arbeitsminderungszahl	λ	Leistungszahl
Ksch	Schaufelfaktor	λ	Verlustbeiwert, Rohrreibungsbeiwert
<i>n. n</i>	Schnellläufigkeit spezifische Drehzahl	v	Durchmesser-, Drehzahlverhältnis
<i>ny</i> , <i>n</i> q	(Radformkennzahl)	Π	Druckverhältnis
n	Arbeitsminderungszahl	σ	Schnelllaufzahl (nach KELLER)
P n	A Dentshinder ungszam Dealtionsgrad	τ	Drosselzahl
/	Reaktionsgrau	τ	Schaufelverengungsfaktor
S	Schlupf	φ	Lieferziffer
S	Schallkennzahl (Schallzahl)	$arphi_{ m La}$	Laufschaufelbeiwert
$S_{\rm y}$	Saugkennzahl		(Geschwindigkeitsbeiwert)
δ	Durchmesserziffer	$\varphi_{\rm Le}$	Leitschaufelbeiwert
$\delta_{ m r}$	Relative Drallzahl		(Geschwindigkeitsbeiwert)
ε	Gleitzahl, Beaufschlagungsgrad	ψ	Druckziffer
ε	Einlaufziffer, Durchflusszahl	$ \psi' $	Schaufelwinkelbeiwert
c^2	Auglosswort	Lz	Laufzahl
8	Ausiassweit	Ma	MACH-Zahl
5	widerstandsbeiwert (für Innenströmungen)	Re	REYNOLDS-Zahl
ζA	(dynamischer) Auftriebsbeiwert	Th	THOMA-Zahl
ζM	Momentenbeiwert	X	PARSONS-Zahl

Bemerkung: Für den Wortzusatz "Beiwert" sind auch die Bezeichnungen Zahl oder Koeffizient üblich, z. B. Laufschaufelbeiwert, Laufschaufelzahl oder Laufschaufelkoeffizient.

Stoffwerte

Symbol	Größe
c_p	Spezifische Wärme bei konstantem Druck
c_v	Spezifische Wärme bei konstantem Volu-
	men
M	Molmasse
R	Gaskonstante
Ζ	Realgasfaktor

Indizes, Abkürzungen

Index	Bedeutung
0	Stelle kurz außerhalb der Saugseite (-kan-
	te) des Laufrades, an der die Strömung als
	ungestört betrachtet wird
1	Stelle kurz innerhalb der Laufrad-Saugseite
	(-kante)
2	Stelle kurz innerhalb der Laufrad-Drucksei-
	te (-kante)
3	Stelle kurz außerhalb der Druckseite (-kan-
	te) des Laufrades, also im Spalt zwischen
	Lauf- und Leitrad, wo die Stromung als un-
4	beeinflusst (von Schaufein) betrachtet wird
4	Stelle kurz außerhalb des Leitradendes mit
5	Stelle laure innerhelb des Leitenden des mit
3	dem niedrigeren Druck
6	Stelle kurz innerhalb des Leitradendes an
0	welcher der höhere Druck herrscht
7	Stelle kurz außerhalb des Leitradendes an
,	welcher der höhere Druck herrscht, wobei
	ungestörte Strömung angenommen
I, II, III	Stufennummerierung, I., II., III. Stufe usw.,
usw.	z.B. c _{2u,II} Umfangskomponente der Ab-
	solutgeschwindigkeit kurz innerhalb der
	Druckkante der II. Stufe
	Bemerkung: Bei einstufigen Maschinen
	entfällt die Stufenbezeichnung
∞	Unendliche Schaufelzahl, d. h. unendlich
	viele, unendlich dunne Schaulein und des-
20	Ungestörte Strömung d h in sehr großem
∞	theoretisch unendlich großem Abstand von
	Körper oder Profil
\sim	Kopf-Zeiger, Tilde
А	Arbeit, dynamischer Auftrieb, Anlage
As	Austritt
At	Austausch
C	CARNOT
D	Druckstutzen
Da	Dampf
DL	Druckleitung
DS	Druckseite, Druckbereich
Dü	Düse

Symbol	Größe
f	Freiheitsgrade
н	Isentropenexponent
ϱ	Dichte
η	Dynamische Viskosität
v	Kinematische Viskosität

Index	Bedeutung
Е	Entspannung
F	Fließgrenze, Fluid, Flüssigkeit
Fl	Flüssigkeit
G	Gas, Generator
Κ	Kanal, Kompressor (Verdichtet)
Ke	Kessel (Dampferzeuger)
L	LAVAL, Leitung
La	Laufrad
Le	Leitrad
Lu	Luft
М	Maschine, Minder, Mittel, Mitten
Ν	Nabe, Nutz
Р	Pumpe, Propeller
R	Rohrwand, Rohrmaterial, Reibung
RL	Rohrleitung
S	Saugstutzen
SL	Saugleitung
SS	Saugseite, Saugbereich
Sch	Schaufel, Schauflungs-
SM	Saugmund
Sp	Spalt
Spir	Spirale
St	Stoß, Stafflungs-, Stufe
Str	Strahl
Т	Turbine, isotherm $(T = \text{konst})$
V	Verlust, Ventilation, Verdichtet, Vergleich
W	Widerstand
Wa	Wasser
Wd	Wand
We	Welle
WP	Wendepunkt
Za	Zapfen, Lagerzapfen
а	Austritt, außen, aus, ab, Anfang
ax	axial
b	Barometer
c	kompressibel, charakteristisch
dyn	dynamisch
e	Eintritt, effektiv, ein, Ende
ges	gesamt

Index	Bedeutung
i	indiziert, innerer, innen
ic	inkompressibel
id	ideal
kin	kinetisch
kr	kritisch
m	Meridian, Meridian-, Axialrichtung,
	Meridian-, Axialebene, mechanisch
n	normal, Normalrichtung
р	bei konstantem Druck
pol	polytrop
pot	potenziell
r	Reibung, radial
rel	relativ
S	isentrop ($s = \text{konst}$)

Hinweise

- Generell gilt für das Anordnen von Indizes: Alle Indizes stehen in gleicher Höhe und sind durch Komma – bei Mehrfachindizes – getrennt.
- Der Indexzusatz m für Meridianrichtung und u für Umfangsrichtung werden entgegen der Generalregelung nicht durch Komma getrennt.

Beispiele: c_{2u} , c_{2m} , w_{2m} , w_{2u} , w_{1m} , w_{1u} , c_{0u} , c_{0m} .

 Zweitindizes (a), (m), (i) kennzeichnen die Flussund Flutlinien, z. B. u_{2,(a)}, β_{2,(m)}, c_{2m,(i)}, c_{1m,(m)}, w_{2m,(m)}, c_{0u,(i)}, D_{1,(m)} usw.

Dabei bedeuten:

(a) äußere Fluss- und Flutlinie

- (m) mittlere Fluss- und Flutlinie
- (i) innere Fluss- und Flutlinie
- Im Allgemeinen wird der Zweitindex (m) weggelassen, da folgende Vereinbarung gilt: Alle nicht besonders gekennzeichneten Größen betreffen die mittlere Fluss- bzw. Flutlinie, z. B. c_{2m} ≡ c_{2m,(m)}, w_{1u} ≡ w_{1u,(m)}, β₂ ≡ β_{2,(m)} usw.

Dagegen sind alle Werte, welche sich auf die innere oder äußere Fluss- und Flutlinie beziehen, stets, wie zuvor aufgeführt, zu kennzeichnen, also $u_{2,(a)}, w_{2m,(a)}, c_{1u,(i)}$ usw.

- Wichtige Unterscheidungen: Index m bedeutet Meridianschnitt Index (m) bezieht sich auf mittlere Flutlinie Index M bedeutet Mitte, z. B. Kanalmitte.
- Bei Axialrädern, jedoch auch bei Radialrädern, beziehen sich Größen ohne Fußzahl immer auf den äußeren Laufradumfang, d. h. den mittleren Außendurchmesser des Laufrades.

Index	Bedeutung
stat	statisch
t	tangential, Tangentialrichtung, Tangential- ebene; Teilung, auf Teilung bezogen.
th	theoretisch
therm	thermisch
tot	total
u	Umfangs-, Tangentialrichtung, -ebene
v	bei konstantem Volumen
vorh	vorhanden
verf	verfügbar
X	beliebige Stelle, variable Stelle
Z, z	Schaufeln, Zug, Zunge, bei der Zunge, zu
zul	zulässig

Bei Radialrädern ist dies die Fußzahl 2, bzw. exakter 2,(m), die verschiedentlich weggelassen wird.

Bei Axialrädern wird, falls eindeutig hervorgeht, um was es sich handelt, der Zweitindex (a) weggelassen. Dann ist somit bei Radialrädern z.B. $D \equiv D_2 \equiv D_{2,(m)}, u \equiv u_2 \equiv u_{2,(m)}$, bei Axialrädern $D \equiv D_{(a)}, u \equiv u_{(a)}$.

Um jede Verwechslung auszuschließen, muss jedoch bei Axialrädern eindeutig hervorgehen, dass es sich bei den indexlosen Größen tatsächlich um solche am Laufrad-Außenumfang handelt. Meist erhalten nämlich auch bei Axialrädern die Größen D und u am mittleren Flügelradius (Flutlinie (m)) keine Indizes. Notwendig ist deshalb, bei Axialrädern eindeutig zu klären, auf welche Flutlinie sich die Größen beziehen.

1.2 Aufgabe und Bedeutung

Strömungsmaschinen sind Maschinen zur Energieumwandlung. Sie formen entweder kinetische Energie in potenzielle (Pumpen) oder potenzielle bzw. thermische in kinetische (Turbinen) um.

Bei der einen Hauptgruppe, den Arbeitsmaschinen oder Pumpen, wird die von der Antriebsmaschine über die Welle eingeleitete *Drehenergie* innerhalb der Maschine auf das durchströmende Fluid übertragen und von diesem als *Druckenergie* bei Gasen oder *Lagenenergie* bei Flüssigkeiten gespeichert. Das Fluid wird somit durch die Pumpe auf ein höheres Energieniveau gebracht, d. h. von einem Gebiet niedrigeren Druckes oder Ortshöhe in ein Gebiet höheren Druckes und/oder Ortshöhe; oft beides.

Bei der anderen Gruppe, den sog. Kraftmaschinen oder Turbinen, wird dem durch die Maschine kontinuierlich strömenden Fluid von der Natur bereitgestellte Energie teilweise entzogen und über die Welle nach außen als Drehenergie abgeführt, die dann meist ein Generator in Elektrizität umsetzt. Bei den Wasserturbinen kommt dabei die zugeführte Energie aus der Lagenenergie, einer Form der potenziellen Energie. Bei den Dampf- und Gasturbinen wird die Energie des Brennstoffes, also chemische oder Atomkern-Energie, nach der Freisetzung (Verbrennung bzw. Kernspaltung) sowie Übertragung der frei gewordenen Wärme auf ein Fluid über einen thermodynamischen Prozess teilweise in mechanische Energie umgewandelt. Danach wird sie auf den Maschinenläufer übertragen und wieder meist einem Elektrogenerator zugeführt, der nach einem weiteren Transformationsvorgang elektrische Energie abgibt.

Das Medium kann bei Turbinen entweder im "Kreis" zirkulieren, dem sog. **geschlossenen Prozess**, oder von der Umgebung an der einen Seite in die Maschine ein- und an der anderen Seite wieder ausströmen, d. h. in einem **offenen Prozess** arbeiten. Beim geschlossenen Prozess arbeitet daher immer das gleiche Medium, während es beim offenen ständig neues ist. Der geschlossene Prozess wird meist bei Dampfturbinen, der offene bei Gas- und Wasserturbinen angewendet.

Die Energieumwandlungen sind alle mit mehr oder weniger großen Verlusten verbunden, sodass am Ende der **Energiekette** selten mehr als 50 % der Ausgangsenergie, der sog. *Primärenergie*, noch technisch nutzbar zur Verfügung stehen. Der Hauptverlust entsteht beim thermodynamischen Kreisprozess, der durch den zweiten Hauptsatz der Thermodynamik physikalisch festgelegt ist. Energieumwandlungsverfahren, die keinen thermodynamischen Kreisprozess erfordern, bei denen die Primärenergie also schon in mechanischer Form vorliegt, wie dies bei Wasserkraftanlagen der Fall ist, erreichen deshalb Wirkungsgrade um etwa 90 %.

Die Energietechnik kann in ihrer volkswirtschaftlichen Bedeutung nicht überschätzt werden. Sie ist Voraussetzung für jedes wirtschaftliche Handeln und Produzieren der Industriegesellschaft. Ohne Energie ist in einer modernen Volkswirtschaft keine industrielle und landwirtschaftliche Produktion und somit auch kein Verkehrswesen möglich. Die Grundlage der elektrischen Energieversorgung in Deutschland sind **Wärmekraftwerke** mit einem Anteil von noch ca. 60 % fallend an der öffentlichen Elektrizitätsbereitstellung. In solchen Wärmekraftwerken wird, wie erwähnt, die thermische Energie des in einem **fossil** (Kohle, Erdöl, Erdgas) oder **fissil** (Kernspaltung, später, falls technisch möglich, auch Kernfusion) beheizten "Kessel" erzeugten Wasserdampfes zu meist etwas mehr als einem Drittel (bis ca. 50 %) in elektrischen Strom umgesetzt.

Die sog. Wasserkraft, die von topographischen Gegebenheiten abhängt, hat in Deutschland an der öffentlichen Stromversorgung nur einen Anteil von unter 8%, in der Schweiz etwa 60%, Österreich \approx 70% und Norwegen fast 100%. Das weltweit vorhandene hydraulische Potenzial ist bisher jedoch nur zu etwa 16% genutzt, USA \approx 20%, Europa insgesamt \approx 30%, Österreich \approx 40%, Schweiz und Deutschland \approx 70%. Begründet ist die relativ geringe weltweite Nutzung zum einen in den enormen Investitionen, die für die Erstellung von Wasserkraftanlagen notwendig sind, und zum anderen durch die geographisch bedingten, meist vorhandenen verbraucherfernen Standorte der Anlagen sowie den meist erheblichen Eingriff in die Natur.

