

Praxis Wärmepumpe

Technik, Planung, Installation

4., überarbeitete und aktualisierte Auflage

Beuth

Praxis Wärmepumpe

Stefan Sobotta

Praxis Wärmepumpe

Technik, Planung, Installation

4., überarbeitete und aktualisierte Auflage 2022

Herausgeber:

DIN Deutsches Institut für Normung e.V.

Beuth Verlag GmbH · Berlin · Wien · Zürich

Herausgeber: DIN Deutsches Institut für Normung e.V.

© 2022 Beuth Verlag GmbH Berlin • Wien • Zürich Am DIN-Platz Burggrafenstraße 6 10787 Berlin

Telefon: +49 30 2601-0 Telefax: +49 30 2601-1260 Internet: www.beuth.de

E-Mail: kundenservice@beuth.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Grenzen des Urheberrechts ist ohne schriftliche Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in elektronische Systeme.

© für DIN-Normen DIN Deutsches Institut für Normung e.V., Berlin.

Die im Werk enthaltenen Inhalte wurden von Verfasser und Verlag sorgfältig erarbeitet und geprüft. Eine Gewährleistung für die Richtigkeit des Inhalts wird gleichwohl nicht übernommen. Der Verlag haftet nur für Schäden, die auf Vorsatz oder grobe Fahrlässigkeit seitens des Verlages zurückzuführen sind. Im Übrigen ist die Haftung ausgeschlossen.

Titelbild: © Vaillant Deutschland GmbH & Co. KG

Satz: Beuth Verlag GmbH, Berlin Druck: Drukarnia Skleniarz, Kraków

Gedruckt auf säurefreiem, alterungsbeständigem Papier nach DIN EN ISO 9706

ISBN 978-3-410-30978-9 ISBN (E-Book) 978-3-410-30972-7

Vorwort

Wärmepumpen sind der Schlüssel zur Energiewende

Wärmepumpen sind gefragter denn je: Weltweit ist nach Erhebungen der Internationalen Energieagentur (IEA) im Jahr 2018 die Nachfrage nach Wärmepumpen um 10 Prozent gestiegen. Das globale Umsatzvolumen lag bereits 2017 bei 48 Milliarden US-Dollar. Die IEA prognostiziert nahezu eine Verdopplung dieses Werts bis zum Jahr 2023. Auch die Absatzzahlen in Deutschland belegen den Trend. Im Jahr 2021 wurden insgesamt 154.000 Heizungswärmepumpen verkauft. Das bedeutet ein Plus von 28 Prozent zum Vorjahr.

Viele Klimastudien halten jedoch einen noch viel massiveren Einsatz von Wärmepumpen zur Erreichung der Klimaziele für notwendig. Dass das möglich ist, beweisen viele andere europäische Mitgliedsländer wie zum Beispiel Schweden. Dort werden jährlich rund 23 Wärmepumpen pro 1.000 Haushalte abgesetzt, während Deutschland gerade einmal ein Zehntel des schwedischen Absatzes erreicht. Eine stärkere Verbreitung der Wärmepumpe im deutschen Markt würde nicht nur die Arbeitsplätze der 75.000 Beschäftigten der Branche, sondern auch die lokale Wertschöpfung langfristig sichern.

Um den Klimaschutz im Gebäudesektor voranzutreiben, hat die neue Regierung im Koalitionsvertrag vereinbart, einen entsprechenden gesetzlichen Rahmen zu schaffen: Ab dem 1. Januar 2025 sollen alle neu eingebauten Heizungen zu mindestens 65 Prozent erneuerbare Energien nutzen. Es ist davon auszugehen, dass die Nachfrage nach Wärmepumpen mit diesem Gebot zur Nutzung erneuerbarer Energien nochmals stark zunehmen wird. Die Politik muss nun dafür sorgen, dass bereits in den kommenden drei Jahren möglichst Heizsysteme verbaut werden, die den neuen Ansprüchen genügen.

Grundlegend für den Erfolg der Wärmewende ist die Wirtschaftlichkeit des Technologiewechsels zur Wärmepumpe, insbesondere im Gebäudebestand. Will man einen Wechsel zur Wärmepumpe in der gesamten Breite des Gebäudebestands erreichen, so muss die Technologie gegenüber dem Betrieb von Heizöl- und Erdgas-Kesseln wirtschaftlich deutlich bessergestellt werden. Die derzeitigen Preise der Energieträger entsprechen nicht ihren CO₂-Emissionen. Solange der eingeführte CO₂-Preis keine ausreichende Steuerungswirkung entfaltet, ist eine effektive Entlastung des Strompreises dafür dringend notwendig. Von besonderer Bedeutung ist in diesem Zusammenhang die ebenfalls im Koalitionsvertrag angekündigte Maßnahme, die EEG-Umlage ab 2023 vollständig aus dem Bundeshaushalt zu finanzieren und die überfällige Neuordnung der Umlagen, Steuern und Entgelte anzugehen. Das ist ein guter Schritt für die Wärmepumpe. Entschei-

dend ist, dass langfristige und verlässliche Rahmenbedingungen für die Branche gesetzt werden.

Die CO₂-Emissionen im Gebäudebereich deutlich abzusenken, wird für die neue Bundesregierung eine der größten Herausforderungen sein. Dabei hat der Gebäudesektor einen entscheidenden Vorteil gegenüber anderen Sektoren: Die Technologien zur Dekarbonisierung sind bereits vorhanden und etabliert. Wir haben die Technik und das Know-how, das Rad muss nicht neu erfunden werden.

In den nächsten neun Jahren müssen laut Studien des Fraunhofer-Institut für solare Energiesysteme 5 Millionen Wärmepumpen zusätzlich installiert werden, um auf dem Zielpfad zur Klimaneutralität zu bleiben. Das bedeutet ein jährliches Marktwachstum von gut 20 Prozent. Wichtig ist, dass die gesamte Branche vom Fachhandwerker über die Planer und Berater bis hin zur Industrie das Potenzial der Wärmepumpentechnologie erkennen und in den nächsten Monaten und Jahren positiv nutzen. Klimaschutz im Gebäude geht nur Hand in Hand mit allen Akteuren der Heizungsbranche.

Der vorliegende Leitfaden bietet Fachhandwerkern, Planern, Architekten und Energieberatern eine wertvolle Grundlage und praktische Hinweise für ihre tägliche Arbeit im Sinne einer konsequenten Wärmewende hin zur Wärmepumpe.

Herzlich, Ihr Dr. Martin Sabel Geschäftsführer des Bundesverbands Wärmepumpen (BWP) e. V.

Autorenporträt

Dipl.-Ing. (FH) Stefan Sobotta,

studierte nach der Ausbildung zum Elektroinstallateur Elektrische Energietechnik an der Fachhochschule Dortmund und der Universität Bochum. Nach dem Studium folgte die Ausbildung zum Energieberater mit Schwerpunkt regenerative Energien 1994/95 am Öko-Zentrum Hamm. Im Folgenden übernahm er mehrere Aufgaben bei angesehenen Heizungsherstellern, wo er neben dem Marketing und Vertrieb auch im Bereich Produktmanagement für Wärmepumpen tätig war. Zurzeit ist der Autor Projektleiter in der Entwicklungsabteilung für Wärmepumpen bei einem großen deutschen Heizungshersteller.

