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17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
17.2 Chain Rings, Galois Rings, and Alternative Distances . . . . . . . . . . . 387
17.3 Constacyclic Codes over Arbitrary Commutative Finite Rings . . . . . . 391
17.4 Simple-Root Cyclic and Negacyclic Codes over Finite Chain Rings . . . . 392
17.5 Repeated-Root Constacyclic Codes over Galois Rings . . . . . . . . . . . 399
17.6 Repeated-Root Constacyclic Codes over R = Fpm + uFpm , u2 = 0 . . . . 407

17.6.1 All Constacyclic Codes of Length ps over R . . . . . . . . . . . . 407
17.6.2 All Constacyclic Codes of Length 2ps over R . . . . . . . . . . . . 412
17.6.3 All Constacyclic Codes of Length 4ps over R . . . . . . . . . . . . 414
17.6.4 λ-Constacyclic Codes of Length nps over R, λ ∈ F∗pm . . . . . . . 418

17.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

18 Weight Distribution of Trace Codes over Finite Rings 429

Minjia Shi
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
18.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
18.3 A Class of Special Finite Rings Rk (Type I) . . . . . . . . . . . . . . . . 430

18.3.1 Case (i) k = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
18.3.2 Case (ii) k = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
18.3.3 Case (iii) k > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
18.3.4 Case (iv) Rk(p), p an Odd Prime . . . . . . . . . . . . . . . . . . 435

18.4 A Class of Special Finite Rings R(k, p, uk = a) (Type II) . . . . . . . . . 441
18.5 Three Special Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

18.5.1 R(2, p, u2 = u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
18.5.2 R(3, 2, u3 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
18.5.3 R(3, 3, u3 = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

18.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

19 Two-Weight Codes 449

Andries E. Brouwer
19.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
19.2 Codes as Projective Multisets . . . . . . . . . . . . . . . . . . . . . . . . . 450

19.2.1 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
19.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

19.3.1 Difference Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
19.3.2 Using a Projective Set as a Difference Set . . . . . . . . . . . . . 451
19.3.3 Strongly Regular Graphs . . . . . . . . . . . . . . . . . . . . . . . 451
19.3.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
19.3.5 Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453



xiv Contents

19.3.6 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
19.3.7 Field Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

19.4 Irreducible Cyclic Two-Weight Codes . . . . . . . . . . . . . . . . . . . . 454
19.5 Cyclotomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

19.5.1 The Van Lint–Schrijver Construction . . . . . . . . . . . . . . . . 455
19.5.2 The De Lange Graphs . . . . . . . . . . . . . . . . . . . . . . . . 456
19.5.3 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

19.6 Rank 3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
19.6.1 One-Dimensional Affine Rank 3 Groups . . . . . . . . . . . . . . . 456

19.7 Two-Character Sets in Projective Space . . . . . . . . . . . . . . . . . . . 457
19.7.1 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
19.7.2 Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
19.7.3 Maximal Arcs and Hyperovals . . . . . . . . . . . . . . . . . . . . 459
19.7.4 Baer Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
19.7.5 Hermitian Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . 459
19.7.6 Sporadic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 459

19.8 Nonprojective Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
19.9 Brouwer–Van Eupen Duality . . . . . . . . . . . . . . . . . . . . . . . . . 461

19.9.1 From Projective Code to Two-Weight Code . . . . . . . . . . . . 461
19.9.2 From Two-Weight Code to Projective Code . . . . . . . . . . . . 462

20 Linear Codes from Functions 463
Sihem Mesnager

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
20.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

20.2.1 The Trace Function . . . . . . . . . . . . . . . . . . . . . . . . . . 466
20.2.2 Vectorial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 466

20.2.2.1 Representations of p-Ary Functions . . . . . . . . . . . . 466
20.2.2.2 The Walsh Transform of a Vectorial Function . . . . . . 468

20.2.3 Nonlinearity of Vectorial Boolean Functions and Bent Boolean
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

20.2.4 Plateaued Functions and More about Bent Functions . . . . . . . 471
20.2.5 Differential Uniformity of Vectorial Boolean Functions, PN, and