Die sonstigen sog. erneuerbaren oder Umwelt-Energien (Wind, Solar, Meereswellen, Gezeiten) werden als Substitution der konventionellen (fissil, fossil) immer wichtiger. In Deutschland trägt allein die Windenergie schon bald über ein Drittel zur Elektrizitätserzeugung bei mit steigender Tendenz.

Immer wieder wurde versucht, den maschinenaufwendigen und durch den CARNOT-Prozess wirkungsgradmäßig nach oben abgegrenzten Vorgang der Umwandlung von Wärmeenergie in mechanische und erst dann in elektrische Energie zu vermeiden. Für die direkte Umwandlung von thermischer in elektrische Energie, die den Turbinenprozess umgeht, bestehen zwei Möglichkeiten:

• Der Thermoeffekt wird in der Messtechnik bei den sog. Thermoelementen mit großem Erfolg praktiziert. Zwei Drähte aus günstig gewählten Metallen sind an den Enden durch Löten miteinander verbunden. Danach wird der eine Draht aufgetrennt. An der Trennstelle entsteht eine elektrische Spannung und damit Strom, sobald an den Drahtverbindungsstellen unterschiedliche Temperaturen herrschen. Die elektrische Spannung wird umso höher, desto größer die Anzahl solcher hintereinander geschalteter Thermoelemente und desto größer die Temperaturdifferenz an den Drahtverbindungsstellen ist.

 Der Hydrodynamikeffekt, der bisher großtechnisch noch nicht genutzt wird. Nach dem Induktionsgesetz entsteht in einem metallischen Leiter, der in einem Magnetfeld unter Kraftaufwand bewegt wird, elektrische Spannung. Nach diesem Prinzip sind Elektrogeneratoren gebaut.

Der gleiche Effekt, die Induktion, nämlich die Entstehung elektrischer Spannung und Stromfluss, tritt auch ein, wenn statt eines metallischen Drahtes ein elektrisch leitendes Medium, das sog. **Plasma**, entgegen der wirkenden Kraft durch das Magnetfeld fließt. An den Wänden des Fluidströmungskanales kann dann elektrischer Strom abgeleitet werden. Nach diesem Prinzip arbeiten die sog. Magnetohydrogeneratoren.

Das Zusammenwirken von strömendem Medium, elektrischem Strom und magnetischem Feld wird als **Magnetohydrodynamik** (MHD) und die zugehörige Technologie als **MHD-Technik** bezeichnet. Plasma ist ein so hoch erhitztes Fluid (meist über 1 500 °C), dass die Gasatome nicht mehr stabil bleiben können, sondern ionisieren, d. h. durch Abgabe von Elektronen zerfallen. Dadurch entstehen, wie in Metall, elektrisch positive Atomreste, die Ionen, und freibewegliche Elektronen. Plasmen haben deshalb ähnliche Elektrizitätsleitereigenschaften wie metallische Leiter. Bei 2 500 °C Arbeitstemperatur $\eta \approx 20...40 \%$.

Auf beiden Verfahren zur direkten Umsetzung von thermischer in elektrische Energie, dem Thermound dem Hydrodynamik-Konverter, lastet jedoch gemeinsam neben technologischen Schwierigkeiten der wesentlich schlechtere Wirkungsgrad (ca. 10 bis 20%) gegenüber dem thermodynamischen Turbinenprozess. Außerdem sind, insbesondere beim MHD-Generator, bedeutend höhere Temperaturen notwendig. Deshalb erfolgte bisher zur Elektrizitätserzeugung noch keine großtechnische Anwendung dieser Technologien.

Eine weitere Möglichkeit der direkten Umwandlung von chemischer Oxidationsenergie in elektrische Energie ist die sog. kalte Verbrennung in **Brennstoffelementen(-zellen)** [88]:

Brennstoffzellen sind im Prinzip galvanische Elemente. Sie wandeln wie Batterien chemische Energie direkt in elektrische um. Dies geschieht durch sog. kalte, flammenlose Verbrennung (elektrochemische Oxidation) des Brennstoffes mit Sauerstoff. Der zwischen den zwei Elektroden in einem Elektrolyten meist Schwefel- oder Phosphorsäure - ablaufende elektrochemische Prozess vollzieht sich durch Elektronenaustausch der Reaktionsmedien. Dazu wird unter geringem Druck an den Minuspol (Katode) des Brennstoffelementes Brenngas (meist Wasserstoff) und an dem Pluspol (Anode) Sauerstoff geblasen. Der Wasserstoff gibt dabei je Atom ein Elektron ab und wird dadurch zum positiv geladenen Wasserstoff-Ion, während sich die Katode negativ auflädt. An der Anode andererseits nimmt der Sauerstoff je Atom zwei Elektronen auf und dadurch in zweifach negativ geladene Sauerstoff-Ionen umgewandelt, während die Anode infolge der Elektronenabgabe positiv wird. Zwischen den beiden Elektroden der Brennstoffzelle entsteht somit eine elektrische Spannung. Zudem vereinigen sich im Elektrolyten (Katalysator) die Wasserstoff- und Sauerstoff-Ionen zu Wassermolekülen. Entsprechend der Arbeitstemperatur, bedingt durch die Art des Elektrolyten, wird zwischen Niedertemperatur- oder alkalischen Zellen (ca. 100 °C), Mitteltemperatur- oder phosphorsauren Zellen (ca. 200 °C) und Hochtemperaturzellen vom Karbonschmelztyp (ca. 650 °C) sowie Oxidkeramiktyp (ca. 1000°C) unterschieden. Brennstoffzellen können für Leistungen von Kilowatt bis mehrere hundert Megawatt je Einheit gebaut werden. Wirkungsgrade bis über 70 % scheinen erreichbar. Der maximale theoretische Wirkungsgrad liegt bei ca. 90%, begründet dadurch, dass chemisch gebundene Energie weitgehend aus Exergie besteht und deshalb kein "CARNOT-Prozess" notwendig ist. Die Werkstoff- und Betriebsprobleme sind jedoch erheblich. Die Stromgestehungskosten liegen daher noch deutlich über denen von thermischen Kraftwerken.

Die natürlichen Vorräte zur thermischen Energieerzeugung, die fossilen (Kohle, Erdöl, Erdgas) und fissilen (Atomkerne) Brennstoffe – in urgeschichtlichen Zeiträumen entstanden – sind gemäß dem Grundsatz der Physik nach R. MAYER (Benutzerhinweise), dem Energieerhaltungssatz, nicht vermehrbar. Deshalb besteht die Notwendigkeit, äußerst sorgsam mit den Energievorräten umzugehen. Das bedeutet, Energie, wo immer sinnvoll möglich, einzusparen. Dies kann durch Wirkungsgradverbesserungen aller "Energie erzeugenden" sowie "verbrauchenden" Maschinen, Apparaten, Geräte und Anlagen sowie die Anwendung von Verbundprozessen als auch Wärmedämm-Maßnahmen im Heizungsbereich und Widerstandsminderung im Fahrzeugsektor (Autos, Züge, Schiffe, Flugzeuge) erfolgen.

Kombi- oder **Verbundprozesse** sind z. B. die sog. *Kraft-Wärme-Kopplung* und die Kombination von Gas- mit Dampfturbinenprozessen (bis $\eta \approx 60\%$), jedoch auch die sog. *Mehrstoffprozesse*. Beim Kraft-Wärme-Verbund wird die Wärmeenergie des Dampfturbinen-Abdampfes Niedertemperatur-Wärmeprozessen, z. B. der Gebäudeheizung, zugeführt und so weiter genützt. Dadurch sind *Energienutzungsgrade* (nicht Wirkungsgrade!) von insgesamt über ca. 80 % verwirklichbar. Die eingesetzte, den natürlichen Vorräten entnommene Primärenergie wird somit zu über 80 % genützt.

Beim kombinierten Gas-Dampfturbinenprozess (Abschnitt 11.4.6.1) wird das heiße, noch ausreichend sauerstoffhaltige Gasturbinenabgas (GT) dem Dampferzeuger zugeführt und dadurch weiter genützt, entweder direkt zur Dampferzeugung (GuD) oder als Verbrennungsluft. Dadurch reduziert sich dann die notwendige Aufheizung der sonst erforderlichen, aus der Umgebung zu entnehmenden Verbrennungsluft. Oder GT-Abhitzekessel und konventioneller Fossil-Kessel zur Dampferzeugung sind parallel geschaltet. Entsprechende Energieeinsparung ist die Folge.

Bei den Mehrstoffprozessen sind, dem Temperaturniveau angepasst bzw. abgestimmt, thermodynamische Energieumwandlungsprozesse zur Elektrizitätserzeugung hintereinander geschaltet. Dabei wird so lange fortlaufend, wie möglich, die Abwärme (durch den zweiten Hauptsatz der Thermodynamik bedingt) des vorhergehenden Prozesses im jeweils folgenden Prozess weiter zur Elektrizitätserzeugung genützt. Die Restwärme, welche der letzte Prozess abgibt, könnte dann, falls noch temperaturmäßig möglich und sinnvoll, wieder Heizzwecken zugeführt werden. Ein MHD-Generator oder eine entsprechende Brennstoffzelle könnte das erste Glied (Höchsttemperaturkreis) eines Mehrstoffprozesses sein. Mit einer solchen Kombinationsanlage wären Energieumwandlungs-Wirkungsgrade für das Umsetzen von Wärme in Elektrizität insgesamt bis etwa 80% erreichbar, also fast doppelt so hoch wie bei heutigen thermischen Kraftwerken. Heute schon verwirklichte GuD-Anlagen erreichen 52 % bis 60 % Wirkungsgrad. Bei Abwärmenutzung würde dann der gesamte Energienutzungsgrad (nicht Wirkungsgrad!) ca. 90 % betragen.

Problematisch bei Mehrstoffprozessen sind der große Investitionsaufwand, die Komplexizität der Gesamtanlage, die teilweise nicht ungefährlichen Arbeitsmedien sowie infolge der Koppelprozesse nicht mögliche anlageunabhängige Regelung der Systemkomponenten, also der einzelnen Energieumwandlungsprozesse.

Um die hochwertigen natürlichen Energiereserven der Welt, vor allem Erdöl, zu schonen und den Treibhauseffekt zu vermindern, wird es notwendig sein:

- Alle Energiequellen der Natur zu erforschen und, wo immer technisch möglich sowie volkswirtschaftlich zweckmäßig, zu nutzen.
- Hochwertige Primärenergie nur dort einzusetzen, wo unbedingt notwendig, und wenn immer möglich niederwertige Energie zu nützen. Der wertvollste Energieträger Erdöl sollte dem Verkehrssektor und als Rohstoff der *nichtenergetischen* Nutzung in der Chemie, wie Pharmazie, vorbehalten bleiben.
- Energie einsparen wo immer möglich.
- Die Energieausnutzung erhöhen, durch Verbundprozesse, Wärmedämmung, Verlustereduktion.
- Die regenerierenden Energiequellen weltweit, wo immer möglich, weitgehendst zu nützen, also Sonnen- sowie Umweltenergien (Wasser, Wind, Wärme, Strahlung) und dadurch die bisherigen fissilen sowie fossilen möglichst bald weitgehendst zu ersetzen bei Abfallvermeidung.

Bei einem realistischen Gesamtkonzept (eine große Ingenieuraufgabe), das alle Energieträger erschließt und nützt, sollte es möglich sein, den tatsächlich notwendigen Energiebedarf der Menschheit zu decken. Enorme Anstrengungen sind jedoch in Forschung, Entwicklung und Anwendung notwendig. Wo immer vertretbar, muss Energie durch Kapital, d. h. durch hochwertige, wenig Energie verbrauchende Einrichtungen bei Umweltschutz ersetzt werden.

Obwohl diese Energie-Problematik etwas abseits von Strömungsmaschinen liegt, ist es berechtigt, in einem Buch, das sich mit Maschinen der Energietechnik befasst, wozu besonders Turbinen gehören, darauf hinzuweisen. Im Allgemeinen wird der Ingenieur, gleichgültig in welchem Bereich und welcher Position er tätig ist, in Zukunft verstärkt mit Energieproblemen konfrontiert werden. Besonders der Strömungsmaschinenbauer wird angesichts dieser Tatsachen genötigt sein, die Wirkungsgrade seiner Produkte immer weiter zu verbessern.

1.3 Unterteilung

Maschinen für die Energie-Umwandlung (-Transformation) können, wie bereits im vorhergehenden Abschnitt verwendet, in sog. **Arbeitsmaschinen** (AM) und sog. **Kraftmaschinen** (KM) unterteilt werden. Als Unterscheidungsmerkmal der Maschinengruppen gilt:

- Arbeitsmaschinen setzen Drehenergie (der Welle) in hydraulische oder thermische Energie um.
- **Kraftmaschinen** setzen hydraulische oder thermische Energie in Drehenergie (der Welle) um.

Hierbei bedeuten:

- **Drehenergie:** Die mechanische Rotationsenergie des Maschinenläufers (-rotors).
- **Hydraulische Energie:** Die Summe von *potenzieller Energie*, also geodätischer (Lagen-) sowie *Druckenergie* und *Strömungsenergie* (kinetische Energie) des Fluids.

Das durch beide Maschinengruppen fließende Medium strömt bei:

- Arbeitsmaschinen (Pumpen) von niedrigem zu höherem Druckniveau; von der Saug- zur Druckseite (-stutzen).
- Kraftmaschinen (Turbinen) von höherem zu niedrigem Druckniveau; von der Druck- zur Saugseite (-stutzen).

Um die Drucksteigerung bei Pumpen bzw. den Druckabbau bei Turbinen zu kennzeichnen, wird meist der Quotient der Absolutdrücke des Fluids an der Druck- und Saugseite (-stutzen), das sog. **Druckverhältnis** Π , verwendet (Bild 1-3). Bei Verdichtung sind exakterweise die Gesamtdrücke – Summe von statischem und dynamischem Druck – zu verwenden.