Inhalt

Vorwor	t	V
Autore	nporträt	VII
1	Einleitung	1
2	Energie und Umwelt	6
2.1	Energieressourcen	6
2.2	Energieverbräuche in Deutschland	8
2.3	CO ₂ -Belastung, Primärenergieverbrauch	9
2.4	Politik und Energie/Klima	12
2.5	Energiepreise in Deutschland – Optionen zum gesteigerten Einsatz	
	von erneuerbaren Energien	17
3	Technik Wärmepumpe	22
3.1	Wärmepumpen und die Analogie zum Kühlschrank	22
3.2	Kältekreislauf der Wärmepumpe	23
3.3	Darstellung im lg-p-h-Diagramm	25
3.4	Kreisprozess nach Carnot	26
3.5	Kältemittel – kein Buch mit sieben Siegeln!	27
3.6	Bezeichnung von Wärmepumpen	33
3.7	Bauteile einer Wärmepumpe	37
3.7.1	Der Verdampfer	37
3.7.2	Der Verflüssiger	39
3.7.3	Enthitzer und Unterkühler.	39
3.7.4	Der Verdichter (Kompressor)	41
3.7.5	Expansionsventil	49
3.7.6	Pressostate	52
3.7.7	Drucksensoren	53
3.7.8	Trocknerpatrone	53
3.7.9	Schauglas	54
	4-Wege-Umschaltventil	
3.7.11	Kältemittelsammler	56
3.7.12	Flüssigkeitsabscheider	56
3.7.13	Serviceventile	57
3.7.14	Absperrventile (bei Luft/Wasser-Split-Wärmepumpen)	58
3.7.15	Magnetventile	59

3.7.16	Schalldämpfer (Muffler)	59
	Kältemittelleitung	
	Warmwasser-Umschaltventil	
3.7.19	Heizungsumwälzpumpe	63
	Elektro-Zusatzheizung	
	Soleumwälzpumpe (bei Sole/Wasser-Wärmepumpen)	
3.7.22	Soleausgleichsbehälter/Soleausdehnungsgefäß	64
	Sicherheitsventil	
3.7.24	Flusswächter (nur bei Wasser/Wasser-Wärmepumpen)	64
3.7.25	Motorschutzschalter Brunnenpumpe (nur bei Wasser/Wasser-	
	Wärmepumpen)	64
3.7.26	Regelung	65
3.7.27	Kondensatwannenheizung (bei außenaufgestellten Luft/Wasser-	
	Wärmepumpen)	65
3.8	Übersicht der Wärmepumpen-Bauformen	68
3.9	Spezielle Kältekreisläufe	70
3.10	Leistungszahl und Jahresarbeitszahl	78
3.11	Betriebsarten der Wärmepumpe	79
4	Planung einer Wärmepumpenanlage	81
4 4.1	Planung einer Wärmepumpenanlage	
-		81
4.1	Bauteile einer Wärmepumpenanlage	81 82
4.1 4.2	Bauteile einer Wärmepumpenanlage	81 82 83
4.1 4.2 4.3	Bauteile einer Wärmepumpenanlage. Planungsablauf Ermittlung Heizbedarf	81 82 83
4.1 4.2 4.3 4.4	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 .	81 82 83 84
4.1 4.2 4.3 4.4 4.5	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 . Planung Warmwasserbedarf	81 82 83 84 86
4.1 4.2 4.3 4.4 4.5 4.6	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 . Planung Warmwasserbedarf Wahl der Wärmepumpe	81 82 83 84 86 94
4.1 4.2 4.3 4.4 4.5 4.6 4.7	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 . Planung Warmwasserbedarf Wahl der Wärmepumpe Ermittlung der Zuschläge	81 82 84 86 94 94
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 . Planung Warmwasserbedarf Wahl der Wärmepumpe Ermittlung der Zuschläge Ermittlung der Gesamtheizleistung der Wärmequelle	81838486949496
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 Planung Warmwasserbedarf Wahl der Wärmepumpe Ermittlung der Zuschläge Ermittlung der Gesamtheizleistung der Wärmequelle Radiatoren oder Flächenheizung – was geht?	8183848694949696
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1. Planung Warmwasserbedarf Wahl der Wärmepumpe Ermittlung der Zuschläge Ermittlung der Gesamtheizleistung der Wärmequelle Radiatoren oder Flächenheizung – was geht? Wärmepumpe und Solarthermie.	81838494969696
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 . Planung Warmwasserbedarf Wahl der Wärmepumpe Ermittlung der Zuschläge Ermittlung der Gesamtheizleistung der Wärmequelle Radiatoren oder Flächenheizung – was geht? Wärmepumpe und Solarthermie Kühlung mit Wärmepumpen	8182848694969696
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.12.1	Bauteile einer Wärmepumpenanlage. Planungsablauf . Ermittlung Heizbedarf . Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1 . Planung Warmwasserbedarf . Wahl der Wärmepumpe . Ermittlung der Zuschläge . Ermittlung der Gesamtheizleistung der Wärmequelle . Radiatoren oder Flächenheizung – was geht? Wärmepumpe und Solarthermie . Kühlung mit Wärmepumpen . Planung der Wärmequellenanlage .	818284869496969798
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.12.1 4.12.2 4.12.3	Bauteile einer Wärmepumpenanlage. Planungsablauf. Ermittlung Heizbedarf. Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1. Planung Warmwasserbedarf. Wahl der Wärmepumpe. Ermittlung der Zuschläge. Ermittlung der Gesamtheizleistung der Wärmequelle. Radiatoren oder Flächenheizung – was geht? Wärmepumpe und Solarthermie. Kühlung mit Wärmepumpen. Planung der Wärmequellenanlage. Planung einer Erdsondenanlage. Planung einer Erdkollektoranlage.	818284949696969798105118124
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12.1 4.12.2 4.12.3 4.12.4	Bauteile einer Wärmepumpenanlage Planungsablauf Ermittlung Heizbedarf Ermittlung der Norm-Außentemperatur $\theta_{\rm e}$ nach DIN EN 12831 Bl. 1. Planung Warmwasserbedarf Wahl der Wärmepumpe Ermittlung der Zuschläge Ermittlung der Gesamtheizleistung der Wärmequelle Radiatoren oder Flächenheizung – was geht? Wärmepumpe und Solarthermie Kühlung mit Wärmepumpen Planung der Wärmequellenanlage Planung einer Erdsondenanlage Planung einer Erdkollektoranlage	8182849496969798105118124128

4.12.6	Wärmepumpenanlage mit Grundwasserbrunnenanlage	420
	und Zwischenwärmetauscher	
	Planung der Wärmequelle Luft	
	Planung der Wärmenutzungsanlage	
	Grundsätzliches zur Planung von Wärmenutzungsanlagen	
	Heizkreise	
	Wahl der Warmwasserbereitung	
	Pufferspeicher	
	Sonstige Bauteile	
4.13.6	Übersicht hydraulische Schaltungen	169
5	Installation einer Wärmepumpe	184
5.1	Grundsätzliches	
5.2	Planung des Installationsraumes	184
5.3	Installation Solekreisanbindung	185
5.4	Installation Heizkreisanbindung – für den Heizungsbauer ein	
	vertrautes Terrain	
5.5	Elektrotechnische Installation.	
5.6	Befüllen der Anlage	
5.7	Installation der Flächenheizung	
5.8	Erstinbetriebnahme – Übergabe an den Kunden	
5.9	Was ist zu beachten?	208
6	Service von Wärmepumpen	209
6.1	Grundsätzliches	209
6.2	Wartung von Wärmepumpen	209
6.2.1	Allgemeine jährliche Überprüfung	209
6.2.2	Dichtigkeitsprüfungen	215
6.2.3	Überprüfung von Drücken und Temperaturen im Kältekreislauf	217
6.3	Instandhaltung von Wärmepumpen	222
6.4	Werkzeuge und Messgeräte	227
6.4.1	Messgeräte	227
6.4.2	Werkzeuge	234
7	Normen und Verordnungen	241
7.1	Europanormen (EN und DIN EN)	242
7.2	Deutsche Normen (DIN)	246
7.3	Europäische Verordnungen	250
7.4	Deutsche Verordnungen und Gesetze	251