APN Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
20.2.6 APN and Planar Functions over Fqm . . . . . . . . . . . . . . . . 474
20.2.7 Dickson Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 475

20.3 Generic Constructions of Linear Codes . . . . . . . . . . . . . . . . . . . 476
20.3.1 The First Generic Construction . . . . . . . . . . . . . . . . . . . 476
20.3.2 The Second Generic Construction . . . . . . . . . . . . . . . . . . 478

20.3.2.1 The Defining Set Construction of Linear Codes . . . . . 478
20.3.2.2 Generalizations of the Defining Set Construction of Lin-

ear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 479
20.3.2.3 A Modified Defining Set Construction of Linear Codes . 479

20.4 Binary Codes with Few Weights from Boolean Functions and Vectorial
Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
20.4.1 A First Example of Codes from Boolean Functions: Reed–Muller

Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
20.4.2 A General Construction of Binary Linear Codes from Boolean

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
20.4.3 Binary Codes from the Preimage f−1(b) of Boolean Functions f . 480
20.4.4 Codes with Few Weights from Bent Boolean Functions . . . . . . 481



Contents xv

20.4.5 Codes with Few Weights from Semi-Bent Boolean Functions . . . 482
20.4.6 Linear Codes from Quadratic Boolean Functions . . . . . . . . . . 483
20.4.7 Binary Codes CDf with Three Weights . . . . . . . . . . . . . . . 484
20.4.8 Binary Codes CDf with Four Weights . . . . . . . . . . . . . . . . 484
20.4.9 Binary Codes CDf with at Most Five Weights . . . . . . . . . . . 485
20.4.10 A Class of Two-Weight Binary Codes from the Preimage of a Type

of Boolean Function . . . . . . . . . . . . . . . . . . . . . . . . . . 486
20.4.11 Binary Codes from Boolean Functions Whose Supports are Rela-

tive Difference Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 487
20.4.12 Binary Codes with Few Weights from Plateaued Boolean Functions 487
20.4.13 Binary Codes with Few Weights from Almost Bent Functions . . 488
20.4.14 Binary Codes CD(G) from Functions on F2m of the Form G(x) =

F (x) + F (x+ 1) + 1 . . . . . . . . . . . . . . . . . . . . . . . . . 489
20.4.15 Binary Codes from the Images of Certain Functions on F2m . . . 489

20.5 Constructions of Cyclic Codes from Functions: The Sequence Approach . 490
20.5.1 A Generic Construction of Cyclic Codes with Polynomials . . . . 490
20.5.2 Binary Cyclic Codes from APN Functions . . . . . . . . . . . . . 492
20.5.3 Non-Binary Cyclic Codes from Monomials and Trinomials . . . . 495
20.5.4 Cyclic Codes from Dickson Polynomials . . . . . . . . . . . . . . . 498

20.6 Codes with Few Weights from p-Ary Functions with p Odd . . . . . . . . 503
20.6.1 Codes with Few Weights from p-Ary Weakly Regular Bent Func-

tions Based on the First Generic Construction . . . . . . . . . . . 503
20.6.2 Linear Codes with Few Weights from Cyclotomic Classes and

Weakly Regular Bent Functions . . . . . . . . . . . . . . . . . . . 504
20.6.3 Codes with Few Weights from p-Ary Weakly Regular Bent Func-

tions Based on the Second Generic Construction . . . . . . . . . . 507
20.6.4 Codes with Few Weights from p-Ary Weakly Regular Plateaued

Functions Based on the First Generic Construction . . . . . . . . 508
20.6.5 Codes with Few Weights from p-Ary Weakly Regular Plateaued

Functions Based on the Second Generic Construction . . . . . . . 510
20.7 Optimal Linear Locally Recoverable Codes from p-Ary Functions . . . . . 521

20.7.1 Constructions of r-Good Polynomials for Optimal LRC Codes . . 523
20.7.1.1 Good Polynomials from Power Functions . . . . . . . . . 523
20.7.1.2 Good Polynomials from Linearized Functions . . . . . . 523
20.7.1.3 Good Polynomials from Function Composition . . . . . 523
20.7.1.4 Good Polynomials from Dickson Polynomials of the First

Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
20.7.1.5 Good Polynomials from the Composition of Functions In-

volving Dickson Polynomials . . . . . . . . . . . . . . . . 525

21 Codes over Graphs 527

Christine A. Kelley
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
21.2 Low-Density Parity Check Codes . . . . . . . . . . . . . . . . . . . . . . . 528
21.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

21.3.1 Decoder Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
21.4 Codes from Finite Geometries . . . . . . . . . . . . . . . . . . . . . . . . 540
21.5 Codes from Expander Graphs . . . . . . . . . . . . . . . . . . . . . . . . 542
21.6 Protograph Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
21.7 Density Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
21.8 Other Families of Codes over Graphs . . . . . . . . . . . . . . . . . . . . 550



xvi Contents

21.8.1 Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
21.8.2 Repeat Accumulate Codes . . . . . . . . . . . . . . . . . . . . . . 551
21.8.3 Spatially-Coupled LDPC Codes . . . . . . . . . . . . . . . . . . . 551

III Applications 553

22 Alternative Metrics 555
Marcelo Firer

22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
22.2 Metrics Generated by Subspaces . . . . . . . . . . . . . . . . . . . . . . . 558

22.2.1 Projective Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
22.2.2 Combinatorial Metrics . . . . . . . . . . . . . . . . . . . . . . . . 559

22.2.2.1 Block Metrics . . . . . . . . . . . . . . . . . . . . . . . . 561
22.2.2.2 b-Burst Metrics . . . . . . . . . . . . . . . . . . . . . . . 561
22.2.2.3 b1 × b2-Burst Metrics . . . . . . . . . . . . . . . . . . . . 562

22.3 Poset Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
22.3.1 Poset-Block Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 565
22.3.2 Graph Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

22.4 Additive Generalizations of the Lee Metric . . . . . . . . . . . . . . . . . 566
22.4.1 Metrics over Rings of Integers . . . . . . . . . . . . . . . . . . . . 566
22.4.2 l-Dimensional Lee Weights . . . . . . . . . . . . . . . . . . . . . . 567
22.4.3 Kaushik–Sharma Metrics . . . . . . . . . . . . . . . . . . . . . . . 567

22.5 Non-Additive Metrics Digging into the Alphabet . . . . . . . . . . . . . . 568
22.5.1 Pomset Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
22.5.2 m-Spotty Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

22.6 Metrics for Asymmetric Channels . . . . . . . . . . . . . . . . . . . . . . 570
22.6.1 The Asymmetric Metric . . . . . . . . . . . . . . . . . . . . . . . 570
22.6.2 The Generalized Asymmetric Metric . . . . . . . . . . . . . . . . 571

22.7 Editing Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
22.7.1 Bounds for Editing Codes . . . . . . . . . . . . . . . . . . . . . . 572

22.8 Permutation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

23 Algorithmic Methods 575

Alfred Wassermann
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
23.2 Linear Codes with Prescribed Minimum Distance . . . . . . . . . . . . . 576
23.3 Linear Codes as Sets of Points in Projective Geometry . . . . . . . . . . . 577

23.3.1 Automorphisms of Projective Point Sets . . . . . . . . . . . . . . 580
23.4 Projective Point Sets with Prescribed Automorphism Groups . . . . . . . 582

23.4.1 Strategies for Choosing Groups . . . . . . . . . . . . . . . . . . . 585
23.4.2 Observations for Permutation Groups . . . . . . . . . . . . . . . . 585
23.4.3 Observations for Cyclic Groups . . . . . . . . . . . . . . . . . . . 586

23.5 Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
23.6 Construction of Codes with Additional Restrictions . . . . . . . . . . . . 587

23.6.1 Projective Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
23.6.2 Codes with Few Weights . . . . . . . . . . . . . . . . . . . . . . . 587
23.6.3 Divisible Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
23.6.4 Codes with Prescribed Gram Matrix . . . . . . . . . . . . . . . . 589
23.6.5 Self-Orthogonal Codes . . . . . . . . . . . . . . . . . . . . . . . . 591
23.6.6 LCD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