Für das **Druckverhältnis** Π gilt somit im Strömungsmaschinenbau allgemein:

$$\Pi = \frac{\text{Druckstutzen-Druck}}{\text{Saugstutzen-Druck}} = \frac{p_{\text{D}}}{p_{\text{S}}}$$
(1-1)

Wichtig bei der Berechnung des Druckverhältnisses – insbesondere bei niedrigen Drücken – ist das Verwenden der Absolutdrücke (nicht der Über- oder Unterdrücke), mit denen das Arbeitsmedium in die Maschine ein- und aus ihr austritt.

Das Druckverhältnis gibt hinsichtlich des von der Maschine verwirklichten Drucksprunges – des aufgebauten bei Pumpen bzw. abgebauten bei Turbinen – einen besseren Aufschluss als die Absolutwerte der Drücke an Saug- und Druckseite (-stutzen). Eine Vakuumpumpe, die beispielsweise Luft von 0,1 bar auf 1 bar fördert, erreicht das gleiche Druckverhältnis wie ein Turbokompressor, der Gas von 1 bar auf 10 bar verdichtet, obwohl die beiden Maschinen und ihre Absolutdrücke nicht vergleichbar sind. Eine "Gas-Pumpe" für totales Vakuum $(p = p_{\rm S} = 0 \, \rm bar)$ müsste ein unendliches Druckverhältnis ($\Pi = p_D/p_S = p_b/p = 1/0 \rightarrow \infty$) überbrücken und ist deshalb letztlich nicht vollständig verwirklichbar. Später (Kapitel 3) wird sich auch zeigen, dass nicht die Absolutdrücke, sondern das Druckverhältnis den Energiebedarf bei Pumpen bzw. die Energieabgabe bei Turbinen maßgeblich mitbestimmt. Die Absolutdrücke an Saug- und Druckseite dagegen sind wichtige Größen für die festigkeitsmäßige Dimensionierung der Maschine (siehe Benutzungshinweise).

Arbeits- und Kraftmaschinen können nach zwei Gesichtspunkten weiter unterteilt werden:

- dem Funktionsprinzip
- dem durchströmenden Fluid.

Nach dem Funktions- oder Wirkungsprinzip sind zu unterscheiden:

- Strömungsmaschinen (StM), Dynamikprinzip
- Kolbenmaschinen (KoM), Statikprinzip.

Strömungsmaschinen beruhen auf der Dralländerung (dynamische Wirkung), Kolbenmaschinen auf der direkten Druckwirkung (statisches Prinzip). Strömungsmaschinen werden deshalb mithilfe des Drallsatzes berechnet, Kolbenmaschinen mittels Druckansatz ($F = p \cdot A$). (Siehe auch auf S. 284.)

Die Unterteilung nach Arten, d. h. aufgrund des die Maschine durchströmenden Fluids ergibt:

- hydraulische Maschinen (HyM), die inkompressible Fluide (Flüssigkeiten) verarbeiten,
- thermische Maschinen (ThM), die kompressible Fluide (Gase, Dämpfe) verwenden.

Das Buch behandelt, wie aus seinem Titel hervorgeht, entsprechend der Unterteilung nach dem Wirkprinzip, nur Strömungsmaschinen.

Bei Turbomaschinen werden auch bezeichnet:

- Arbeitsmaschinen als Pumpen (P), wobei weiter unterschieden wird zwischen
 - **Kreiselpumpen** (KP), die inkompressible Fluide, also Flüssigkeiten, fördern.
 - Kreiselverdichter (KV), Pumpe, die kompressible Medien (Gase, Dämpfe) verarbeiten.
 Sie werden entsprechend ihrem Druckverhältnis nochmals weiter unterteilt in Ventilatoren

Bild 1-1 Aufteilung der Strömungsmaschinen (Turbomaschinen \rightarrow Turbo¹⁾ ... Kreisel) nach Anwendung (AM, KM), Arten (HyM, ThM), Bauformen (radial, diagonal, axial) und Typen (Druckverhältnis Π)

Bild 1-2 Laufradausführungen (Prinzip-Darstellungen) a) radial, b) diagonal (halbaxial), c) axial

Bild 1-3 Fluidenergiemaschinen; symbolische Darstellung

P Pumpe (AM); T Turbine (KM); M Motor; G Generator; \dot{m} Massendurchsatz (Mengenstrom); D Druckstutzen; S Saugstutzen;

- T: *p*_D Druckstutzendruck (Zuströmdruck) *p*_S Saugstutzendruck (Abströmdruck)
- P: *p*_D Druckstutzendruck (Abström- oder Förderdruck) *p*_S Saugstutzendruck (Zuström- oder Saugdruck)

¹⁾ Turbo von turbare (lat.) ... drehen

 $(\Pi \leq 1,1)$, **Gebläse** $(\Pi \leq 4)$ und **Kompressoren** $(\Pi > 4)$. Ventilatoren werden oft auch als **Lüfter** bezeichnet und meist bei den hydraulischen Strömungsmaschinen eingeordnet, da $\rho \approx \text{konst} (\Delta p \text{ klein}).$

 Kraftmaschinen, also Turbinen (T), bei denen ebenfalls nach der Art des Arbeitsmediums unterschieden wird: Zwischen Wasserturbinen (WT) und Windturbinen (Windkonverter WK oder Luftturbinen LT) für "inkompressible" Fluide einerseits sowie Dampfturbinen (DT) und Gasturbinen (GT) andererseits, welche kompressible Medien (Dämpfe, Gase) verarbeiten. Bei den Windturbinen verhält sich die Luft quasi inkompressibel, da Druckänderung sehr gering. Deshalb Zuordnung zu den hydraulischen Turbomaschinen.

Die gesamte Unterteilung der **Strömungsmaschinen**, die auch als **Turbomaschinen** bezeichnet werden, geht aus Bild 1-1 hervor. Die Laufradform und damit die Maschinenausführung wird dabei nach der Hauptströmungsrichtung des Fluids innerhalb des Laufrades bezüglich des Maschinenwellenverlaufs entsprechend der Prinzipdarstellung in Bild 1-2 gekennzeichnet.

1.4 Wirkungsweise

1.4.1 Grundsätzliches

Besonders der Vektorcharakter der Geschwindigkeit ist bei Strömungsmaschinen bedeutungsvoll. Jede Geschwindigkeitsänderung, ob nach Größe, und/oder Richtung ist Beschleunigung und deshalb nach dem NEWTON'schen Grundgesetz mit einer Kraft gekoppelt, da jeder Stoff, gleichgültig ob fest, flüssig oder gasförmig, massebehaftet ist. Nach dem aus dem NEWTON'schen Grundgesetz (manchmal auch als NEWTON'sches Aktions-Axiom bezeichnet) zusammen mit dem D'ALEMBERT'schen Prinzip abgeleiteten Impulssatz, verschiedentlich auch zweites NEWTON'sches Gesetz oder dynamisches Gleichgewicht genannt, bzw. dem zugehörigen Drallsatz erfordert die Beschleunigung eines Fluidstromes eine Kraft bzw. ein Drehmoment. Umgekehrt bewirkt eine Kraft bzw. ein Drehmoment die Beschleunigung des vorhandenen Fluidstromes.

In Pumpen wird das Fluid durch die Kraft- bzw. Drehmomentwirkung der Schaufeln des sich bewegenden Rades, des sog. Laufrades, beschleunigt und teilweise sofort sowie in einem anschließenden, ruhenden, diffusorartigen Schaufelsystem, dem Leitrad, die Geschwindigkeit in Druck umgesetzt.

Bei Turbinen wird das in Düsen von Druck vollständig oder teilweise auf Geschwindigkeit gebrachte Medium durch die Schaufeln des Laufrades umgelenkt, also wieder beschleunigt. Die dadurch erzeugte Umfangskraft bewirkt über das zugehörige Moment die Drehung des Laufrades und liefert damit mechanische Energie.

Die wichtigsten Bestandteile einer Turbomaschine sind, wie später (Abschnitt 1.5.2) dargestellt, das sich bewegende Laufrad und das meist ruhende Leitrad. Durch diese Radkombination wird das beabsichtigte Umsetzen der Energie erzielt. Eine vereinfachte, idealisierte Form dieser Räder sind die weit- bzw. engstehenden **Flügelgitter**. Andere Bezeichnungen für Flügelgitter: Flügelreihen, Schaufelgitter oder kurz Gitter.

Bei weitstehenden Flügelgittern sind die einzelnen Flügel so weit voneinander entfernt angeordnet, dass sie sich, d. h. ihre Umströmungen, gegenseitig kaum noch beeinflussen. Die Strömung um einen Flügel weitstehender Gitter kann deshalb so behandelt werden, als ob der Flügel alleine vorhanden wäre, wie dies bei Flugzeugtragflächen zutrifft \rightarrow Propeller oder Flügelräder.

Bei engstehenden Schaufelgittern folgen die einzelnen Schaufeln dicht aufeinander, d. h. stehen so eng beieinander, dass sie Kanäle bilden. Das durch diese Gitterzwischenräume hindurchfließende Medium wird somit durch "Schaufelkanäle" geführt.

Zu bemerken ist noch, dass der Ausdruck Flügel bevorzugt bei weitstehenden und der Begriff Schaufel meist bei engstehenden Anordnungen (Gittern) verwendet wird \rightarrow Kanalräder.

1.4.2 Einzelschaufel (Flügel)

Wie Tragflächen und Propeller von Flugzeugen, Windturbinen sowie Schiffsschrauben zeigen, wirken auf einzelne Flügel Kräfte, wenn sie ein relativ zu ihnen strömendes Fluid beeinflussen. Umgekehrt kann ein Flügel unter Kraftaufwand den Fluidstrom ablenken, d. h. beschleunigen. Das Medium muss also bei der Flügelumströmung nicht kanalartig geführt werden. Infolge der fehlenden Strahlummantelung herrscht jedoch vor und nach dem Flügel der gleiche Druck im Fluid (Gleichdruckwirkung). Hierbei wird die nur theoretisch exakt geltende Annahme getroffen, dass sich die Einzelschaufel alleine in einem unendlich großen Raum bewege. Das sich ausbildende Strömungsfeld wird dann durch keine benachbarte Schaufel beeinflusst. Bei Anwendung der Theorie auf das Schaufelgitter (Abschnitt 1.4.3) sind entsprechende Korrekturen notwendig, um brauchbare Ergebnisse zu erzielen. Die Berechnungsart für die Einzelschaufel ist u. a. für die Auslegung von Tragflügeln geeignet und wird als **Tragflügeltheorie** (Abschnitt 3.3) bezeichnet.

Wenn sich ein Flügel unter Kraftaufwand in einem Fluid bewegt bzw. durch die vom strömenden Medium ausgehende Kraft bewegt wird, erfolgt Energieaustausch zwischen ihnen. Die wirkende Kraft sowie die übertragene Leistung lassen sich mit dem Impulsbzw. Drallsatz oder der Energiegleichung wie folgt berechnen. Hierzu wird besonders auf [3] verwiesen:

A) Nach Impulssatz:

Im **Relativsystem**, d. h. in dem sich mit der Schaufel mit der Umfangsgeschwindigkeit *u* mitbewegenden Koordinatensystem (*u*, *m*), ergibt der Impulssatz für den in Bild 1-4 dargestellten schaufelfesten **Kontrollraum RKR** (**R**elativkontroll**r**aum) die zwischen Fluidstrom und Beschauflung wirkende Kraft. Dabei sei nochmals erwähnt, dass bei Flügeln Gleichdruck herrscht, d. h. $p_2 = p_1$.

Nach IS
$$(1-2) \rightarrow \sum \vec{F} = 0 \qquad \sum F_u = 0 \\ \sum F_m = 0$$

Ausgewertet mithilfe von Bild 1-4 a) $\sum F_u = 0$: $\dot{I}_{1u} + \dot{I}_{2u} - F_{Wd,u} = 0$ b) $\sum F_m = 0$: $\dot{I}_{1m} - \dot{I}_{2m} - F_{Wd,m} = 0$ Mit

MIII

$$\dot{I}_{1u} = \dot{I}_1 \cdot \cos \beta_1 = \dot{m}_1 \cdot w_1 \cdot \cos \beta_1$$
$$= \dot{m} \cdot w_{1u}$$
(1-2)

$$I_{2u} = I_2 \cdot \cos \beta_2^* = \dot{m}_2 \cdot w_2 \cdot \cos(180^\circ - \beta_2)$$
$$= \dot{m} \cdot w_2 \cdot (-\cos \beta_2) = -\dot{m} \cdot w_{2u} \qquad (1-3)$$

$$\dot{I}_{1m} = \dot{I}_1 \cdot \sin \beta_1 = \dot{m}_1 \cdot w_1 \cdot \sin \beta_1$$

$$= \dot{m} \cdot w_{1m} \tag{1-4}$$

$$\dot{I}_{2m} = \dot{I}_2 \cdot \sin \beta_2^* = \dot{m}_2 \cdot w_2 \cdot \sin(180^\circ - \beta_2)$$
$$= \dot{m} \cdot w_2 \cdot \sin \beta_2 = \dot{m} \cdot w_{2m}$$
(1-5)

Dann folgt aus:

a)
$$F_{Wd,u} = \dot{I}_{1u} + \dot{I}_{2u} = \dot{m} \cdot (w_{1u} - w_{2u}) = \Delta \dot{I}_u$$
 (1-6)

b)
$$F_{\text{Wd,m}} = \dot{I}_{1\text{m}} - \dot{I}_{2\text{m}} = \dot{m} \cdot (w_{1\text{m}} - w_{2\text{m}}) = \Delta \dot{I}_{\text{m}}$$
 (1-7)

Bild 1-4 Schaufel Sch einer Axialturbine ($F_{S,u} \equiv F_{Sch}$) Umströmung und Kraftwirkungen, Relativ-Kontrollraum RKR schaufelfest, β Bezugswinkel von w gegenüber u. Aus den Geschw.-Plänen $|w_{1u} - w_{2u}| = |c_{1u} - c_{2u}|$.