PRAXIS WÄRMEPUMPE

7.5	VDI-Richtlinien	255
7.6	DVGW-Arbeitsblätter	258
7.7	Sonstige Regelwerke	261
8	Glossar	263
9	Herstellerverzeichnis	280
9.1	Hersteller von Speichern	280
9.2	Hersteller von Pumpen	281
9.3	Hersteller von Kollektormaterial	281
9.4	Hersteller von Druckschaltern	283
9.5	Hersteller von Filtertechniken	283
9.6	Hersteller von Rohrdurchführungen	284
9.7	Hersteller von Wärmetauschern	284
9.8	Hersteller von Luft/Schlammabscheidern	285
9.9	Hersteller von Niedertemperatur-Heizkörpern	285
9.10	Hersteller von Isoliermaterial	286
10	Wirtschaftlichkeitsbetrachtungen	287
10.1	Vorwort	287
10.2	Kostenvergleich von Heizsystemen im Einfamilienhaus nach EnEV-Standard	288
10.3	Kostenvergleich von Heizsystemen im Bestand – Einfamilienhaus	294
11	Anhang	300
11.1	Was wird an "Papierkram" benötigt?	
11.2	Antrag auf Erteilung einer wasserrechtlichen Erlaubnis für den Wärmeentzug durch eine Wärmepumpe	
11.3	Was muss ein Angebot für eine Erdsondenanlage enthalten?	
11.4	Sicherheitsdatenblätter	
11.5	Konformitätserklärungen	309
11.6	Beantragung von Fördergeldern	309
12	Abbildungs- und Tabellenverzeichnis	311
13	Literaturverzeichnis	328
14	Stichwortverzeichnis	330

1 Einleitung

Zwei zentrale Fragen werden zunehmend von Bedeutung.

1. Energie wird zunehmend knapper und damit teurer.

Länder mit Primärenergievorkommen nutzen ihre Ressourcen, um Macht auszuüben und damit Politik zu machen; die Beispiele aus Russland (Unterbrechung der Gaszufuhr nach Deutschland in 2006) und Weißrussland (Absperrung der Ölpipeline im Januar 2007) und die jüngsten Ereignisse zur Gas- und Ölversorgung im Zusammenhang mit dem Ukraine-Krieg zeigen dies.

Deutschland muss versuchen, an zwei Hebeln anzusetzen:

- drastische Reduzierung des Energieverbrauchs → allein das Potenzial bei der Beheizung von Gebäuden ist enorm; nicht zu vergessen der Benzinverbrauch beim Auto. Für den Verkehrssektor plant die Bundesregierung die Emissionen bis 2030 um mehr als 40 % im Vergleich zu 1990 zu reduzieren, von 164 auf mind. 98 Millionen Tonnen CO₂. Dies soll mit entsprechender Förderung durch den Umstieg auf die Elektromobilität erreicht werden.
- schneller Ausbau der erneuerbaren Energien → konsequente Förderung der Erneuerbaren z.B. über das Marktanreizprogramm; dabei sollte nur die Effizienz ein Maß für die Förderhöhe sein. Die Bundesregierung möchte die Geschwindigkeit beim Ausbau erneuerbarer Energien verdreifachen. Ein Schwerpunkt ist hierbei die Änderung des EEGs. Bis 2030 soll der Anteil erneuerbarer Energien am Bruttostromverbrauch auf mind. 80 % gesteigert werden.

2. Die globale Erwärmung wird zunehmend ein Problem.

Die CO₂-Emissionen müssen global reduziert werden. Länder wie Brasilien, China und Indien sind jedoch im Begriff, ihre Industrien dramatisch auszubauen.

Im Klimaschutzplan 2050 hat die Bundesregierung ihre nationalen Klimaschutzziele weiter präzisiert. Deutschlands Ziel ist es, bis 2050 weitgehend treibhausgasneutral zu werden.

Die Bundesregierung hat festgelegt, die Treibhausgasemissionen bis zum Jahr 2020 um 40 Prozent, bis 2030 um 55 Prozent, bis 2040 um 70 Prozent und bis 2050 um 80 bis 95 Prozent zu reduzieren (bezogen auf das Basisjahr 1990).

Auch aufgrund des Lockdowns im Jahr 2020 hat Deutschland sein Klimaschutzziel für 2020 erreicht. Die Gesamtemissionsmenge hat sich im Vergleich zum Jahr 1990 um 40,8 Prozent reduziert.

Die Regierung von US-Präsident Joe Biden plant, bis 2030 den Ausstoß von klimaschädlichen Treibhausgasen der USA im Vergleich zu 2005 mindestens zu halbieren. Gegenüber den Zielen der Obama-Regierung von 2014 ist die neue Planung deutlich ehrgeiziger. Damals versprachen die USA nur eine Reduktion der Emissionen um 26 bis 28 Prozent bis 2025. Das Pariser Klimaabkommen von 2015 sieht vor, dass die Mitglieder ihre Klimaziele alle fünf Jahre nachbessern. Diese Vorgabe wurde von den USA nun erfüllt.

China war 1997 noch Entwicklungsland – Klimaschutzforderungen wurden ausgenommen. Mittlerweile boomt die Wirtschaft jedoch in China. Als Folge überholte China 2008 die USA als weltgrößten Emittenten von Treibhausgasen (Abbildung 1.1). 2020 versprach Chinas Präsident Xi Jinping der Welt Chinas Emissionen spätestens von 2030 an zu senken und das Land bis 2060 CO₂-neutral zu machen. Die Volksrepublik China hatte erstmals angekündigt, die Abhängigkeit von der Kohleenergie umfassend zu verringern. Das ist allerdings bislang offenbar nicht passiert.

Die Industrieländer, allen voran die EU und Amerika, sind aufgefordert, weiter die Vorreiterrolle bei der Reduzierung des CO₂-Ausstoßes zu spielen.

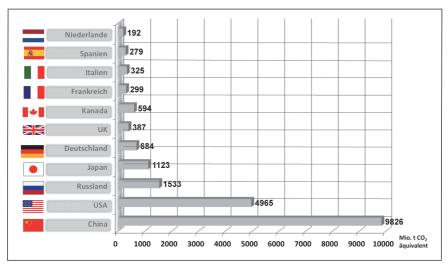
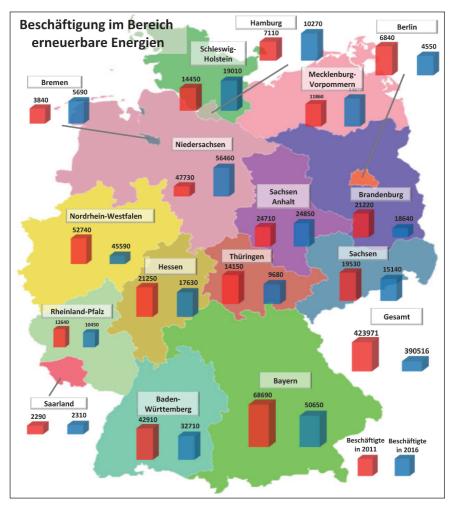



Abbildung 1.1: Globale CO₂-Emission 2019

Erneuerbare Energien sind keine Nische mehr. Mit bundesweit knapp 300.000 Arbeitsplätzen im Jahr 2019 sind sie ein bedeutender Wirtschaftsfaktor. Besonders strukturschwache Regionen profitieren von diesen Arbeitsplätzen und die Unternehmen sorgen damit für Wertschöpfung vor Ort (Abbildung 1.2).