23.7 Extensions of Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594



Contents xvii

23.8 Determining the Minimum Distance and Weight Distribution . . . . . . . 595

24 Interpolation Decoding 599

Swastik Kopparty
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
24.2 The Berlekamp–Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . 600

24.2.1 Correctness of the Algorithm RSDecode . . . . . . . . . . . . . . 602
24.3 List-decoding of Reed–Solomon Codes . . . . . . . . . . . . . . . . . . . . 603

24.3.1 The Sudan Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 603
24.3.2 Correctness of the Algorithm RSListDecodeV1 . . . . . . . . . . . 604

24.4 List-decoding of Reed–Solomon Codes Using Multiplicities . . . . . . . . 605
24.4.1 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
24.4.2 The Guruswami–Sudan Algorithm . . . . . . . . . . . . . . . . . . 607
24.4.3 Correctness of the Algorithm RSListDecodeV2 . . . . . . . . . . . 608
24.4.4 Why Do Multiplicities Help? . . . . . . . . . . . . . . . . . . . . . 608

24.5 Decoding of Interleaved Reed–Solomon Codes under Random Error . . . 609
24.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

25 Pseudo-Noise Sequences 613

Tor Helleseth and Chunlei Li
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
25.2 Sequences with Low Correlation . . . . . . . . . . . . . . . . . . . . . . . 614

25.2.1 Correlation Measures of Sequences . . . . . . . . . . . . . . . . . 614
25.2.2 Sequences with Low Periodic Autocorrelation . . . . . . . . . . . 619
25.2.3 Sequence Families with Low Periodic Correlation . . . . . . . . . 624

25.3 Shift Register Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
25.3.1 Feedback Shift Registers . . . . . . . . . . . . . . . . . . . . . . . 627
25.3.2 Cycle Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
25.3.3 Cycle Joining and Splitting . . . . . . . . . . . . . . . . . . . . . . 630
25.3.4 Cycle Structure of LFSRs . . . . . . . . . . . . . . . . . . . . . . 631

25.4 Generation of De Bruijn Sequences . . . . . . . . . . . . . . . . . . . . . . 634
25.4.1 Graphical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 634
25.4.2 Combinatorial Approach . . . . . . . . . . . . . . . . . . . . . . . 636
25.4.3 Algebraic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 640

26 Lattice Coding 645

Frédérique Oggier
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
26.2 Lattice Coding for the Gaussian Channel . . . . . . . . . . . . . . . . . . 646
26.3 Modulation Schemes for Fading Channels . . . . . . . . . . . . . . . . . . 648

26.3.1 Channel Model and Design Criteria . . . . . . . . . . . . . . . . . 648
26.3.2 Lattices from Quadratic Fields . . . . . . . . . . . . . . . . . . . . 649

26.4 Lattices from Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 651
26.4.1 Construction A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
26.4.2 Constructions D and D . . . . . . . . . . . . . . . . . . . . . . . . 653

26.5 Variations of Lattice Coding Problems . . . . . . . . . . . . . . . . . . . . 654
26.5.1 Index Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
26.5.2 Wiretap Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655



xviii Contents

27 Quantum Error-Control Codes 657

Martianus Frederic Ezerman
27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
27.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
27.3 The Stabilizer Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
27.4 Constructions via Classical Codes . . . . . . . . . . . . . . . . . . . . . . 665
27.5 Going Asymmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
27.6 Other Approaches and a Conclusion . . . . . . . . . . . . . . . . . . . . . 671

28 Space-Time Coding 673

Frédérique Oggier
28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
28.2 Channel Models and Design Criteria . . . . . . . . . . . . . . . . . . . . . 674

28.2.1 Coherent Space-Time Coding . . . . . . . . . . . . . . . . . . . . 675
28.2.2 Differential Space-Time Coding . . . . . . . . . . . . . . . . . . . 676

28.3 Some Examples of Space-Time Codes . . . . . . . . . . . . . . . . . . . . 677
28.3.1 The Alamouti Code . . . . . . . . . . . . . . . . . . . . . . . . . . 677
28.3.2 Linear Dispersion Codes . . . . . . . . . . . . . . . . . . . . . . . 678
28.3.3 The Golden Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
28.3.4 Cayley Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