Nach actio gleich reactio gelten:

Umfangs- oder Tangentialkraft $F_{\text{Sch,u}}$ des Fluidstromes auf die Schaufel (Index Sch)

$$F_{\rm Sch,u} = F_{\rm Wd,u} = \Delta I_{\rm u} = \dot{m} \cdot (w_{1\rm u} - w_{2\rm u})$$
(1-8)

Axial- oder Meridiankraft $F_{\text{Sch,m}}$ des Fluidstrahles auf die Einzelschaufel:

$$F_{\rm Sch,m} = F_{\rm Wd,m} = \Delta \dot{I}_{\rm m} = \dot{m} \cdot (w_{1\rm m} - w_{2\rm m})$$
 (1-9)

Die zwischen Strömung und Flügel (Einzelschaufel) wirkenden Kräfte sind umso größer, je größer der Massenstrom und dessen Umlenkung werden. Die technisch maximal verwirklichbare Umlenkung liegt unter 180° (ca. 150° bis 175°).

Die zwischen Strömung und Schaufel übertragene Leistung P_{Sch} ergibt sich mit Umfangkraft $F_{\text{Sch,u}}$ sowie Umfangsgeschwindigkeit *u* des Flügels:

$$P_{\text{Sch}} = F_{\text{Sch},u} \cdot u = \Delta I_{u} \cdot r \cdot \omega = \Delta L_{u} \cdot \omega$$

= $\dot{m} \cdot (w_{1u} - w_{2u}) \cdot u$ (1-10)

Nach G1. (1-10) ist demnach die übertragene Leistung proportional

• dem Massenstrom

- der Strömungsgeschwindigkeitsänderung
 dem Radius
 Drallstromänderung
 Umfangsgeschw.
- der Winkelgeschwindigkeit $\int \rightarrow Drehzahl$

Bei symmetrischer Schaufel ($\beta_1 = \beta_2^* = \beta$) mit idealer, d. h. reibungsfreier Strömung ($w_1 = w_2 = w$) ergeben Gln. (1-8) bis (1-10):

Mit
$$w_{1u} = w_1 \cdot \cos \beta_1 = w \cdot \cos \beta = w_u$$

 $w_{2u} = w_2 \cdot \cos \beta_2 = w_2 \cdot \cos(180^\circ - \beta_2^*)$
 $= -w_2 \cdot \cos \beta_2^* = -w \cdot \cos \beta = -w_u$

und
$$w_{1m} = w_1 \cdot \sin \beta_1 = w \cdot \sin \beta = w_m$$

 $w_{2m} = w_2 \cdot \sin \beta_2 = w_2 \cdot \sin(180^\circ - \beta_2^*)$
 $= w_2 \cdot \sin \beta_2^* = w \cdot \sin \beta = w_m$

werden:

Umfangskraft: $F_{\text{Sch,u}} = 2 \cdot \dot{m} \cdot w_{\text{u}} = 2 \cdot \dot{m} \cdot w \cdot \cos \beta$ Axialkraft: $F_{\text{Sch,m}} = 0$ Leistung: $P_{\text{Sch}} = 2 \cdot \dot{m} \cdot w_{\text{u}} \cdot u$ $= 2 \cdot \dot{m} \cdot w \cdot u \cdot \cos \beta$

B) Nach Energiegleichung:

In Bezug auf den ruhenden Beobachter und damit auf ein feststehendes Koordinatensystem hat das Fluid an Stelle ⁽²⁾ die sog. Absolutströmungsgeschwindigkeit c_2 und an Stelle ⁽¹⁾ die absolute Strömungsgeschwindigkeit c_1 . Die spezifische kinetische Energie des strömenden Fluids beträgt deshalb an Stelle ⁽²⁾ $c_2^2/2$ und an Stelle ⁽¹⁾ $c_1^2/2$. Da sich bei der vorhandenen Gleichdruckwirkung der Druck des Fluids im Flügelbereich (grob betrachtet) nicht ändert und keine Höhenunterschiede vorhanden bzw. vernachlässigbar sind, ergibt sich die zwischen Fluidmengenstrom \dot{m} und Schaufel übertragene theoretische Leistung $P_{\text{Sch,th}}$ aus der Differenz der Strömungsenergien an den Stellen ⁽²⁾ und ⁽¹⁾:

$$P_{\rm Sch,th} = \dot{m} \cdot \Delta Y_{\rm Sch,th} = \dot{m} \cdot (c_2^2/2 - c_1^2/2) \quad (1-11)$$

Hierbei ist $Y_{\text{Sch,th}}$ die theoretische spezifische Energie, welche bei Reibungsfreiheit, also idealem Fluid, übertragen wird.

Aus Gl. (1-11) folgt für die Umfangskraft $F_{\text{Sch,u}}$ zwischen strömendem Fluid und (Einzel-)Schaufel:

$$F_{\rm Sch,u} = \frac{P_{\rm Sch,th}}{u} = \frac{\dot{m}}{u} \cdot (c_2^2/2 - c_1^2/2)$$
(1-12)

Infolge der gewählten Nummerierung (Abschnitt 2.5.1) ist bei allen Turbomaschinentypen (Pumpen, Turbinen) sowie -ausführungen (Radial, Axial, Diagonal), als auch Wirkungsweisen (Gleichdruck, Überdruck) an Stelle ⁽²⁾ (Druckseite) die absolute Strömungsgeschwindigkeit immer größer als an Stelle ⁽¹⁾ (Saugseite), also $c_2 > c_1$. Dies gilt auch ohne Reibungsfreiheit und ist, wie Bild 1-4 bestätigt, bedingt durch die Schaufelbewegung (Umfangsgeschwindigkeit u). Bild 1-5 ohne Index Sch.

Je größer der Unterschied zwischen c_2 und c_1 , desto höher ist der Leistungsübergang nach Gl. (1-11).

Bild 1-5 Flügel (Schaufel Sch) einer Axialturbine. Strömungsverhältnisse und Kraftwirkungen

Zwischen der sog. **Relativgeschwindigkeit** *w* und der **Absolutgeschwindigkeit** *c* der Fluidströmung besteht, wie in Abschnitt 2.5.1 gezeigt, über die **Umfangsgeschwindigkeit** *u* des Laufrades ein enger Zusammenhang. Die Gleichungen aus dem Impulsbzw. Drallsatz und der Energiebedingung lassen sich deshalb gegenseitig ineinander überführen, was auch notwendig ist, da beide Wege zum gleichen Ergebnis führen müssen, allerdings nur bei idealer Strömung. Bei realem Fluid sind in der Energiegleichung die Strömungsverluste des Schaufelbereiches zu berücksichtigen, um mit dem Ergebnis des Impulssatzes übereinzustimmen.

Der Impulssatz und die Energiegleichung auf den Flügel von Bild 1-5 angewendet, führen zu denselben Ergebnissen wie bei der Schaufel nach Bild 1-4. Die Schaufel in Bild 1-4 und der Flügel von Bild 1-5 unterscheiden sich prinzipiell nur durch die Größe der Ablenkung $\Delta\beta = \beta_2 - \beta_1$ der Fluidströmung, also den Winkeln β (Flügelwinkel) an den Stellen (Flügelpunkten) ⁽²⁾ und ⁽¹⁾. Die Größe der Kraft zwischen Fluidstrom und Flügel verändert sich entsprechend. Die Gln. (1-8) bis (1-12) gelten deshalb allgemein bei idealer Strömung, d. h. für alle Arten von Flügeln.

1.4.3 Schaufelgitter (Schaufel)

Bei Schaufelgittern können die einzelnen Schaufeln (theoretisch in unendlicher Anzahl) längs einer Geraden angeordnet sein, sog. gerade Gitter, oder in endlicher Anzahl gleichmäßig über den Umfang eines Kreises verteilt sein, sog. kreisförmige Gitter. Gerade Schaufelgitter ergeben sich durch die Umfangsabwicklung eines Kreiszylinderschnittes bei den Axialrädern. Kreisförmige Gitter werden bei Radialturbomaschinen angewendet. Gerade Gitter heißen auch ebene oder Axialgitter, Kreisgitter auch Radialgitter. Der Abstand entsprechender Punkte zweier benachbarter Schaufeln wird mit Gitterteilung bezeichnet. Bei ebenen Gittern ist die Teilung t die geradlinige Entfernung dieser aufeinander folgenden Punkte. Bei Radialgittern mit z Schaufeln ergibt sich die Gitterteilung durch den Winkelabstand $\gamma = 2 \cdot \pi/z$ entsprechender Punkte. Die jeweiligen Verbindungslinien aller entsprechenden Schaufelpunkte sind beim ebenen Gitter parallele Geraden. Ihr Verlauf ist die Gitterrichtung. Beim Radialgitter liegen entsprechende Punkte auf konzentrischen Kreisen. Dabei wird zwischen der Radial- oder Meridianrichtung und der Tangentialoder Umfangsrichtung unterschieden.

An jeder Schaufel bzw. in jedem Schaufelkanal findet der gleiche Vorgang statt. Wird um eine Gitterteilung weitergeschritten, wiederholt sich der Strömungsverlauf. Deshalb reicht es aus, die Strömung im Bereich einer Gitterteilung zu untersuchen. Ideal betrachtet, findet dabei in jeder Ebene senkrecht zu den *Erzeugenden* der Gitterschaufeln, d. h. in jedem Parallelschnitt zum Gitterbild, der gleiche Vorgang statt. Es handelt sich also theoretisch um eine ebene Strömung. Darin besteht eine wesentliche Vereinfachung gegenüber den wirklichen Schaufelrädern, bei denen im Allgemeinen in jedem Querschnitt, d. h. Parallelschnitt, eine andere Strömung herrscht.

Schaufelgitter mit idealer, also ebener Strömung werden auch als vollkommene Gitter bezeichnet. Anordnungen, welche diese Voraussetzungen nicht vollkommen, aber doch angenähert in einem großen Bereich erfüllen, werden als unvollkommene Gitter bezeichnet.

Vom ruhenden Beobachter aus gesehen, d. h. bezüglich eines ortsfesten Koordinatensystems, ist die Strömung durch ein sich bewegendes Gitter instationär. Die Strömung kann jedoch stationär "gemacht" werden, wenn ein mit dem Gitter mitbewegtes, sog. relatives Bezugssystem eingeführt wird. In Bezug auf dieses Relativkoordinatensystem ruht dann das Gitter.

Bei umlaufenden kreisförmigen Gittern (Radialgittern) sind mitdrehende Koordinatensysteme notwendig. Dies hat jedoch zur Folge, dass die entstehende stationäre Relativströmung nicht mehr drehungsfrei und deshalb keine Potenzialströmung mehr ist.

Bild 1-6 Gitter (P Pumpe; T Turbine) \rightarrow Kanalräder a) Gerades Gitter (Axialgitter), Seitenriss und abgewi-

ckelter Zylinder-Schnitt A–B mit Teilung *t*b) Kreisgitter (Radialgitter) mit Teilungswinkel *γ* am Innenradius

Pfeilrichtungen für Drehung sowie Durchströmung: P bei Pumpen und T bei Turbinen

Diese nachteilige Erscheinung begründet sich darin, dass nur bei reiner Kreisströmung, die im ruhenden Bezugssystem drehungsfrei und somit eine Potenzialströmung ist, alle Fluidteilchen keine Eigendrehung, also Wirbelbewegung ausführen. Bezüglich des sich mitdrehenden Relativkoordinatensystems unterliegen die Fluidteilchen dann jedoch einer scheinbaren Eigendrehung im umgekehrten Sinn zur ursprünglichen Kreisströmung.

Bei geraden Gittern ist zum "Stationärmachen" nur eine Parallelströmung zu überlagern. Die Fluidbewegung bleibt dabei eine Potenzialströmung, sofern die instationäre Ausgangs-Strömung eine war. Beim Axialgitter kann deshalb der stationäre Fall des ruhenden, geraden Gitters betrachtet werden. Die Vorgänge beim bewegten Axialgitter ergeben sich dann durch einfaches Überlagern einer Parallelströmung in Bewegungsrichtung.

Gitterartige Schaufelanordnungen sollen den Fluidstrom beeinflussen und haben dabei folgende beiden wesentlichen Aufgaben, die entweder gemeinsam oder jede für sich alleine vorhanden sein können:

- Die Richtung der Strömungsgeschwindigkeit zu ändern, den Fluidstrom also wie einen Flügel abzulenken.
- Den Betrag der Strömungsgeschwindigkeit zu ändern, d. h. zu erhöhen oder zu verringern, je nach Anwendungsfall.

In beiden Fällen handelt es sich um Ändern der Strömungsgeschwindigkeit, mathematisch ausgedrückt des Geschwindigkeitsvektors, also um Beschleunigung des massebehafteten Fluidstromes. Nach NEW-TON hat bzw. erfordert diese wieder entsprechende Kraft, gerichtet je nachdem, ob der Fluidstrom auf das Schaufelgitter wirkt oder umgekehrt.

Erfolgt nur Ablenkung des Fluidstromes, also kein zusätzliches Ändern des Geschwindigkeitsbetrages, bleibt nach der BERNOULLI-Gleichung (Energiebeziehung) bekanntlich auch der Druck unverändert, sofern Höhenunterschiede und Strömungsverluste unberücksichtigt bzw. vernachlässigbar sind. Solche Gitter werden, entsprechend den Einzelschaufeln, als **Gleichdruckgitter** bezeichnet.

Meist ist mit der Umlenkung jedoch gleichzeitig auch eine Änderung des Betrages der Strömungsgeschwindigkeit und damit nach der Energiegleichung auch des Druckes verbunden. Gerade diese Druckänderung im Fluidstrom ist vielfach die eigentliche Aufgabe des Gitters. Je nachdem, ob im Schaufelgitter Druckabfall oder Druckanstieg stattfindet, wird von **Beschleunigungs-** oder **Verzögerungsgitter**, zusammenfassend von **Überdruckgitter**, gesprochen. Beschleunigungsgitter bilden in der Regel die Grundlage der Vorgänge in Turbinen, Verzögerungsgitter in Pumpen (Bild 1-7).