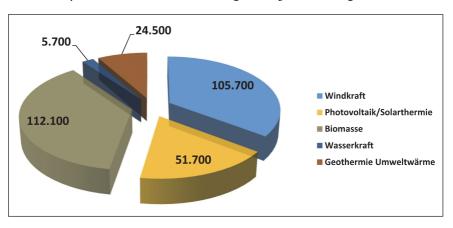
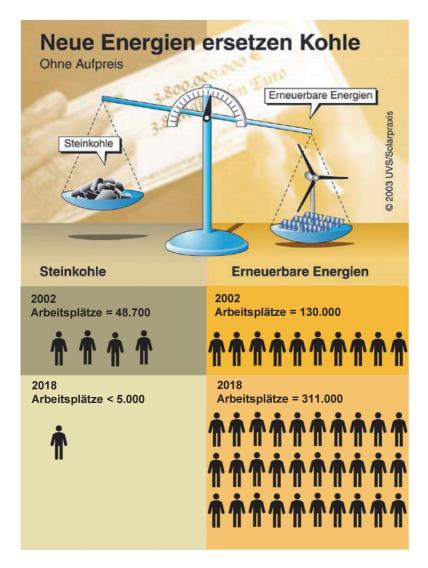


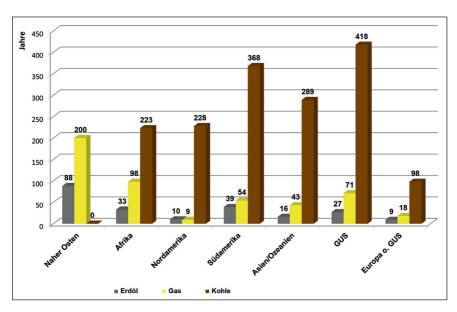
Abbildung 1.2: Bruttobeschäftigung 2000 bis 2019 im Sektor erneuerbare Energien in Deutschland


Deutschland kann durch die Entwicklung innovativer Techniken im Bereich regenerativer Energien auch den Exportschlager für die Zukunft aufbauen. Im Bereich Windkraftanlagen und Photovoltaik ist das schon geschehen. Bei der Entwicklung von Wärmepumpen ist Deutschland auf einem guten Weg (Abbildung 1.3 und Abbildung 1.4).

Wir alle können aktiv den CO_2 -Ausstoß positiv beeinflussen, indem wir die Energieverbräuche im Haushalt und Verkehr mit rationellen und regenerativen Anwendungen möglichst gering ausfallen lassen. Bei der Wärmeerzeugung kann neben der Solarthermie, dem Pelletkessel, der Lüftungsanlage mit Wärmerückgewinnung auch die Wärmepumpe aktiv einen Beitrag leisten, um dieses Ziel zu erreichen.

Jeder kann die beiden zentralen Fragen auf seine Weise beantworten, Energiekosten einsparen und damit seinen Beitrag zur CO₂-Reduzierung beisteuern.

Abbildung 1.3: Aufteilung der Beschäftigten in die Tätigkeitsfelder Windkraft, PV/Solar, Bioenergie, Wasserkraft, Geothermie in Deutschland, 2019


Abbildung 1.4: Das Wachstum der Branche "Erneuerbare Energien" und damit der Gewinn von Arbeitsplätzen in Deutschland

2 Energie und Umwelt

2.1 Energieressourcen

Nach Russlands Angriff auf die Ukraine sind die Öl- und Gaspreise enorm gestiegen. Allerdings ist die mittelfristige Gaspreisentwicklung noch nicht abzusehen.

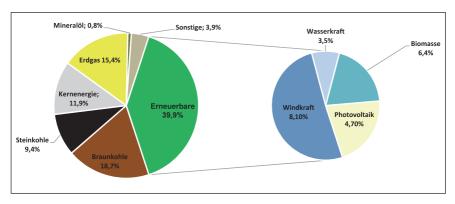
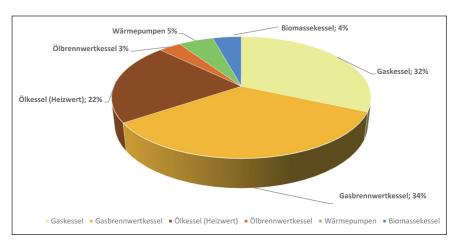

Die Prognosen der Reichweiten unserer Energiereserven sind sicherlich mit großen Unsicherheiten behaftet. Dennoch ist unstrittig, dass unsere Ressourcen nicht unerschöpflich sind. Mit Rücksicht auf spätere Generationen und die Umwelt ist daher ein maßvoller Umgang mit allen Bodenschätzen dringend geboten (Abbildung 2.1).

Abbildung 2.1: Statische Reichweite bei gegenwärtiger Förderung in Jahren; Stand 04/05


Der Anteil der "Regenerativen" an der Bruttostromerzeugung ist noch vergleichweise gering. Von 6,6 % im Jahr 2000 ist der Anteil auf 23,9 % in 2013 angestiegen, im Jahr 2021 waren es bereits rund 42 %. Der Anteil der Wasserkraft ist weitgehend ausgeschöpft (so gut wie alle Bäche und Flüsse sind mit Wasserkraftwerken erschlossen). Windkraftanlagen sind ebenfalls in den besten "Windgebieten" flächig installiert. Ein nennenswerter Ausbau der Erneuerbaren im Bereich

der Bruttostromerzeugung wird nicht einfach umzusetzen sein. Potenziale bieten beispielsweise Offshore-Windkraftanlagen, Gezeitenkraftwerke oder Tiefengeothermie (Abbildung 2.2).

Abbildung 2.2: Stromerzeugung nach Energieträgern in Deutschland im Jahr 2021

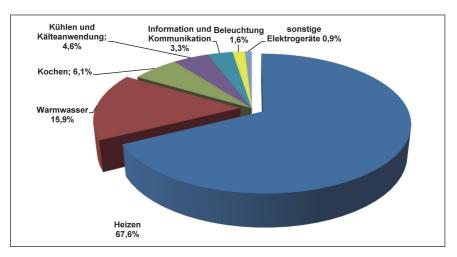

Das Kernproblem der meisten "Regenerativen" ist ihre nicht bedarfsgerechte Verfügbarkeit. Unser Anspruch an die Energieeffizienz verlangt allerdings auch eine Bedarfsänderung, d. h. auch der Umgang mit Energie muss sich grundlegend ändern.

Abbildung 2.3: Struktur der zentralen Wärmeerzeuger in Deutschland im Jahr 2020

Im Bereich Wärmeproduktion steckt der Ausbau noch in den Kinderschuhen. Im Unterschied zur Stromproduktion ist jedoch praktisch in jedem Haushalt der Einsatz von regenerativer Energie für den Wärmebedarf des Haushaltes möglich. Allein das Potenzial der Geothermie in Kombination mit Wärmepumpen würde ausreichen, den Wärmebedarf für die Heizung und die Warmwasserbereitung in Deutschland zu decken (Abbildung 2.3).