28.4 Variations of Space-Time Coding Problems . . . . . . . . . . . . . . . . . 680
28.4.1 Distributed Space-Time Coding . . . . . . . . . . . . . . . . . . . 680
28.4.2 Space-Time Coded Modulation . . . . . . . . . . . . . . . . . . . 681
28.4.3 Fast Decodable Space-Time Codes . . . . . . . . . . . . . . . . . . 681
28.4.4 Secure Space-Time Coding . . . . . . . . . . . . . . . . . . . . . . 683

29 Network Codes 685
Frank R. Kschischang

29.1 Packet Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
29.2 Multicasting from a Single Source . . . . . . . . . . . . . . . . . . . . . . 687

29.2.1 Combinational Packet Networks . . . . . . . . . . . . . . . . . . . 687
29.2.2 Network Information Flow Problems . . . . . . . . . . . . . . . . 689
29.2.3 The Unicast Problem . . . . . . . . . . . . . . . . . . . . . . . . . 689
29.2.4 Linear Network Coding Achieves Multicast Capacity . . . . . . . 690
29.2.5 Multicasting from Multiple Sources . . . . . . . . . . . . . . . . . 691

29.3 Random Linear Network Coding . . . . . . . . . . . . . . . . . . . . . . . 692
29.4 Operator Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

29.4.1 Vector Space, Matrix, and Combinatorial Preliminaries . . . . . . 694
29.4.2 The Operator Channel . . . . . . . . . . . . . . . . . . . . . . . . 697

29.5 Codes and Metrics in Pq(n) . . . . . . . . . . . . . . . . . . . . . . . . . . 698
29.5.1 Subspace Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
29.5.2 Coding Metrics on Pq(n) . . . . . . . . . . . . . . . . . . . . . . . 699

29.6 Bounds on Constant-Dimension Codes . . . . . . . . . . . . . . . . . . . . 701
29.6.1 The Sphere Packing Bound . . . . . . . . . . . . . . . . . . . . . . 701
29.6.2 The Singleton Bound . . . . . . . . . . . . . . . . . . . . . . . . . 702
29.6.3 The Anticode Bound . . . . . . . . . . . . . . . . . . . . . . . . . 702
29.6.4 Johnson-Type Bounds . . . . . . . . . . . . . . . . . . . . . . . . 703
29.6.5 The Ahlswede and Aydinian Bound . . . . . . . . . . . . . . . . . 704
29.6.6 A Gilbert–Varshamov-Type Bound . . . . . . . . . . . . . . . . . 704

29.7 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
29.7.1 Lifted Rank-Metric Codes . . . . . . . . . . . . . . . . . . . . . . 705



Contents xix

29.7.2 Padded Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
29.7.3 Lifted Ferrers Diagram Codes . . . . . . . . . . . . . . . . . . . . 708
29.7.4 Codes Obtained by Integer Linear Programming . . . . . . . . . . 710
29.7.5 Further Constructions . . . . . . . . . . . . . . . . . . . . . . . . 710

29.8 Encoding and Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
29.8.1 Encoding a Union of Lifted FD Codes . . . . . . . . . . . . . . . 711
29.8.2 Decoding Lifted Delsarte–Gabidulin Codes . . . . . . . . . . . . . 711
29.8.3 Decoding a Union of Lifted FD Codes . . . . . . . . . . . . . . . . 712

29.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

30 Coding for Erasures and Fountain Codes 715

Ian F. Blake
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
30.2 Tornado Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
30.3 LT Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
30.4 Raptor Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

31 Codes for Distributed Storage 735

Vinayak Ramkumar, Myna Vajha, S. B. Balaji, M. Nikhil Krishnan,
Birenjith Sasidharan, and P. Vijay Kumar

31.1 Reed–Solomon Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
31.2 Regenerating Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