Wie beim Flügel ergibt sich die zwischen Fluidstrom und Schaufeln des Gitters wirkende Kraft aus der Energiebedingung (BERNOULLI-Gleichung) oder dem Impuls- bzw. Drallsatz, deren konsequente Umformung zur sog. EULER'schen Hauptgleichung der Strömungsmaschinen führt (Abschnitt 3.2.1).

Bild 1-7 Ebenes Gitter (Zylindergitter) einer Axialturbine. Strömungs- und Kraftverhältnisse

Dabei ist zu beachten, dass der Druck, wie bereits erwähnt, auf beiden Gitterseiten gleich (Gleichdruckoder Aktionswirkung) oder verschieden (Überdruckoder Reaktionswirkung) sein kann. Bei der Überdruckwirkung müssen beim Ansatz des dynamischen Kräftegleichgewichts (Impulssatz) außer den Impulsströmen auch die durch die Überdrücke auf beiden Gitterseiten bedingten Druckkräfte berücksichtigt werden.

A) Nach Energiesatz:

Wie bei der Einzelschaufel ergibt sich die zwischen Fluidströmung und Gitter übertragene spezifische theoretische Energie ΔY_{th} aus der Differenz der spezifischen Energien auf beiden Gitterseiten, d. h. zwischen Y_2 von Gitterseite 2 und Y_1 von Seite 1. Während der Lagenenergieunterschied vernachlässigbar klein, oder nicht vorhanden ist ($\Delta z = z_2 - z_1 \approx 0$), müssen die kinetischen Energien $c^2/2$ und Druckenergien p/ϱ berücksichtigt werden. Der spezifische theoretische Energieunterschied ΔY_{th} des Fluidstromes zwischen den beiden Gitterseiten 2 und 1 beträgt deshalb, wenn die durch Strömungsreibung verursachten Energieverluste nicht berücksichtigt, also wieder ideales Fluid mit ρ = konst angenommen:

$$\Delta Y_{\rm th} = Y_2 - Y_1$$

= $(c_2^2/2 + p_2/\varrho) - (c_1^2/2 + p_1/\varrho)$
$$\Delta Y_{\rm th} = (c_2^2/2 - c_1^2/2) + (p_2/\varrho - p_1/\varrho) \qquad (1-13)$$

Damit ergibt sich die zwischen dem Fluidmengenstrom \dot{m} und dem Gitter übertragene theoretische Leistung aus dynamischem und statischem Anteil:

$$P_{\text{G,th}} = \dot{m} \cdot \Delta Y_{\text{th}}$$
$$= \dot{m} \cdot \left[\left(\frac{c_2^2}{2} - \frac{c_1^2}{2} \right) + \left(\frac{p_2}{\varrho} - \frac{p_1}{\varrho} \right) \right] \quad (1-14)$$

Mit der Umfangsgeschwindigkeit *u* folgt wieder aus der Leistungsgleichung $P_{G,th} = F_{G,u,th} \cdot u$ die zwischen Fluidstrom und Gitter wirkende theoretische Umfangskraft (Index th oft weggelassen):

$$F_{\text{G,u,th}} = \frac{P_{\text{G,th}}}{u}$$
$$= \frac{\dot{m}}{u} \cdot \left[\left(\frac{c_2^2}{2} - \frac{c_1^2}{2} \right) + \left(\frac{p_2}{\varrho} - \frac{p_1}{\varrho} \right) \right] (1-15)$$

B) Nach Impulssatz:

Mit den Bezeichnungen von Bild 1-7 liefert der Impulssatz zwischen den Gitterseiten 1 und 2:

Nach IS
$$1-2 \rightarrow \sum \vec{F} = 0 \frac{\sum F_u = 0}{\sum F_m = 0}$$

Bekanntlich gilt der Impulssatz unverändert sowohl bei idealer als auch bei realer Strömung. Die Strömungsverluste bei realem Fluid werden automatisch durch die infolge Reibung verringerten Impulsströme $\dot{I}_u = \dot{m} \cdot w_u$ berücksichtigt.

Den Impulssatz ausgewertet:

a)
$$\sum F_{u} = 0$$
 je Gitterteilung *t* (Zusatzindex t):
 $\dot{I}_{1u,t} + \dot{I}_{2u,t} - F_{Wd,u,t} = 0$, hieraus
 $F_{Wd,u,t} = \dot{I}_{1u,t} + \dot{I}_{2u,t}$

Für das gesamte Gitter mit z Schaufeln und nach actio gleich reactio ergibt sich die Kraft zwischen Fluidstrom und Gitter in Umfangsrichtung u:

$$F_{G,u} = z \cdot F_{Wd,u,t} = z \cdot (\dot{I}_{1u,t} + \dot{I}_{2u,t}) = \dot{I}_{1u} + \dot{I}_{2u}$$

Mit den Beziehungen Gln. (1-2) bis (1-5), die auch entsprechend für das Gitter (Index G) gelten, folgt wegen:

$$\dot{I}_{2u} = z \cdot \dot{m}_{t} \cdot w_{2} \cdot \cos \beta_{2}^{*}$$

$$= -z \cdot \dot{m}_{t} \cdot w_{2} \cdot \cos \beta_{2};$$

$$F_{G,u} = z \cdot \dot{m}_{t} \cdot (w_{1} \cdot \cos \beta_{1} - w_{2} \cdot \cos \beta_{2})$$

$$= z \cdot \Delta \dot{I}_{ut} = \Delta \dot{I}_{u} \equiv \Delta \dot{I}_{G,u} \qquad (1-16)$$

Obwohl anders aufgebaut, führt diese Beziehung zum selben Ergebnis wie Gl. (1-15). Mithilfe der späteren Gl. (2-25) und den Geschwindigkeitsverhältnissen nach Bild 1-7 sind beide Beziehungen in einander umschreibbar.

b)
$$\sum F_{\mathrm{m}} = 0$$
 je Gitterteilung t mit $F_{p\mathbf{\ddot{u}}} = p_{\mathbf{\ddot{u}}} \cdot A_{\mathrm{m}}$:
 $F_{\mathrm{Wd,m,t}} + p_{1\mathbf{\ddot{u}}} \cdot A_{1\mathrm{m,t}} - p_{2\mathbf{\ddot{u}}} \cdot A_{2\mathrm{m,t}} + \dot{I}_{1\mathrm{m,t}} - \dot{I}_{2\mathrm{m,t}} = 0$

Hieraus mit $A_{1m,t} = A_{2m,t} = A_{m,t} = b \cdot t = b \cdot \pi \cdot D/z$ bei Vernachlässigung der Schaufeldicke:

$$F_{\rm Wd,m,t} = A_{\rm m,t} \cdot (p_{2\rm \ddot{u}} - p_{1\rm \ddot{u}}) + \dot{I}_{2\rm m,t} - \dot{I}_{1\rm m,t} \qquad (1-17)$$

Ebenfalls für das gesamte Gitter mit *z* Schaufeln und actio gleich reactio folgt für die Kraft zwischen Fluidstrom und Gitter in Meridian-, d. h. Axialrichtung:

$$F_{G,m} \equiv F_{G,a} = z \cdot F_{Wd,m,t}$$

$$F_{G,m} = z \cdot [A_{m,t} \cdot (p_{2\ddot{u}} - p_{1\ddot{u}}) + \dot{I}_{2m,t} - \dot{I}_{1m,t}] \quad (1-18)$$

Bei Gleichdruckwirkung ($p_{2\ddot{u}} = p_{1\ddot{u}}$) fällt wieder der erste Term dieser Gleichung weg.

Während die Meridiankraft von einem Axiallager aufgenommen oder hydraulisch kompensiert werden muss, folgt die zwischen Fluidstrom und Gitter übertragene Leistung aus der Umfangskraft $F_{G,u}$ und der Umfangsgeschwindigkeit *u*:

$$P_{\rm G} = F_{\rm G,u} \cdot u = u \cdot z \cdot \dot{m}_{\rm t} \cdot (w_1 \cos \beta_1 - w_2 \cos \beta_2)$$

$$P_{\rm G} = u \cdot z \cdot \Delta \dot{I}_{\rm u,t} = u \cdot \Delta \dot{I}_{\rm u} = z \cdot \omega \cdot r \cdot \Delta \dot{I}_{\rm u,t}$$

$$= z \cdot \omega \cdot \Delta \dot{L}_{\rm u,t}$$

$$P_{\rm G} = z \cdot \omega \cdot \Delta \dot{L}_{\rm u,t} = \omega \cdot \Delta \dot{L}_{\rm u} \qquad (1-19)$$

Diese Beziehung unterscheidet sich von Gl. (1-10) nur durch die Schaufelzahl z bzw. überhaupt nicht, wenn jeweils der gesamte Fluidmassenstrom $\dot{m} = z \cdot \dot{m}_t$ und Drallstrom $\dot{L} = r \cdot \dot{I}_u$ eingesetzt werden.

Damit ist der Zusammenhang zwischen Flügel (Einzelschaufel) und Gitter bestätigt, was sich dadurch erklärt, dass das Gitter aus einer Ansammlung von Schaufeln besteht.

Obwohl die Gleichungen für die Kräfte $F_{G,u}$, $F_{G,m}$ (Gln. (1-16), (1-18)) und die Leistung P_G (Gl. (1-19)) am **Axialgitter** abgeleitet wurden, gelten diese allgemein, also entsprechend auch für Radialgitter, wie in Abschnitt 3.2.1 dargestellt.

1.5 Bauarten

1.5.1 Vorbemerkungen

In den vorhergehenden Abschnitten wurden verschiedentlich Begriffe verwendet, die erst jetzt im Zusammenhang genauer erläutert werden. Die Begriffe betreffen die Kennzeichnung der Bauarten, den Aufbau, die Hauptteile und die Aufteilung der Strömungsmaschinen.

Einerseits erschien es aus Gründen des Verwirrens und Ablenkens nicht sinnvoll, die von selbst verständlichen Begriffe an betreffender Stelle sofort zu erläutern, andererseits war die zusammenfassende Darstellung früher nicht günstig. Folgende gemeinsame Betrachtung gibt auch über das die Turbomaschinen Verbindende besseren Aufschluss.

1.5.2 Hauptteile

Die Hauptteile der Turbomaschinen sind:

Laufrad: Mit Schaufeln (Laufschaufeln) bzw. Flügeln bestücktes Rad, das mit der sich drehenden Welle fest verbunden ist. Das Laufrad kann in einem Gehäuse eingebaut (üblich bei Pumpen und Turbinen) oder frei, d. h. ohne Umhüllung (üblich bei Antriebspropellern, Ventilatoren und Windkonvertern) umlaufen.

Leitrad: Meist ebenfalls aus kreisförmig angeordneten Schaufeln bestehende Einrichtung, auch besser als Leitvorrichtung oder Leitapparat bezeichnet und im stehenden Gehäuse fest eingebaut, also in der Regel nicht umlaufend. Eine Ausnahme bilden die heute kaum noch verwendeten gegenläufigen radialen Dampfturbinen, bei denen sich das Leitrad entgegen dem Laufrad dreht.

Die Leitvorrichtung befindet sich bei fast allen Strömungsmaschinen ausschließlich auf der Druckseite des Laufrades, d. h. im Bereich des höheren Druckes. Hiervon weichen nur bestimmte Kreiselverdichter ab, bei denen verschiedentlich auch ein Leitapparat als sog. **Vorleitrad** auf der Saugseite sitzt und einen Gegendrall erzeugt, den dann das Laufrad abbaut.

Strömungsmaschinen ohne Gehäuse verzichten völlig auf eine Leitvorrichtung, bestehen somit nur aus Laufrad mit Welle und manchmal einer Ummantelung, was den Wirkungsgrad verbessert. Diese Turbomaschinen verändern nicht den Druck, sondern nur die Strömungsenergie, d. h. die Geschwindigkeit des Mediums. Bei Pumpen kann die Leitvorrichtung auch zu einem sog. schaufellosen **Ringraum** und/oder einem **Spiralgehäuse** (zugleich Fluid-Sammler) "entarten" (Abschnitt 7.2.1.5).

Bei mehrstufigen Radialmaschinen zählen auch die als Umlenkräume bezeichneten Bereiche und die **Rückführschaufel-Kränze** zu den Leitapparaten (Abschnitt 7.2.1.6).

Die Leitvorrichtung setzt bei

- Arbeitsmaschinen (Pumpen, Index P) Geschwindigkeit in Druck um, besteht daher aus **Diffusoren** und befindet sich in der Regel in Strömungsrichtung hinter dem Laufrad.
- Kraftmaschinen (Turbinen, Index T) Druck in Geschwindigkeit um, besteht deshalb aus Düsen und befindet sich in Richtung Fluidströmung vor dem Laufrad.

Aus der Fluidmechanik ist bekannt, dass auch bei gleicher qualitativer Ausführung Diffusoren immer verlustbehafteter (Strömungsablösung!) sind als Düsen. Darin begründet sich, warum der erreichbare Wirkungsgrad von Strömungspumpen, also Kreiselpumpen und -verdichtern, grundsätzlich schlechter ist als bei Turbinen ($\eta_P < \eta_T$).

In der Regel sind sowohl Lauf- als auch Leitrad der Strömungspumpen diffusorartig und bei Turbinen düsenartig ausgebildet.

Weitere wichtige Teile der Strömungsmaschinen:

- Welle mit Lager
- Gehäuse mit Dichtungen
- Regeleinrichtungen.

1.5.3 Bezeichnungen

Wichtige, auf die gesamte Maschine bezogene Bezeichnungen sind:

Stufe: Kombination von einer Leitvorrichtung mit einem Laufrad-Kranz.