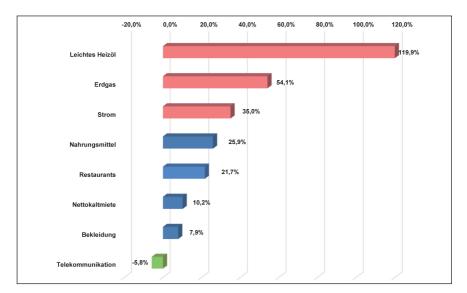

2.2 Energieverbräuche in Deutschland

Abbildung 2.4: Energieverbrauch in privaten Haushalten in Deutschland im Jahr 2018

Nach Angaben des Umweltbundesamtes verbrauchten die privaten Haushalte im Jahr 2018 in Deutschland 644 Milliarden Kilowattstunden. Dies entsprach einem Anteil von gut einem Viertel am gesamten Endenergieverbrauch in Deutschland. Knapp 85 % der Energie im Haushalt werden dabei für Heizen und Warmwasser verwandt. Ein Grund, mehr effiziente und regenerative Heiztechnik einzusetzen (Abbildung 2.4).

Nur wenige "Stellschrauben" können durch den Endkunden beeinflusst werden. Die Kosten von Gas, Öl, Strom, Müllabfuhr können nicht beeinflusst werden. Bei der Wahl eines Heizsystems mit Nutzung von regenerativer Energie kann der "Häuslebauer" die größten Einsparungen erreichen (Abbildung 2.5).

Abbildung 2.5: Preisentwicklung in privaten Haushalten von 2015 bis 2022 (Preisveränderungen in %)

2.3 CO₂-Belastung, Primärenergieverbrauch

Die Sache mit dem Strom

Natürlich braucht eine Wärmepumpe elektrischen Strom – wie alle anderen Wärmeerzeuger auch. Die Wärmepumpe benötigt neben der Versorgung der Umwälzpumpen, Regelungstechnik etc. auch elektrischen Strom für den Kompressor.

Die Gegner der Wärmepumpe ordnen der Wärmepumpe den Strom aus Braunkohlekraftwerken zu. Als Folge ist die CO₂-Bilanz bei der Erzeugung der Nutzenergie durch eine Wärmepumpe im Vergleich zu anderen Wärmeerzeugern nicht so positiv. Die Befürworter der Wärmepumpe sagen, dass man die Wärmepumpe auch mit "grünem Strom" betreiben kann. Die CO₂-Bilanz ist dann durch die Erzeugung des elektrischen Stromes durch Wasser-, Windkraft- oder Photovoltaikanlagen makellos. Die CO₂-Emission ist dann auf die unvermeidlichen Verluste durch die Stromverteilung reduziert.

Wie bei vielem liegt die Wahrheit in der Mitte. Der in Deutschland eingesetzte elektrische Strom wird durch eine Vielzahl von Techniken erzeugt. Neben Atomkraftwerken, Steinkohle- und Braunkohlekraftwerken werden auch Gaskraftwerke und regenerative Kraftwerke wie Windkraftanlagen eingesetzt.

GEMIS rechnet aus all diesen Erzeugungsanlagen einen Kraftwerksmix aus. Für jede erzeugte Kilowattstunde (kWh) kann dann ein gemittelter Wert angenommen werden.

Was ist GEMIS?

Das Globale Emissions-Modell integrierter Systeme (GEMIS) ist ein Instrument zur Umweltanalyse und wurde vom Öko-Institut und der Universität Kassel ab 1987 entwickelt. Es wurde seitdem kontinuierlich aktualisiert. GEMIS umfasst dabei den "kompletten Lebensweg" von der Primärenergie bis zur Nutzung und bezieht alle Hilfsenergien und Aufwände zur Herstellung von Transportsystemen ein (Abbildung 2.6).

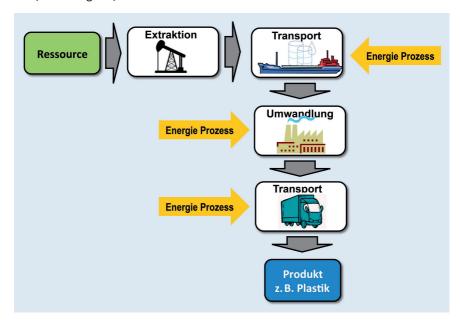
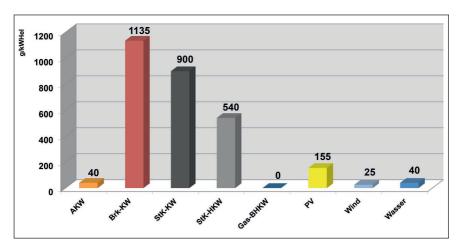
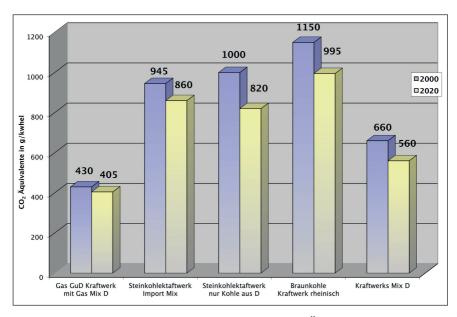



Abbildung 2.6: Darstellung einer Prozesskette am Beispiel von Plastik


Abbildung 2.7 und Abbildung 2.8 stellen die CO₂-Emissionen verschiedener Stromerzeugungssysteme dar.

Nicht wundern: Durch den Bonus für die Abwärme kann das Gas-BHKW einen neutralen ${\rm CO_2}$ -Ausstoß bei der dezentralen Stromerzeugung aufweisen.

Deutlich wird, dass Erdgas-GuD-Kraftwerke im Vergleich der Kraftwerke am günstigsten liegen. Abbildung 2.7 zeigt auch, dass noch in allen Kraftwerkstechniken Potenziale zur Einsparung liegen. Der Kraftwerksmix ist durch die Stein- und Braunkohlekraftwerke deutlich schlechter als die effizienten GuD-Kraftwerke.

Abbildung 2.7: CO₂-Ausstoß von Strombereitstellungssystemen AKW = Atomkraftwerk, BrK-KW = Braunkohlekraftwerk, StK-KW = Steinkohlekraftwerk, HKW = Heizkraftwerk, BHKW = Blockheizkraftwerk, PV = Photovoltaik

Abbildung 2.8: Darstellung der Treibhausgase als CO₂-Äquivalenzen verschiedener Stromerzeugungssysteme

2.4 Politik und Energie/Klima

Für die Zukunft kommt der besseren Energieeffizienz und den Erneuerbaren eine zentrale Rolle zu.

Im aktuellen fünften Sachstandsbericht (englisch Fifth Assessment Report, AR 5) des IPCC über Klimaveränderung (Intergovernmental Panel on Climate Change) der Vereinten Nationen wurde festgehalten, dass ohne zusätzliche Anstrengungen die globale Durchschnittstemperatur bis zum Jahr 2100 um 3,7 bis 4,8 °C steigen wird (verglichen mit dem vorindustriellen Stand). Der Anstieg der Treibhausgase ist dabei Auslöser für diese globale Erwärmung. Die größte weltweite Treibhausgas-Emission ist dem Energiesektor zuzuordnen, mit 37 % durch die Energiewirtschaft (öffentliche Strom- und Wärmeerzeugung, Raffinerien sowie Erzeuger von Festbrennstoffen) im Jahr 2019 in Deutschland, vgl. [2.1].