31.2.1 An Example of a Regenerating Code and Sub-Packetization . . . 739
31.2.2 General Definition of a Regenerating Code . . . . . . . . . . . . . 739
31.2.3 Bound on File Size . . . . . . . . . . . . . . . . . . . . . . . . . . 740
31.2.4 MSR and MBR Codes . . . . . . . . . . . . . . . . . . . . . . . . 741
31.2.5 Storage Bandwidth Tradeoff for Exact-Repair . . . . . . . . . . . 742
31.2.6 Polygon MBR Codes . . . . . . . . . . . . . . . . . . . . . . . . . 742
31.2.7 The Product-Matrix MSR and MBR Constructions . . . . . . . . 743

31.2.7.1 PM-MSR Codes . . . . . . . . . . . . . . . . . . . . . . . 743
31.2.7.2 PM-MBR Codes . . . . . . . . . . . . . . . . . . . . . . 744

31.2.8 The Clay Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
31.2.9 Variants of Regenerating Codes . . . . . . . . . . . . . . . . . . . 748

31.3 Locally Recoverable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 749
31.3.1 Information Symbol Locality . . . . . . . . . . . . . . . . . . . . . 750

31.3.1.1 Pyramid Codes . . . . . . . . . . . . . . . . . . . . . . . 750
31.3.1.2 Windows Azure LRC . . . . . . . . . . . . . . . . . . . . 751

31.3.2 All Symbol Locality . . . . . . . . . . . . . . . . . . . . . . . . . . 751
31.3.3 LRCs over Small Field Size . . . . . . . . . . . . . . . . . . . . . . 753
31.3.4 Recovery from Multiple Erasures . . . . . . . . . . . . . . . . . . 754

31.3.4.1 Codes with Sequential Recovery . . . . . . . . . . . . . . 754
31.3.4.2 Codes with Parallel Recovery . . . . . . . . . . . . . . . 755
31.3.4.3 Codes with Availability . . . . . . . . . . . . . . . . . . 755
31.3.4.4 Codes with Cooperative Recovery . . . . . . . . . . . . . 756
31.3.4.5 Codes with (r, δ) Locality . . . . . . . . . . . . . . . . . 756
31.3.4.6 Hierarchical Codes . . . . . . . . . . . . . . . . . . . . . 757

31.3.5 Maximally Recoverable Codes . . . . . . . . . . . . . . . . . . . . 757
31.4 Locally Regenerating Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 758
31.5 Efficient Repair of Reed–Solomon Codes . . . . . . . . . . . . . . . . . . . 759
31.6 Codes for Distributed Storage in Practice . . . . . . . . . . . . . . . . . . 760



xx Contents

32 Polar Codes 763
Noam Presman and Simon Litsyn

32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
32.2 Kernel Based ECCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

32.2.1 Kernel Based ECCs are Recursive GCCs . . . . . . . . . . . . . . 766
32.3 Channel Splitting and Combining and the SC Algorithm . . . . . . . . . 769
32.4 Polarization Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

32.4.1 Polarization Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
32.5 Polar Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

32.5.1 Polar Code Design . . . . . . . . . . . . . . . . . . . . . . . . . . 775
32.6 Polar Codes Encoding Algorithms . . . . . . . . . . . . . . . . . . . . . . 776
32.7 Polar Codes Decoding Algorithms . . . . . . . . . . . . . . . . . . . . . . 777

32.7.1 The SC Decoding Algorithm . . . . . . . . . . . . . . . . . . . . . 778
32.7.1.1 SC for (u+ v, v) . . . . . . . . . . . . . . . . . . . . . . 778
32.7.1.2 SC for General Kernels . . . . . . . . . . . . . . . . . . . 780
32.7.1.3 SC Complexity . . . . . . . . . . . . . . . . . . . . . . . 781

32.7.2 The SCL Decoding Algorithm . . . . . . . . . . . . . . . . . . . . 781
32.8 Summary and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 783

33 Secret Sharing with Linear Codes 785

Cunsheng Ding
33.1 Introduction to Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . 785
33.2 The First Construction of Secret Sharing Schemes . . . . . . . . . . . . . 787
33.3 The Second Construction of Secret Sharing Schemes . . . . . . . . . . . . 790