Mehrstufigkeit, mehrstufige Strömungsmaschinen: Hintereinanderschaltung (Reihen- oder Serienschaltung) mehrerer Stufen. Die gesamte verarbeitete Druckdifferenz zwischen Druck und Saugstutzen der Turbomaschine als Zusammenfassung der Stufen-Druckunterschiede wird entsprechend größer.

Mehrflutigkeit, mehrflutige Turbomaschinen: Parallelschaltung (Nebeneinanderschaltung) von Stufen oder Stufengruppen. Der Fluidstrom teilt sich vor bzw. in der Maschine entsprechend in Teilströme auf, welche die nebeneinander geschalteten Stufen bzw. Stufengruppen durchströmen und danach wieder vereinigen. Der gesamte verarbeitete Fluidstrom ergibt sich aus der Summe der Teilströme.

1.5.4 Aufteilung

Die Aufteilung der Turbomaschinen ist nach folgenden Gesichtspunkten möglich:

a) Durchströmrichtung (Bild 1-2)

Radialmaschinen: Hauptströmrichtung des Fluids radial, also senkrecht zur Welle.

Diagonal- und/oder Halbaxialmaschinen: Hauptströmrichtung diagonal, d. h. schräg zur Wellenrichtung.

Axialmaschinen: Hauptströmrichtung des Mediums axial, also parallel zum Wellenverlauf.

b) Wirkungsweise

Gleichdruck-Wirkung (Aktionswirkung):

Fluiddruck vor und hinter dem Laufrad gleich groß. Druckänderung erfolgt nur im Leitrad. Daher Querschnitt

- der Laufschaufelkanäle bei AM (Arbeitsmaschinen) und KM (Kraftmaschinen) gleich bleibend
- der Leitschaufelkanäle bei AM diffusorartig, bei KM düsenförmig.

Die Energieumsetzung im Laufrad erfolgt deshalb **nur** durch Richtungsänderung der Geschwindigkeit des Fluidstromes (Umlenkung).

Überdruck-Wirkung (Reaktionswirkung):

Mediumdruck auch vor und hinter dem Laufrad unterschiedlich. Druckumsatz daher sowohl im Leitals auch im Laufrad, und zwar bei

- AM Druck vor dem Lauf- und Leitrad jeweils kleiner als dahinter
- KM Druck vor dem Leit- und Laufrad jeweils größer als danach.

Demnach Leit- und Laufschaufelkanäle bei

- AM diffusorförmig
- KM düsenartig.

Die Energieumsetzung im Laufrad erfolgt durch Geschwindigkeits- **und** Druckänderung.

Zusammenfassend kann demnach festgehalten werden:

Innerhalb jeder Stufe ändert sich der Druck bei Gleichdruck-Turbomaschinen nur im Leitrad (im Laufrad bleibt er konstant), bei Überdruckmaschinen dagegen sowohl im Leit- als auch Laufrad.

c) Anordnung

Nach Stufenanordnung werden unterschieden:

Einstufige – Mehrstufige Einflutige – Mehrflutige Turbomaschinen

Auf den **Anwendungsfall** abgestimmt sind die verschiedensten Kombinationen der Anordnung möglich und damit Probleme lösbar. Beispiele:

Mehrstufige – mehrflutige Dampfturbine Mehrstufige – einflutige Gasturbine Einstufiger – mehrflutiger Kreiselverdichter Einstufige – einflutige Kreiselpumpe (einfachste Pumpe).

1.6 Vergleich mit Kolbenmaschinen

1.6.1 Vorbemerkungen

Kreiselmaschinen und Kolbenmaschinen stehen auf vielen Gebieten im Wettbewerb. Zur Flüssigkeitsförderung werden Kreiselpumpen und Kolbenpumpen eingesetzt. Zum Verdichten von Gasen dienen Kreiselverdichter und Kolbenverdichter. Die Gasturbine steht verschiedentlich in Konkurrenz zum Verbrennungsmotor. Das Gegenstück zur Dampfturbine ist die Kolbendampfmaschine, die heute allerdings kaum noch verwendet wird. Wasserturbinen und neuerdings auch wieder Windturbinen wie auch Antriebspropeller sind Strömungsmaschinen ohne Gegenüber unter den Kolbenmaschinen. Nur im Bereich der "Kraft"-Hydraulik gibt es Fluidmotore nach dem Verdränger-, also Kolbenprinzip. Aber auch bei automatischen Getrieben gibt es solche nach dem hydrodynamischen (StM) und dem hydrostatischen (KoM) Prinzip.

Im Wettbewerb zwischen Strömungs- und Kolbenmaschinen zeichnet sich jedoch eine relativ klare Linie ab. Bei niedrigen Drücken, hohen Volumenströmen und großen Leistungen überwiegen die Vorteile der Strömungsmaschinen. Bei hohen Drücken, niedrigen Volumenströmen und kleinen Leistungen dagegen sind Kolbenmaschinen den Turbomaschinen oft überlegen. Dabei ist es nicht notwendig, dass die aufgeführten drei Bedingungen zugleich auftreten. Dosierpumpen wie beispielsweise die Einspritzpumpen von Dieselmotoren sind allerdings nur als Kolbenpumpen möglich. Die Arbeitsgebiete von Strömungs- und Kolbenmaschinen überdecken sich daher nicht vollständig. So beherrscht z. B. in der Elektrizitätswirtschaft die Dampfturbine das Feld und im Verkehrswesen noch der Verbrennungsmotor.

Bei Kolbenmotoren besteht im Gegensatz zu Dampfturbinen von seiten der Konstruktion und Ausführung eine frühe obere Grenze. Die obere Leistungsgrenze von Großdieselmotoren liegt aus Massengründen bei etwa 100 MW. Dagegen sind Dampfturbinen mit über 2000 MW, ja sogar 5000 MW Leistung je Einheit technisch realisierbar. Fraglich ist jedoch, ob das Verwirklichen solch großer Turbineneinheiten als wirtschaftlich sinnvoll gelten kann. Den Strömungsmaschinen ist es somit vorbehalten, große Leistungen umzusetzen. Dabei ist das Maschinengewicht und der Raumbedarf im Vergleich zu den Kolbenmaschinen gering - bis herab auf etwa ein Zehntel. Andererseits sind jedoch Großdiesel die Wärmekraftmaschinen, die den besten Wirkungsgrad erreichen. Dampfkraftanlagen insgesamt erreichen Wirkungsgrade bis etwa 45 %, Großdiesel dagegen bis ca. 60 %. GuD (Abschnitt 1.2) erreichen ebenfalls Wirkungsgrade bis knapp unter 60 %.

1.6.2 Übereinstimmende Kennzeichen

Übereinstimmende Kennzeichen von Strömungsund Kolbenmaschinen sind:

- Beide Maschinengruppen dienen der Energieumsetzung.
- Durch beide fließt immer ein Medium (Flüssig keit, Dampf, Gas).
- Bei der abgegebenen (KM) bzw. aufgenommenen (AM) Energie handelt es sich immer um mechanische, d. h. kinetische Energie (Drehenergie).
- Bei den Kraftmaschinen kann sowohl bei Kolbenals auch bei Strömungsmaschinen die Energie direkt mit dem durchfließenden Mediumstrom vereinigt sein, wie bei Dampfkraftanlagen (äußere Verbrennung), oder getrennt zugeführt werden, wie bei Dieselmotoren und Gasturbinen (innere Verbrennung).
- Im durchströmenden Fluid erscheint die Energie außerhalb der Maschine fast immer als Druckenergie, z. B. Dampf- oder Wasserdruck vor Turbinen, Druckflüssigkeit hinter Pumpen, Druckgas nach Verdichtern.

Ausnahmen bilden Windturbinen, Ventilatoren und Antriebspropeller, bei denen die Energie des

Fluids in kinetischer Form (Strömungsenergie) erscheint.

1.6.3 Unterschiede

Der wichtigste Unterschied zwischen Turbo- und Kolbenmaschinen besteht in der Art des Energieumsatzes in der Maschine, was im Prinzip in Bild 1-8 dargestellt ist.

Bild 1-8 Vergleich Kolbenmaschine (KoM) – Strömungsmaschine (StM); prinzipiell dargestellt Motor und Turbine (mit LAVAL-Düse)

Bei den nach dem sog. **Verdrängerprinzip** – statisches Prinzip – arbeitenden **Kolbenmaschinen** wirkt der Fluiddruck direkt auf die Kolbenfläche. Die entsprechend der Kolbenfläche vorhandene Kraft überträgt zusammen mit dem Kolbenweg die Energie zwischen Fluid und Maschine.

Turbomaschinen, die nach dem **Strömungsprinzip** – dynamisches Prinzip – wirken, erfordern Zwischenumsetzung. Das bei Turbinen – bei Turbopumpen umgekehrt – unbedingt notwendige Umsetzen des Druckes in Geschwindigkeit sowie anschließende Beschleunigung des Fluids durch Umlenken und/oder weitere Geschwindigkeitssteigerung verursacht zusätzliche Verluste. Der innere Wirkungsgrad der Strömungsmaschinen ist deshalb fast immer kleiner als der von Kolbenmaschinen. Der mechanische Wirkungsgrad von Turbomaschinen (bis 99,7 %) dagegen ist in der Regel wesentlich höher als der von Kolbenmaschinen (ca. 80 %). Dies begründet sich durch die Reibung zwischen Kolben und Zylinder sowie in dem meist notwendigen Kurbeltrieb. Die Rotationsbewegung der Strömungsmaschinen bedingt mechanische Reibung nur in den Lagern und Dichtungen der Welle.

Weitere wichtige Unterschiede der Strömungsmaschinen gegenüber den Kolbenmaschinen:

- Höhere Drehzahlen möglich. Bei Kreiselpumpen bis etwa 6000 l/min, bei Kreiselverdichtern bis ca. 30 000 l/min, bei Gasturbinen bis ca. 50 000 l/min und bei Sonderausführungen, den sog. Abgas-Turboladern, bis über 250 000 l/min; Ottomotore unter ca. 20 000 min⁻¹ wegen der Verbrennung und Massenkräften.
- Niedrige Leistungsmasse, bis herab zu einem Zehntel.
- Niedrigere Drücke.
- Kein direkter Kontakt zwischen Mediumstrom und Schmiermittel innerhalb der Maschine.
- Höhere Fluid-Temperaturen zulässig, da kein Schmiermittelkontakt. Deshalb keine Tempe-

raturbegrenzung durch Verkokungsgefahr von Schmieröl (bei ca. 150...250 °C) und flexiblen Dichtungsmaterialien.

- Geringere Betriebs- und Wartungskosten. Keine hin- und hergleitenden Teile sowie Ventile. Deshalb geringerer Verschleiß und weniger Schmiermittel notwendig (nur für die Lager!).
- Verarbeitung von Dickstoffen sowie verschmutzten oder feststoffhaltigen Fluiden u. Ä. möglich.
- Kein unterbrochener, sondern gleichmäßiger Fluidstrom und Leistungsfluss.
- Kein Massenausgleich notwendig.

Hauptgrößen zur Berechnung sind, wie erläutert, bei

- Strömungsmaschinen, Leistung bis ca. 2 000 MW: Mengenstrom und Strömungsgeschwindigkeit des Fluids sowie die Umfangsgeschwindigkeit des Laufrades.
- Kolbenmaschinen, Leistung bis ca. 100 MW: Fluiddruck, Zylindervolumen (Kolbenfläche, Kolbenhub) und Drehzahl der Maschine.

2 Strömungsverhältnisse

2.1 Zusammengesetzte Strömungen

2.1.1 Grundsätzliches

Die Gesamtströmung in Turbomaschinen kann zerlegt werden in zwei Teilströmungen, und zwar in eine Kreis- und eine Transportbewegung. Dabei bestimmt die Kreisbewegung hauptsächlich den Energieumsatz und die Transportströmung den Mengendurchsatz.

Die Transportbewegung erfolgt bei

- Radialmaschinen radial, also senkrecht zur Welle, und zwar in
 - Pumpen radial nach außen (Quelle)
 - Turbinen radial nach innen (Senke)
- Axialmaschinen axial, also parallel zur Welle.

Da Geschwindigkeiten Vektoren sind, muss das Zusammenfassen von Komponenten oder Zerlegen in Komponenten wie bei Kräften vektoriell (geometrisch) erfolgen. Zusammengesetzte Strömungen

- entstehen deshalb durch vektorielle Überlagerung (Superposition) von Teilströmungen,
- sind durch vektorielles Zerlegen in Teil-, d.h. Komponentenströmungen aufspaltbar.

Die Strömungsaufteilung bzw. -zusammenfassung ist zum Untersuchen und Darstellen komplizierter Strömungsvorgänge sehr vorteilhaft.

2.1.2 Radialrotationshohlräume

2.1.2.1 Vorbemerkungen

Wichtige Strömungen in Radialrotationshohlräumen sind bei:

Idealem Fluid (v = 0, d. h. reibungsfrei)

- *Wirbelquelle*: Überlagerung von reibungsfreier Kreisströmung (Potenzialwirbel) und Quellenströmung.
- *Wirbelsenke*: Superposition von Potenzialwirbel mit Senkenströmung.

Realem Fluid (Viskosität $v \neq 0$, d. h. v > 0, also reibungsbehaftet)

• Überlagern von reibungsbehafteter Kreisströmung mit Quellen- bzw. Senkenströmung.

In Bild 2-1 ist die Überlagerung von Quellenströmung (Geschwindigkeit c_m) und Kreisströmung (Geschwindigkeit c_u) zur Gesamtströmung (Geschwindigkeit c) in einem Radialrotationshohlraum dargestellt, also ohne Einbauten und somit keine Wirkung (Kraft) auf die Fluidströmung (Drallkonstanz).

Bild 2-1 Strömung im Radialrotationshohlraum (e ... ein). Eingetragen zwei Stromlinien im Abstand dn

Mithilfe von Bild 2-1 sind die Summenströmungen der verschiedenen Fluidtypen aufzeigbar.