Bei einer Überschreitung der 1,5- oder 2-Grad-Grenze können die Folgen des Klimawandels u. U. nicht mehr kontrolliert werden. Im Teilbericht 3 (Minderung des Klimawandels) des Sachstandsberichtes wird davon ausgegangen, dass die Zwei-Grad-Obergrenze eingehalten werden kann. Der Klimaschutzplan 2050 der Bundesregierung beschreibt sogenannte Sektorziele - die Handlungsfelder Energiewirtschaft, Industrie, Gebäude, Verkehr, Landwirtschaft sowie Landnutzung und Forstwirtschaft. Von zentraler Bedeutung ist hierbei der Umbau der Energiewirtschaft. Durch den weiteren Ausbau erneuerbarer Energien und den schrittweisen Rückgang der fossilen Energieversorgung sollen die Emissionen der Energiewirtschaft bis 2030 um mehr als 60 Prozent gegenüber 1990 reduziert werden. Dies erfordert jedoch einen tiefgreifenden technologischen und wirtschaftlichen Wandel. Im Bereich der Energieversorgung soll dabei der Umsatz von Kohlenstoff (Entkarbonisierung, d.h. die Verbrennung von Kohlenstoff mit anschließender Freisetzung von CO₂) dramatisch gesenkt werden. Ferner soll der Endenergieverbrauch gesenkt werden. Im Gebäudebereich kann der Endenergieverbrauch durch folgende Maßnahmen gesenkt werden:

- Fortschrittliche Technologien,
- Energetische Sanierung des Gebäudebestands,
- Einführung von Energieeffizienzstandards.

In Deutschland sind diese Maßnahmen angestoßen bzw. umgesetzt. Durch den Wegfall der Kohlekraftwerke für die Stromversorgung und den ausschließlichen Einsatz von regenerativer Technik für die Wärmeversorgung könnte aber auch Deutschland noch CO₂-Minderungspotenziale ausschöpfen. Mit der Wärmepumpe steht eine ausgereifte Technik zur Verfügung, mit der die Minderung des Klimawandels erreicht werden kann, vgl. [2.2].

Ansätze konsequent weiter ausbauen

In Deutschland schreibt das Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer Energien zur Wärme- und Kälteerzeugung in Gebäuden (Gebäudenergiegesetz – GEG) vom 8. August 2020 (BGBl. I S. 1728) den Einsatz von erneuerbaren Energien in Gebäuden vor.

Nun macht Europa die Effizienz im Heizungssektor plakativ. Was alle beim Kauf von Waschmaschinen, Trocknern und Fernsehgeräten kennen – das farbige Effizienzlabel – wird nun auch für Heizgeräte und Warmwasserspeicher gelten mit Einführung der Delegierten Verordnungen (EU) Nr. 811/2013 und Nr. 812/2013 für **Effizienzkennzeichnung** von Raumheizgeräten, Kombiheizgeräten, Warmwasserbereitern, Warmwasserspeichern und Verbundanlagen mit Solareinrichtungen. Zusätzlich zu den Verordnungen der **Effizienzkennzeichnung** greifen die Verordnungen (EU) Nr. 813/2013 und Nr. 814/2013, die die Anforderungen an die umweltgerechte Gestaltung der Raumheizgeräte, Kombiheizgeräte, Warmwasserbereiter und Warmwasserspeicher stellen.

Diese Verordnungen sollen sicherstellen, dass die Verbraucher durch ein Etikett eine vergleichende Information über die Leistung und den Schallpegel von Heizgeräten/Warmwasserbereitern erhalten. Auf dem Etikett wird deshalb eine Bewertungsskala von A++ bis G für die Energieeffizienz von Heizgeräten dargestellt. Die Klassen A bis G sind für die konventionellen Heizkessel und die Klassen A+ und A++ den regenerativen Techniken (somit auch der Wärmepumpe) und der Kraft-Wärme-Kopplung vorbehalten. Die Effizienz der Warmwasserbereitungsfunktion von Heizgeräten wird von A bis G eingeteilt. Die weiteren Klassen A+++ (für die Heizfunktion) und A+ (für die Warmwasserfunktion) sollen 4 Jahre später hinzugefügt werden.

Die Bewertungsskala für Warmwasserbereiter und Warmwasserspeicher wird von A bis G eingeteilt, vgl. [2.3].

Seit dem 26. September 2015 müssen alle Raumheizgeräte, Kombigeräte, Warmwasserbereiter, Warmwasserspeicher, inklusive derer in Verbundanlagen, ein Etikett und ein Produktdatenblatt beinhalten. Bis zum Stichtag war das Führen des Etikettes freiwillig (Abbildung 2.9 bis Abbildung 2.11). Seit dem 26. September 2019 hat sich die Darstellung der Heizungslabel nach dem EnVKG geändert. Das neue Label klassifiziert die Heizanlagen von A+++ (sehr effizient) bis D (sehr hoher Energieverbrauch).

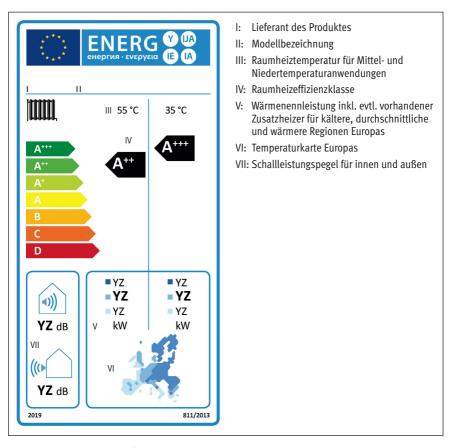


Abbildung 2.9: Etikett/Label Wärmepumpe als Raumheizgerät

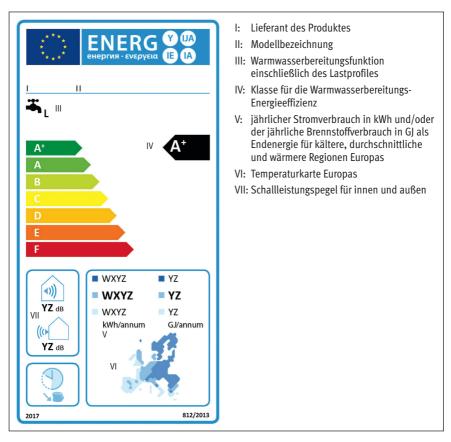


Abbildung 2.10: Etikett/Label Warmwasserbereiter mit Wärmepumpe

konventionelle Heizgeräte, Wärmepumpen und KWK-Anlagen			Wärmepumpen für Niedertemperatur-Anwendungen	
Jahres-Energie Effizienz-Klassen	Jahres-Energie Effizienz η _s in %		Jahres-Energie Effizienz-Klassen	Jahres-Energie Effizienz η _s in %
A***	η _s ≥ 150	Einführung der Klasse in 2019	A***	η _s ≥ 175
A**	125 ≤ η _s < 150		A**	150 ≤ η _s < 175
A ⁺	98 ≤ η _s < 125		A ⁺	123 ≤ η _s < 150
Α	90 ≤ η _s < 98		А	115 ≤ η _s < 123
В	82 ≤ η _s < 90		В	107 ≤ η _s < 115
С	75 ≤ η _s < 82		С	100 ≤ η _s < 107
D	36 ≤ η _s < 75		D	61 ≤ η _s < 100
E	34 ≤ η _s < 36	Wegfall der Klasse in 2019	E	59 ≤ η _s < 61
F	30 ≤ η _s < 34	Wegfall der Klasse in 2019	F	55 ≤ η _s < 59
G	$\eta_{\rm s} < 30$	Wegfall der Klasse in 2019	G	$n_{\rm s} < 55$

Abbildung 2.11: Übersicht der Effizienzklassen für Raumheizgeräte mit Heizkessel oder mit Wärmepumpe oder mit Kraft-Wärme-Kopplung im Vergleich zu Raumheizgeräten mit Niedertemperatur-Wärmepumpen

Großes Potenzial im Gebäudesektor

Um die nachhaltige ${\rm CO_2}$ -Reduzierung zu erzielen, muss ein ganzes Maßnahmenbündel umgesetzt werden. Eine große Bedeutung kommt dabei der Wärmeerzeugung zu. Rund 1/3 der klimarelevanten Emissionen fällt den Emissionen durch die Wärmeerzeugung zu (Gesamtemissionen = 965 Mio. t; davon Emissionen durch Wärmeerzeugung = 341 Mio. t in 2005; Quelle Umweltbundesamt [2.4]).