33.3.1 Minimal Linear Codes and the Covering Problem . . . . . . . . . 790
33.3.2 The Second Construction of Secret Sharing Schemes . . . . . . . . 791
33.3.3 Secret Sharing Schemes from the Duals of Minimal Codes . . . . 792
33.3.4 Other Works on the Second Construction . . . . . . . . . . . . . . 793

33.4 Multisecret Sharing with Linear Codes . . . . . . . . . . . . . . . . . . . 794
33.4.1 The Relation Between Multisecret Sharing and Codes . . . . . . . 795
33.4.2 Linear Threshold Schemes and MDS Codes . . . . . . . . . . . . . 796

34 Code-Based Cryptography 799

Philippe Gaborit and Jean-Christophe Deneuville
34.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

34.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
34.1.2 Background on Coding Theory . . . . . . . . . . . . . . . . . . . . 801

34.2 Difficult Problems for Code-Based Cryptography: The Syndrome Decoding
Problem and Its Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 803

34.3 Best-Known Attacks for the Syndrome Decoding Problem . . . . . . . . . 804
34.4 Public-Key Encryption from Coding Theory with Hidden Structure . . . 807

34.4.1 The McEliece and Niederreiter Frameworks . . . . . . . . . . . . 807
34.4.2 Group-Structured McEliece Framework . . . . . . . . . . . . . . . 809
34.4.3 Moderate-Density Parity Check (MDPC) Codes . . . . . . . . . . 810

34.5 PKE Schemes with Reduction to Decoding Random Codes without Hidden
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
34.5.1 Alekhnovich’s Approach . . . . . . . . . . . . . . . . . . . . . . . 812
34.5.2 HQC: Efficient Encryption from Random Quasi-Cyclic Codes . . 813
34.5.3 Ouroboros Key-Exchange Protocol . . . . . . . . . . . . . . . . . 814

34.6 Examples of Parameters for Code-Based Encryption and Key Exchange . 815
34.7 Authentication: The Stern Zero-Knowledge Protocol . . . . . . . . . . . . 816



Contents xxi

34.8 Digital Signatures from Coding Theory . . . . . . . . . . . . . . . . . . . 817
34.8.1 Signature from a Zero-Knowledge Authentication Scheme with the

Fiat–Shamir Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 818
34.8.2 The CFS Signature Scheme . . . . . . . . . . . . . . . . . . . . . 818
34.8.3 The WAVE Signature . . . . . . . . . . . . . . . . . . . . . . . . . 819
34.8.4 Few-Times Signature Schemes and Variations . . . . . . . . . . . 820

34.9 Other Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
34.10 Rank-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 820

Bibliography 823

Index 941



http://taylorandfrancis.com


Preface

The 1948 publication of the paper A mathematical theory of communication by Claude E.
Shannon is considered to be the genesis of the now vast area of coding theory. In the over 70
years since this monumental work first appeared, coding theory has grown into a discipline
intersecting mathematics, computer science, and engineering with applications to almost
every area of communication and data storage and even beyond. Given a communication
channel on which data is transmitted or a storage device on which data is kept, that data
may be corrupted by errors or erasures. In what form do you put that data so that the
original information can be recovered and how do you make that recovery? Shannon’s paper
showed that coding theory provides an answer to that question. The Concise Encyclopedia
of Coding Theory, somewhat in the spirit of the 1998 Handbook of Coding Theory [1521],
examines many of the major areas and themes of coding theory taking the reader from the
basic introductory level to the frontiers of research.

The authors chosen to contribute to this encyclopedia were selected because of their
expertise and understanding of the specific topic of their chapter. Authors have introduced
the topic of their chapter in relationship to how it fits into the historical development of
coding theory and why their topic is of theoretical and/or applied interest. Each chapter
progresses from basic to advanced ideas with few proofs but with many references to which
the reader may go for more in-depth study. An attempt has been made within each chapter
to point the reader to other chapters in the encyclopedia that deal with similar or related
material. An extensive index is provided to help guide the reader interested in pursuing a
particular concept.