2.1.2.2 Reibungsfreie Strömungen

Wirbelquelle

Quellenströmung: Aus der Durchflussgleichung

 $\dot{m} = \varrho \cdot \dot{V} = \varrho \cdot A_{\rm m} \cdot c_{\rm m} = \varrho \cdot 2 \cdot r \cdot \pi \cdot b \cdot c_{\rm m}$

ergibt sich, da c_m senkrecht zu $A_m = 2 \cdot r \cdot \pi \cdot b$, zwingend:

$$c_{\rm m} = \frac{m}{2 \cdot \pi} \cdot \frac{1}{\varrho \cdot b \cdot r} \tag{2-1}$$

Potenzialwirbel: Aus Drallsatz ($\sum \dot{L} - \sum T = 0$) folgt, da $\sum T = 0$ somit auch $\dot{L} = 0$, we shalb dann $L = m \cdot r \cdot c_n = \text{konst}$. Da auch m = konst ergibt den

 $L = m \cdot r \cdot c_u$ = konst. Da auch m = konst, ergibt den sog. Flächensatz:

$$c_{\rm u} \cdot r = {\rm konst} \rightarrow c_{\rm u} = {\rm konst}/r \qquad {\rm oder} \qquad (2-2)$$

$$c_{\rm u} \cdot r = c_{\rm e,u} \cdot r_{\rm e} \rightarrow c_{\rm u} = c_{\rm e,u} \cdot r_{\rm e}/r$$
 (2-3)

Überlagerung: Mit Beziehungen (2-1) und (2-3)

$$c = \sqrt{c_{\rm m}^2 + c_{\rm u}^2} = \frac{1}{r} \cdot \sqrt{\left(\frac{\dot{m}}{2 \cdot \pi \cdot \varrho \cdot b}\right)^2 + (c_{\rm e,u} \cdot r_{\rm e})^2}$$
(2-4)

$$\tan \alpha = \frac{c_{\rm m}}{c_{\rm u}} = \frac{\dot{m}}{2 \cdot \pi \cdot \rho \cdot b} \cdot \frac{1}{c_{\rm e,u} \cdot r_{\rm e}}$$
$$= \frac{\dot{m}}{2 \cdot \pi \cdot c_{\rm e,u} \cdot r_{\rm e}} \cdot \frac{1}{\rho \cdot b}$$

und da $\dot{m} = \text{konst}$, wird:

$$\tan \alpha = \operatorname{konst}/(\varrho \cdot b) \tag{2-5}$$

Sonderfall: $b = b_e = \text{konst}$ (parallelwandiger Kanal) und $\rho = \text{konst}$ (inkompressibles Fluid). Hierfür:

$$\alpha = \text{konst}$$
 (2-6)

Radialkurven mit Umfangswinkel (Steigungswinkel) α = konst werden als *logarithmische Spiralen* bezeichnet (Bild 2-2).

Bild 2-2 Stromlinienverlauf der Wirbelquelle in parallelwandigem Radialrotationshohlraum (b = konst). Stromlinie B–C bei 360° Umlaufwinkel

Wirbelsenke:

Senkenströmung: Strömungsrichtung umgekehrt zu der in Bild 2-2 für die Quellenströmung eingetragen, also c_m und dazugehörend \dot{m} entgegengesetzt gerichtet.

Potenzialwirbel: Wie bei Wirbelquelle.

Superposition: Beziehungen von Wirbelquelle gültig, Stromlinien verlaufen jedoch spiegelbildlich.

2.1.2.3 Reibungsbehaftete Strömungen

Überlagerung von reibungsbehafteter Kreisströmung mit Quellen- bzw. Senkenströmung. Könnte auch als *reibungsbehaftete Wirbelquelle* bzw. *Wirbelsenke* bezeichnet werden.

Quellen- bzw. Senkenströmung: Strömungsgeschwindigkeit c_m nach Durchflussbedingung ausschließlich durch den Massenstrom \dot{m} und Querschnitt bestimmt. Die Strömungsreibung beeinflusst deshalb die Radialgeschwindigkeit c_m nicht, sodass Gl. (2-1) allgemein gilt.

Reibungsbehaftete Kreisströmung: Infolge des durch Strömungsreibung bedingten Widerstandes ist bei realen Fluiden der Drall $m \cdot c_u \cdot r$ bzw. der spezifische Drall, das sog. **Geschwindigkeitsmoment** $c_u \cdot r$ nicht mehr konstant. Nach der Formel von DARCY [3] gilt für die infinitesimale Verlustenergie dY_V entlang des differenziellen Wegelementes ds(Bild 2-1):

$$\mathrm{d}Y_{\mathrm{V}} = \lambda \cdot (\mathrm{d}s/D_{\mathrm{gl}}) \cdot c^2/2$$

Mit dem gleichwertigen Durchmesser D_{gl} aus Querschnitt $A = b \cdot dn$ und fluidbenetztem Wandumfang $U = 2 \cdot dn$

$$D_{gl} = 4 \cdot A/U = (4 \cdot b \cdot dn)/(2 \cdot dn) = 2 \cdot b$$

erhält die differenzielle spezifische Verlustarbeit d Y_V die Form:

$$\mathrm{d}Y_{\mathrm{V}} = \lambda \cdot \frac{\mathrm{d}s}{2 \cdot b} \cdot \frac{c^2}{2}$$

Diese Reibungsarbeit verursacht einen Druckverlust, der sich nach dem Druckfortpflanzungsgesetz (PASCAL) nur in radialer Richtung auswirken kann. Das bedeutet, auf jeder Parallelkreislinie ist der Druck jeweils konstant, während er in radialer Richtung entsprechend durch den sog. Reibungsdruckverlust vermindert wird. Wegen der Achsensymmetrie und fehlender Begrenzung entsprechend Austrittsströmung äußert sich der Reibungsverlust jedoch in einer Geschwindigkeitseinbuße. Die Umfangsgeschwindigkeit c_{μ} der reibungsbehafteten Kreisströmung verkleinert sich deshalb nach außen stärker, als dem Flächensatz (Satz vom konstanten Drall) entspricht. Wie zuvor begründet, bleibt nur die Radialkomponente cm von der Reibung unbeeinflusst.

Aufgrund dieser Überlegung kommt PFLEIDERER [29] nach längeren Ableitungen zu dem von ihm als **Flächensatz der reibungsbehafteten Strömung** oder kurz als **erweiterten Flächensatz** bezeichneten Beziehung:

$$\frac{1}{r \cdot c_{\rm u}} - \frac{1}{r_{\rm e} \cdot c_{\rm e,u}} = \pm \frac{\lambda \cdot \pi \cdot \varrho_{\rm e}}{2 \cdot \dot{m}} \cdot (r - r_{\rm e})$$
(2-7)

Hierbei: Index e für Eintritt (Anfang)

- Oberes Vorzeichen (Pluszeichen) für radial nach außen gerichtete Strömung, d. h. Quelle (Pumpenströmung). Gemäß Strömungsrichtung hier r ≧ r_e.
- Unteres Vorzeichen (Minuszeichen) für radial nach innen gerichtete Strömung, d. h. Senke (Turbinenströmung). Analog zur Strömungsrichtung ist deshalb hier r ≤ r_e.

Die Widerstandsziffer λ ist bei Strömungen nach außen (Pumpen) größer als nach innen (Turbinen).

Begründung: Nach außen, d. h. mit zunehmendem r, erweitert sich (auch bei b = konst) der Querschnitt $A = 2 \cdot r \cdot \pi \cdot b$. Es liegt also Diffusorströmung (Drucksteigerung) vor, bei der infolge Grenzschichtanhäufung große Ablösungsgefahr mit Wirbelbildung besteht, also höhere Verluste.

Bei der Fließrichtung nach innen dagegen handelt es sich um Düsenströmung (Druckabbau), die wegen Strömungsbeschleunigung verlustärmer ist.

Nach Versuchsergebnissen gilt lt. PFLEIDERER für:

- *Pumpenströmung* (nach außen gerichtet):
 λ ≈ 0,04
- *Turbinenströmung* (nach innen gerichtet):
 λ < 0,04; meist λ ≈ 0,02...0,03

Bei $\lambda = 0$ (ideale Strömung) geht der erweiterte Flächensatz nach Gl. (2-7) notwendigerweise in Gl. (2-3), den (reibungsfreien oder nichterweiterten) Flächensatz über.

Beziehung (2-7) bestätigt, dass das Geschwindigkeitsmoment $r \cdot c_u$ mit zunehmendem Reibungsweg entsprechend $(r - r_e)$ kleiner wird. Dagegen beeinflusst die Kanalbreite *b* die Abnahme des Geschwindigkeitsmomentes nicht. Die Begründung liegt, wie schon dargestellt, darin, dass die Kanalbreite über das Durchflussgesetz nur die Radialkomponente c_m , nicht jedoch die Umfangskomponente c_u der Geschwindigkeit *c* beeinflusst. Die Strömungsreibung kann sich deshalb nicht auf c_m , sondern nur auf c_u auswirken.

Wird Gl. (2-7) mit dem Massenstrom \dot{m} durchmultipliziert und nach dem Durchflussgesetz ersetzt

• im ersten Glied

$$\dot{m} = \varrho \cdot V = \varrho \cdot c_{\rm m} \cdot A_{\rm m} = \varrho \cdot c_{\rm m} \cdot 2 \cdot r \cdot \pi \cdot k$$

• im zweiten Glied $\dot{m} = \rho_{e} \cdot \dot{V}_{e} = \rho_{e} \cdot c_{e,m} \cdot A_{e,m} = \rho_{e} \cdot c_{e,m} \cdot 2 \cdot r_{e} \cdot \pi \cdot b_{e}$

führt dies zu:

$$\frac{\dot{m}}{r \cdot c_{\rm u}} - \frac{\dot{m}}{r_{\rm e} \cdot c_{\rm e,u}} = \pm \frac{\lambda \cdot \pi \cdot \varrho_{\rm e}}{2} \cdot (r - r_{\rm e})$$

$$\frac{c_{\rm m}}{c_{\rm u}} \cdot \varrho \cdot b - \frac{c_{\rm e,m}}{c_{\rm e,u}} \cdot \varrho_{\rm e} \cdot b_{\rm e} = \pm \frac{\lambda \cdot \varrho_{\rm e}}{4} \cdot (r - r_{\rm e}) \quad (2-8)$$

Den Neigungswinkel α der Stromlinien gegenüber der Umfangsrichtung bzw. tan $\alpha = c_m/c_u$ am beliebigen Radius *r* und bei r_e eingeführt, ergibt letztlich:

$$\varrho \cdot b \cdot \tan \alpha - \varrho_{\rm e} \cdot b_{\rm e} \cdot \tan \alpha_{\rm e} = \pm \frac{\lambda \cdot \varrho_{\rm e}}{4} \cdot (r - r_{\rm e})$$
(2-9)

Für den Regelfall: $\rho_e \approx \rho \approx \text{konst}$, Flüssigkeiten oder Gase (Dämpfe) bei relativ geringer Druckänderung, geht Gl. (2-9) über in die meistbenützte Form:

$$b \cdot \tan \alpha - b_{\rm e} \cdot \tan \alpha_{\rm e} = \pm \frac{\lambda}{4} \cdot (r - r_{\rm e})$$
 (2-10)

$$\tan \alpha = \frac{b_{\rm e}}{b} \cdot \tan \alpha_{\rm e} \pm \frac{\lambda}{4} \cdot \frac{r}{b} \cdot \left(1 - \frac{r_{\rm e}}{r}\right) \qquad (2-11)$$

Sonderfall: $b = b_e = \text{konst}$, also gleich bleibende Kanalbreite. Hierfür gehen die Gleichungen (2-10) und (2-11) für $\rho = \text{konst}$ über in:

$$\tan \alpha - \tan \alpha_{\rm e} = \pm \frac{\lambda}{4 \cdot b} \cdot (r - r_{\rm e}) \tag{2-12}$$

$$\tan \alpha = \tan \alpha_{\rm e} \pm \frac{\lambda}{4} \cdot \frac{r}{b} \cdot \left(1 - \frac{r_{\rm e}}{r}\right) \tag{2-13}$$

Diese Beziehungen für reale Strömung treten je nach Anwendungsfall an die Stelle der zugehörigen Ausdrücke für ideale Strömung (Gl. (2-5) bzw. (2-6)). Im Gegensatz zur konstanten Steigung der logarithmischen Spiralen nach Gl. (2-6) sind die Stromlinien nach Gl. (2-13) Spiralen mit in Strömungsrichtung zunehmender Steigung, was BROECKER¹⁾ experimentell nachwies.

2.1.3 Beliebige rotationssymmetrische Kanäle

Nach PFLEIDERER können die Beziehungen, Gln. (2-9) bis (2-13) auf die reale Strömung in beliebigen achsensymmetrischen Kanälen (Bild 2-3) angewendet werden, wenn $(r - r_e)$ durch die Länge des Strömungsweges *L* im Quer- oder Radialschnitt, dem sog. Meridianschnitt ersetzt wird. Da die Länge *L* stets positiv ist, fällt der Vorzeichenwechsel hierbei weg. Dann gehen die Gln. (2-9) bis (2-13) über in:

$$\varrho_{\rm a} \cdot b_{\rm a} \cdot \tan \alpha_{\rm a} - \varrho_{\rm e} \cdot b_{\rm e} \cdot \tan \alpha_{\rm e} = \varrho_{\rm e} \cdot L \cdot \lambda/4$$
(2-14)

Mit der Widerstandsziffer $\lambda = 0.03 \dots 0.04$

Bild 2-3 Rotationshohlraum mit beliebigem Querschnittsverlauf. Index e ... Kanaleintritt, a ... Kanalaustritt

¹⁾ BROECKER, E.: VDI-Berichte 3 (1955), S. 110

Regelfall: $\rho \approx \text{konst} (\rho_a \approx \rho_e \approx \rho)$

$$b_{\rm a} \cdot \tan \alpha_{\rm a} - b_{\rm e} \cdot \tan \alpha_{\rm e} = L \cdot \lambda/4$$
 (2-15)

Sonderfall: $b = \text{konst} (b_a = b_e = b)$, Kanal gleich bleibender Breite und bei $\rho = \text{konst}$:

$$\tan \alpha_{\rm a} - \tan \alpha_{\rm e} = \frac{\lambda}{4} \cdot \frac{L}{b} \tag{2-16}$$

Bei mehrstufigen Radialmaschinen (KP, KV) werden solche achsensymmetrischen Kanäle als sog. schaufellose Ringräume (Umlenkräume) zwischen Leitund Rückführeinrichtung angewendet.