Der Ende April 2007 beschlossene Gebäudeenergieausweis (Bestandteil des Gebäudeenergiegesetz (GEG 2020)) soll helfen, die Emissionen auf diesem Gebiet zu senken. Der Energieausweis ist Pflicht und muss nicht nur beim Neubau erstellt werden, sondern auch beim Verkauf oder bei der Neuvermietung eines Gebäudes vorgelegt werden. Hiermit wird der Energieverbrauch eines Gebäudes "sichtbar" gemacht. Den Energieausweis gibt es in zwei Varianten. Der verbrauchsorientierte Ausweis orientiert sich an der Heizkostenabrechnung der aktuellen Nutzer in den vergangenen drei Jahren. Dabei sagt der Energieverbrauch mehr über die Heizgewohnheiten der Bewohner aus als über den Zustand des Gebäudes selbst. Aufwendiger ist der bedarfsorientierte Ausweis. Neben dem Lüftungswärmebedarf wird auch die Gebäudesubstanz, also die Dämmung von Wänden, Türen, Fenstern, Dach und Keller, für das Ergebnis herangezogen. Damit ist eine objektive Bewertung des Hauses möglich.

Beim Kauf einer Waschmaschine ist die Beurteilung der Effizienz des Gerätes denkbar einfach – über die Effizienzklasse sind die "guten" einfach von den "schlechten" zu unterscheiden. Mit dem Bewertungsstrahl des Energieausweises ist die Beurteilung nun ähnlich einfach. Grün heißt sparsamer Verbrauch, rot hoher Verbrauch (Abbildung 2.12).

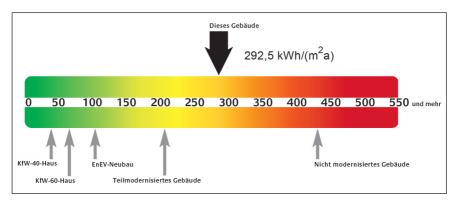


Abbildung 2.12: Bewertungsstrahl des Energieausweises

2.5 Energiepreise in Deutschland – Optionen zum gesteigerten Einsatz von erneuerbaren Energien

Der Status - heute

Die Ökosteuerreform, die 1999 eingeführt wurde, hatte das Ziel, durch eine Lenkungswirkung den Umweltschutz zu verbessern. Dabei sollte mithilfe einer Erhöhung von Mengensteuern auf den Energieverbrauch bzw. auf umweltschädliches Verhalten einerseits und anderseits durch Vergünstigungen für effizientere Technologien positiv Einfluss auf den Umweltschutz genommen werden. Mit Ausnahme des Stromsektors wurden dazu keine neuen Steuern eingeführt, vgl. [2.5].

Die nachfolgenden Grafiken stellen die Energiepreisentwicklung von Benzin, Diesel, leichtem Heizöl, Erdgas und Strom dar. Energie ist durch den Krieg in der Ukraine deutlich teurer geworden. Neben den Energien für den Haushalt wie Strom, Gas oder Heizöl sind auch die Kraftstoffpreise für das Automobil signifikant gestiegen. Für den Betrachtungszeitraum 2019 bis April 2022 ist der Kraftstoff Super um 35% und Diesel um 55% gestiegen.

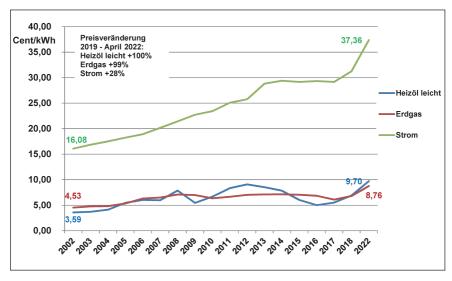


Abbildung 2.13: Energiepreise für Heizöl, Gas und Strom in Deutschland

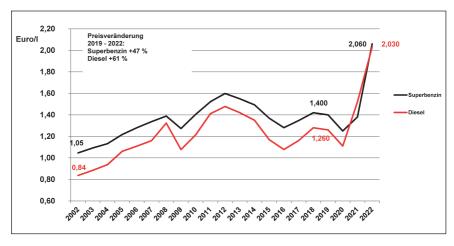
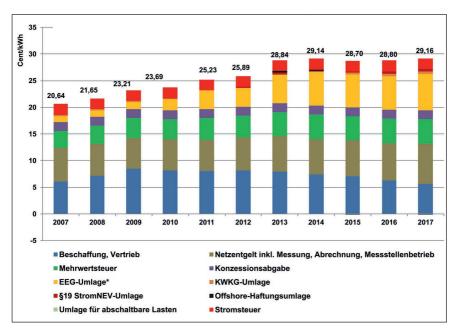



Abbildung 2.14: Energiepreise für Superbenzin und Diesel in Deutschland

Abbildung 2.15: Kostenanteile für Haushaltsstrom (4-Personen-Haushalt, 3500 kWh/a) von 2007–2017

Die Energiewende hin zur Nutzung von erneuerbarer Energie führt zurzeit zu einer Verteuerung des Stromes, obwohl die Erzeugung im Vergleich zu den anderen Energieträgern immer sauberer wird. Durch die Netzausbaukosten, Kosten für Kapazitätsreserven und die Zusatzkosten von Eigenverbrauchanlagen (sog. Prosumer-Anlagen) dürften die Kosten für Strom mittelfristig weiter steigen, vgl. [2.6].

Und die Lösung?

Diverse Institute, Vereine, Interessengemeinschaften und Verbände haben Positions-/Diskussionspapiere oder Studien erarbeitet mit dem Ziel, den CO₂-Austrag zu vermindern.

Bislang gibt es im Wärmemarkt nicht die richtigen Anreize, moderne Technologien und erneuerbare Energie einzusetzen, da die Kosten für eine Entsorgung der Emissionen in der Atmosphäre nach wie vor nicht beim Anlagenbetrieb anfallen, sondern stillschweigend vergesellschaftet werden, vgl. [2.7].

Nachfolgend werden eine Auswahl von Positions-/Diskussionspapieren oder Studien stichpunktartig zusammengefasst:

BDH/BWP-Position zur Sektorkopplung und zum Strompreis, Stand 22. Mai 2017

- Die maßgebliche Technologie zur Sektorkopplung der Sektoren Strom und Gebäude ist die Wärmepumpe.
- Als größtes Hemmnis für die erfolgreiche Sektorkopplung wird der hohe Wärmepumpenstrompreis identifiziert.
- Deshalb werden zwei Maßnahmen zur Entlastung des Strompreises vorgeschlagen:
 - EEG-Ausnahmen in Höhe von 5 Mrd. Euro aus dem Bundeshaushalt finanzieren.
 - Abschaffung der Stromsteuer, da diese die Energieeffizienz verhindert.

In Summe senkt sich dadurch der Strompreis um 4,1 Cent/kWh (netto). Die Maßnahmen leisten einen Beitrag, um sämtliche Stromverbraucher – Privathaushalte, mittelständische Unternehmen – zu entlasten und die Wettbewerbsfähigkeit von Sektorkopplungstechnologien wie der Wärmepumpe zu verbessern.

Agora Energiewende – Energiepreise und Energiewende: Optionen für eine Reform der Entgelte, Steuern, Abgaben und Umlagen

- Angleichung der unterschiedlich hohen Steuern, Abgaben und Umlagen auf die Energieträger Strom, Erdgas, Heizöl, Benzin und Diesel entweder durch
 - Anhebung der Steuern auf Benzin, Diesel, Erdgas und Heizöl und Verwendung dieser Mehreinnahmen zur Senkung der EEG-Umlage
 - oder durch Überführung aller energiewenderelevanten Kosten bei Strom, Wärme und Verkehr in eine allgemeine Energiewende-Umlage.

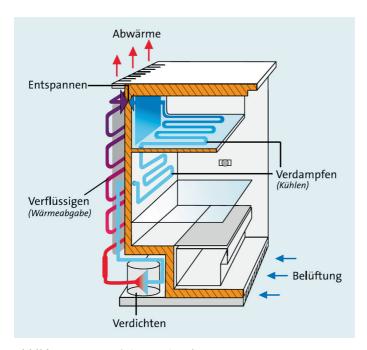
Diskussionspapier des ${\rm CO_2}$ Abgabe e.V. – Welchen Preis haben und brauchen Treibhausgase? Für mehr Klimaschutz, weniger Bürokratie und sozial gerechtere Energiepreise.

- Zentrales Instrument ist die Bepreisung von Treibhausgasen.
- Der Weg zur weltweiten Bepreisung von Treibhausgasen führt über die nationalen Preise für Treibhausgase.
- Zur Verwendung der Einnahmen werden 3 Möglichkeiten aufgezeigt:
 - Erhöhung des Steueraufkommens, um in Bildung zu investieren und die Sozialversicherung zu entlasten,
 - Rückzahlung an alle Bürger in Form einer Klimadividende in gleicher Höhe,

- CO₂- oder Klimaabgabe statt Umlagen, Steuern und Ausnahmen. Im Positionspapier Hybride Wärmepumpensysteme: Sektorkopplung für Klimaschutz und flexibles Lastmanagement stellt der BDH im Februar 2022 folgende Forderungen an die Energie- und Umweltpolitik:
 - 1. Für die Markteinführung von hybriden Wärmepumpensystemen bedarf es der Schaffung von flexiblen Stromtarifen, die nach heutigem Stand temporär deutlich unter 15 ct/kWh liegen müssen und einer degressiv ausgerichteten Förderung.
 - 2. Verstetigung auskömmlicher Förderung der Hybriden Wärmepumpe im Segment Hybridanlagen in der BEG (Bundesförderung für effiziente Gebäude).
 - 3. Technische und gesetzliche Rahmenbedingungen durch einheitliche Daten- bzw. Kommunikationsschnittstellen (z.B. im EnWG §14a, Steuerbare-Verbrauchseinrichtungen-Gesetz SteuVerG).
 - 4. Markthochlauf grüner und dekarbonisierter Energieträger zur Unterstützung der Elektrifizierung von Wärme- und Verkehrssektor.

Fazit: Die Lösungsansätze sind vielfältig und häufig komplex. Man darf gespannt sein, ob, und wenn ja, welches Konzept durch die "Ampelkoalition" umgesetzt wird.

3 Technik Wärmepumpe


3.1 Wärmepumpen und die Analogie zum Kühlschrank

Sie wussten es noch nicht? In jedem Haushalt befindet sich ein Kältekreislauf, der dem in einer Wärmepumpe gleichzusetzen ist – der Kühlschrank.

Der Kühlschrank entzieht dem Kühlfach Energie (es wird kalt) und gibt diese über die Rückwand mit einem höheren Temperaturniveau an die Umgebungsluft ab (Abbildung 3.1).

Der Kühlschrank besitzt dabei alle Hauptkomponenten, die auch in der Wärmepumpe zum Einsatz kommen:

- 1. Verdichter (Kompressor)
- 2. Drossel (Expansionsventil)
- 3. Verdampfer
- 4. Verflüssiger (Kondensator)

Abbildung 3.1: Funktionsweise der Wärmepumpe am Beispiel Kühlschrank

Die Wärmepumpe und die Analogie zur Fahrradpumpe – Erklärung Nr. 2

Um die Funktion einer Wärmepumpe zu erläutern, kann ein noch einfacherer Vergleich herangezogen werden: das Aufpumpen eines Fahrradschlauches (Abbildung 3.2). Mit einer Fahrradpumpe wird Luft in den Schlauch gepumpt und dabei immer weiter komprimiert. Bei längerem Pumpen wird der Kolben der Fahrradpumpe warm. Der Effekt basiert auf zwei physikalischen Eigenschaften:

- 1. Die Kompression der Luft erzeugt Wärme.
- 2. Die Reibung des Zylinderplättchens im Kolben bringt ebenfalls Wärme hervor.

Der Effekt "Wärme durch Kompression" wird auch bei der Wärmepumpe genutzt. Ein Gas, im Fachjargon Kältemittel genannt, nimmt in der Wärmequelle Umweltenergie auf. Dieses Kältemittel ist immer kälter als das Erdreich, das Grundwasser oder die Luft. Im Kompressor wird das Kältemittel komprimiert (Druckerhöhung analog zur Fahrradpumpe). Die Temperatur des Gases steigt so weit, dass diese Wärmeenergie über einen Wärmetauscher genutzt werden kann. Anschließend wird der Druck des Kältemittels verringert und der Wärmequelle über einen Wärmetauscher wieder zugeführt, wo es erneut Wärme aufnimmt.

Die Wärmepumpe ist somit in der Lage, mit einem Teil elektrischer Energie das Drei- bis Fünffache an Heizenergie zu erzeugen.

Abbildung 3.2: Funktionsweise der Wärmepumpe am Beispiel einer Fahrradpumpe

3.2 Kältekreislauf der Wärmepumpe

Der Kältekreislauf besteht im Wesentlichen aus vier Hauptkomponenten: Verdampfer, Verdichter, Verflüssiger und Expansionsventil. Im Kältekreislauf zirkuliert ein FCKW-freies Arbeitsmittel mit extrem niedrigem Siedepunkt. Im Verdampfer wird dem Arbeitsmittel Umweltwärme zugeführt. Es wechselt vom

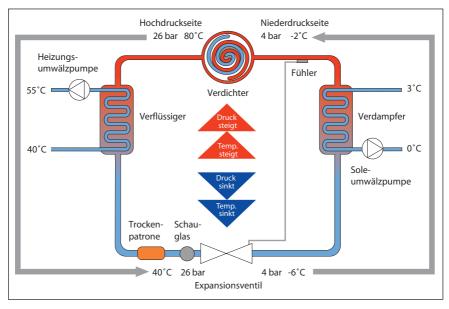


Abbildung 3.3: Kältekreislauf einer Sole/Wasser-Wärmepumpe

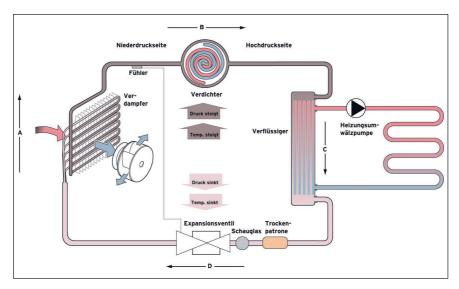


Abbildung 3.4: Kältekreislauf einer Luft/Wasser-Wärmepumpe