2.1.4 Axialrotationshohlräume

Die Strömung in Axialrotationshohlräumen (Bild 2-4) ist, da entlang der Stromlinien jeweils r = konst, wesentlich einfacher als in Radialrotationshohlräumen.

Bild 2-4 Axialrotationshohlraum

Die Gesamtströmung (Geschwindigkeit c) folgt wieder durch Überlagern der Umfangsströmung (Geschwindigkeit c_u) mit der Axialströmung (Geschwindigkeit c_m). Dabei ergibt sich eine Schraubenbewegung mit dem Steigungswinkel α bzw. der Steigung tan $\alpha = c_m/c_u$, zugehörig zum Radius r.

In einem Kreiszylinder von gleich bleibendem Radius (r =konst mit $r \leq R$) bleibt

- bei idealer Strömung der Steigungswinkel der Stromlinien jeweils unverändert ($\alpha = \text{konst}$), weil sich die Geschwindigkeitskomponenten in axialer (c_m) und tangentialer Richtung (c_u) entlang dem Fließweg nicht ändern.
- bei realer Strömung wird der Steigungswinkel α mit zunehmendem Strömungsweg ständig größer und geht deshalb letztlich gegen 90° (α → 90°, γ → 0°), d. h., die Bewegung verläuft achsparallel. Während die Axialgeschwindigkeit c_m (Meridiankomponente) durch das Durchflussgesetz bestimmt (c_m = V/A_m = V/(R²π)) und deshalb konstant bleibt sowie unabhängig vom Radius r

ist, verringert sich die Tangentialgeschwindigkeit c_u (Umfangskomponente) infolge Strömungsreibung fortlaufend mit der Weglänge.

2.2 Relativbewegung

Bewegen sich zwei Stoffe S1 und S2 (Bild 2-5) mit verschiedenen Geschwindigkeiten (nach Größe, d. h. Betrag und/oder Richtung) bezüglich eines Koordinatensystems oder eines dritten Stoffes, besteht zwischen ihnen eine **Relativbewegung**.

Bild 2-5 Bewegungsverhältnisse

 v_1, v_2 Absolutgeschwindigkeiten; v_{1-2}, v_{2-1} Relativgeschwindigkeiten; a) Parallele Bewegung. b) Schiefe Bewegung

Absolutgeschwindigkeit: Geschwindigkeit eines Stoffes gegenüber einem ruhenden Bezugssystem. Für Betrachtungen im Strömungsmaschinenbau ist dies die als ruhend angesehene Erde bzw. Umgebung.

Relativgeschwindigkeit: Geschwindigkeit eines Stoffes gegenüber einem anderen, der sich in der Regel ebenfalls bewegt.

In Bild 2-5, das zwei Bewegungsfälle darstellt, sind: v_{1-2} die Relativgeschwindigkeit von Stoff S1 gegenüber Stoff S2

 v_{2-1} die Relativgeschwindigkeit von Stoff S2 gegenüber Stoff S1

Da Geschwindigkeiten Vektoren sind, müssen sie vektoriell zusammengefasst werden. In Bild 2-5 gilt:

 $\vec{v}_1 = \vec{v}_2 + \vec{v}_{1-2}$ und $\vec{v}_2 = \vec{v}_1 + \vec{v}_{2-1}$

mit

$$ert ec v_1 ert = v_1; \quad ec v_2 ert = v_2 \ ec v_{1-2} ert = v_{1-2} = v_{2-1} = ec v_{2-1}$$

2.3 Energiegleichung der Relativströmung

Laufradströmungen sind Relativbewegungen. Das Fluid strömt in jeder Turbomaschine mit der Geschwindigkeit *w* gegenüber dem sich mit der Umfangsgeschwindigkeit *u* drehenden Laufrad und somit relativ zu diesem. Die Geschwindigkeit *w* wird daher mit Relativgeschwindigkeit des Fluidstromes im Laufrad bezeichnet. Für diese Bewegung wird die Energiebilanz idealer Fluide, also reibungsfreier Strömung, aufgestellt. Die sich ergebende sog. **Energiegleichung der Relativströmung** ist zur Berechnung und Interpretation der Fluiddurchflüsse von Laufrädern vorteilhaft.

Bild 2-6 Strömung in rotierendem Kanal (Relativströmung)

Für die Herleitung der Energiegleichung der Relativströmung wird von folgender Problemstellung ausgegangen:

Gesucht: Druck als Funktion vom Radius, p = f(r), in fluiddurchströmtem, um die Drehachse DA mit konstanter Winkelgeschwindigkeit ($\omega = \text{konst}$) rotierendem Kanal K (Bild 2-6).

Da Drücke und Energien Skalare sind, ergeben sich die Gesamtwerte durch skalare (algebraische) Addition. Das Problem ist deshalb einfach in zwei Teilprobleme aufteilbar. Das Ergebnis folgt dann durch arithmetische Superposition (Überlagerung) der beiden Einzellösungen. Dabei werden die Drücke der ersten Teillösung mit p', die der zweiten mit p'' und die der Gesamtlösung mit p bezeichnet.

a) *Teillösung 1:* Rotierendes ($\omega = \text{konst}$) mit Fluid gefülltes Gefäß an Stelle ⁽²⁾ verschlossen, also w = 0:

Das dynamische Kräftegleichgewicht nach D'ALEM-BERT¹⁾ auf das Fluidmassenteilchen d*m*, unter Berücksichtigung der Fliehkraft d F_{Fl} angewendet, ergibt in radialer Richtung:

$$\sum F_{\rm r} = 0$$
: $F + dF_{\rm Fl} - (F + dF) = 0$

Bei $A \approx$ konst, was innerhalb d*r* zulässig, da bei den infiniten (differenziellen) Größen d $A \sim (dr)^2$, also klein von zweiter Ordnung:

$$F = p' \cdot A$$
 und $(F + dF) = (p' + dp') \cdot A$

weshalb

$$\mathrm{d}F = \mathrm{d}p' \cdot A$$

Mit

$$\mathrm{d}F_{\mathrm{Fl}} = \mathrm{d}m \cdot \omega^2 \cdot r = \varrho \cdot A \cdot \mathrm{d}r \cdot \omega^2 \cdot r$$

folgt aus dem dynamischen Kräftegleichgewicht $\sum F_r = 0$:

$$dF_{\rm Fl} = dF$$

$$\rho \cdot A \cdot dr \cdot \omega^2 \cdot r = dp' \cdot A$$

Hieraus

$$\mathrm{d}\,p' = \varrho \cdot \omega^2 \cdot r \cdot \mathrm{d}\,r$$

Diese Differenzialgleichung (Dgl.) für p' = f(r) bei inkompressiblem Fluid ($\rho = \text{konst}$) unbestimmt integriert, führt zu

$$\int dp' = \varrho \cdot \omega^2 \cdot \int r \cdot dr$$
$$p' = \varrho \cdot \omega^2 \cdot r^2/2 + C$$
$$p'/\varrho - (\omega \cdot r)^2/2 = C/\varrho$$

Mit der Umfangsgeschwindigkeit $u = r \cdot \omega$ und der Konstanten konst $= C/\rho$ ergibt sich letztlich allgemein als erste Teillösung

$$p'/\varrho - u^2/2 = \text{konst}$$
(2-17)

Oder zwischen den Grenzen, Stelle ① und beliebiger Stelle längs der Koordinate r:

$$p'/\varrho - u^2/2 = p'_1/\varrho - u_1^2/2 = \text{konst}$$
 (2-18)

Des Weiteren zwischen den Grenzen ① und ②:

$$p'_1/\varrho - u_1^2/2 = p'_2/\varrho - u_2^2/2 = \text{konst}$$
 (2-19)

b) *Teillösung 2:* Gefäß steht still ($\omega = 0$) und ist an Stelle ⁽²⁾ geöffnet, wird also vollständig vom Fluid mit der Relativgeschwindigkeit *w* durchströmt.

Für diesen Fall gilt die Energiegleichung der Absolutströmung idealer Fluide (BERNOULLI²⁾-Gleichung). Infolge waagrechter Anordnung (z = 0 bzw. z =konst) fallen die Höhenglieder weg.

Allgemein

$$p''/\varrho + w^2/2 = \text{konst}$$
 (2-20)

Zwischen Stelle ① und beliebiger Stelle längs der Koordinate r:

$$p''/\varrho + w^2/2 = p_1''/\varrho + w_1^2/2 = \text{konst}$$
 (2-21)

Zwischen Stellen ① und ②

$$p_1''/\varrho + w_1^2/2 = p_2''/\varrho + w_2^2/2 = \text{konst}$$
 (2-22)

c) *Gesamtlösung:* Durch Superposition der beiden Teillösungen:

$$p = p' + p''$$

Die Ausdrücke für p' und p'' aus Gl. (2-17) und Gl. (2-20) eingesetzt, die für $\rho \approx$ konst gelten, ergibt:

$$p/\varrho = \operatorname{konst} + u^2/2 + \operatorname{konst} - w^2/2$$
$$p/\varrho + (w^2 - u^2)/2 = \operatorname{konst}$$
(2-23)

Diese Beziehung (2-23) wird als **Energiegleichung der Relativströmung** idealer, d. h. reibungsfreier inkompressibler Fluide bezeichnet.

Gleichung (2-23) zwischen Stelle ① und einer beliebigen Stelle längs der Koordinate r angewendet:

$$p/\varrho + (w^2 - u^2)/2 = p_1/\varrho + (w_1^2 - u_1^2)/2$$

= konst (2-24)

Zwischen Stellen ① und ② mit $\Delta = (2) - (1)$

$$p_1/\varrho + (w_1^2 - u_1^2)/2 = p_2/\varrho + (w_2^2 - u_2^2)/2$$

= konst (2-25)

$$\Delta(p/\varrho) = \Delta[(u^2 - w^2)/2]$$
 (2-26)

Sonderfall: u = konst, also entlang eines Parallelkreises (r = konst). Dafür ergibt Gl. (2-23)

$$p/\varrho + w^2/2 = \text{konst}$$
(2-27)

Die Beziehung entspricht der BERNOULLI-Gleichung für die waagrechte Ebene (z = konst), wobei allerdings mit der Relativgeschwindigkeit w zu rechnen ist, statt, wie normalerweise der Fall, mit der Absolutströmungsgeschwindigkeit c. Die Gleichung ergibt deshalb nur den Zusammenhang zwischen zwei Punkten, die auf einer Kreislinie liegen, sagt jedoch nichts über die spezifische Gesamtenergie an diesen Stellen aus.

In diesem Zusammenhang wird insbesondere auf [3] verwiesen, wo die Energiegleichung der Relativströmung ausführlich dargestellt und durch Beispiele unterlegt ist. Dichte $\rho \neq$ konst (Gase/Dämpfe) erfordert dann entsprechendes Berücksichtigen (Gasdynamik [3]) bei Integration der anfänglichen Differenzialgleichung und bei Beziehung (2-20).

2.4 Instationäre Strömung

2.4.1 Grundsätzliches

Instationäre Strömungen sind solche, bei denen sich die Fluidgeschwindigkeit nicht nur mit dem Ort, d. h. dem Strömungsweg, sondern auch mit der Zeit verändert. Die Strömungsgeschwindigkeit ist somit eine Funktion von Ort und Zeit, c = f(s, t). Solche Strömungen sind sehr kompliziert, kommen jedoch häufig vor. Sie treten in Strömungsmaschinen-Anlagen z.B. beim Regeln auf, d.h. beim Verändern des Durchsatzes (Volumenstromes \dot{V}) durch volles oder teilweises Öffnen und Schließen von Ventilen und damit Zu- oder Abschalten von Leitungen. Je schneller der Volumenstrom geändert wird, desto stärker werden, insbesondere bei inkompressiblen Fluiden, die dadurch verursachten dynamischen Wirkungen. Dies drückt sich in einem entsprechend steilen und starken Druckanstieg aus. Der geradezu schlagartige Druckanstieg, der beim plötzlichen teilweisen oder vollständigen Absperren bzw. Öffnen in Leitungen auftritt, wird als Strom- oder Druckstoß bezeichnet. Solche plötzlichen Drucksprünge können für Leitungen, die Flüssigkeiten führen, gefährlich werden, da festigkeitsmäßig nicht mehr beherrschbar. Um Bersten und sonstigen Schaden zu vermeiden, kann es notwendig sein, den Drucksprung durch entsprechende Maßnahmen in seiner Höhe zu begrenzen, z. B. indem druckstoßgefährdete Rohrsysteme nicht zu schnell abgesperrt werden können und Pumpen durch angebaute Schwungräder nach dem Abschalten drehzahlmäßig langsam "auslaufen".

2.4.2 Energiegleichung der instationären Strömung

Das D'ALEMBERT'sche Kräftegleichgewicht mithilfe des NEWTON'schen Aktions-Axioms auf instationäre inkompressible Strömungen angewendet und entlang des Strömungsweges integriert, führt zur **Energiegleichung der eindimensionalen instationären inkompressiblen Strömung**. Einfachheitshalber wird auf die Herleitung dieser Gleichung verzichtet und auf [3] verwiesen.

$$g \cdot z + \frac{p}{\varrho} + \frac{c^2}{2} + \int_{s_0}^s \frac{\partial c}{\partial t} \cdot \partial s = \text{konst}$$
 (2-28)

Der Vergleich mit der Energiegleichung eindimensionaler stationärer inkompressibler Strömung, der BERNOULLI-Gleichung, zeigt, dass das Wegintegral