The Concise Encyclopedia of Coding Theory is divided into of three parts: Part I explores
the fundamentals of coding theory, Part II examines specific families of codes, and Part III
focuses on the practical application of codes.

The first thirteen chapters make up Part I of this encyclopedia. This part explores the
fundamental concepts involved in the development of error-correcting codes. Included is an
introduction to several historically significant types of codes along with some of their natural
generalizations. The mathematical theory behind these codes and techniques for studying
them are also introduced. Readers of this encyclopedia who are new to coding theory are
encouraged to first read Chapter 1 and then consider other chapters that interest them.
More advanced readers may wish to skim Chapter 1 but then move to other chapters.

Chapter 1, written by the editors of this encyclopedia, is an introduction to the basic
concepts of coding theory and sets the stage with notation and terminology used throughout
the book. The chapter starts with a simple communication channel moving then to the
definition of linear and nonlinear codes over finite fields. Basic concepts needed to explore
codes are introduced along with families of classical codes: Hamming, Reed–Muller, cyclic,
Golay, BCH, and Reed–Solomon codes. The chapter concludes with an brief introduction
to encoding, decoding, and Shannon’s Theorem, the latter becoming the justification and
motivation for the entire discipline.

Chapter 2, written by Cunsheng Ding, describes two fundamental constructions of cyclic
codes and the BCH and Hartmann–Tzeng Bounds on cyclic codes. The main task of this
chapter is to introduce several important families of cyclic codes, including irreducible cyclic

xxiii
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codes, reversible cyclic codes, BCH codes, duadic codes, punctured generalized Reed–Muller
codes, and a new generalization of the punctured binary Reed–Muller codes.

Shannon’s proof of the existence of good codes is non-constructive and therefore of little
use for applications, where one needs one or all codes with specific (small) parameters.
Techniques for constructing and classifying codes are considered in Chapter 3, written by
Patric R. J. Österg̊ard, with an emphasis on computational methods. Some classes of codes
are discussed in more detail: perfect codes, MDS codes, and general binary codes.

Self-dual codes form one of the important classes of linear codes because of their rich
algebraic structure and their close connections with other combinatorial configurations like
block designs, lattices, graphs, etc. Topics covered in Chapter 4, by Stefka Bouyuklieva,
include construction methods, results on enumeration and classification, and bounds for
the minimum distance of self-dual codes over fields of size 2, 3, and 4.

Combinatorial designs often arise in codes that are optimal with respect to certain
bounds and are used in some decoding algorithms. Chapter 5, written by Vladimir D.
Tonchev, summarizes links between combinatorial designs and perfect codes, optimal codes
meeting the restricted Johnson Bound, and linear codes admitting majority logic decoding.

Chapters 1–5 explore codes over fields; Chapter 6, by Steven T. Dougherty, introduces
codes over rings. The chapter begins with a discussion of quaternary codes over the integers
modulo 4 and their Gray map, which popularized the study of codes over more general
rings. It then discusses codes over rings in a very broad sense describing families of rings,
the Chinese Remainder Theorem applied to codes, generating matrices, and bounds. It also
gives a description of the MacWilliams Identities for codes over rings.

Quasi-cyclic codes form an important class of algebraic codes that includes cyclic codes
as a special subclass. Chapter 7, coauthored by Cem Güneri, San Ling, and Buket Özkaya,
focuses on the algebraic structure of quasi-cyclic codes. Based on these structural properties,
some asymptotic results, minimum distance bounds, and further applications, such as the
trace representation and characterization of certain subfamilies of quasi-cyclic codes, are
elaborated upon.

Cyclic and quasi-cyclic codes are studied as ideals in ordinary polynomial rings. Chap-
ter 8, by Heide Gluesing-Luerssen, is a survey devoted to skew-polynomial rings and skew-
cyclic block codes. After discussing some relevant algebraic properties of skew polynomials,
the basic notions of skew-cyclic codes, such as generator polynomial, parity check polyno-
mial, and duality are investigated. The basic tool is a skew-circulant matrix. The chapter
concludes with results on constructions of skew-BCH codes.

The coauthors Jürgen Bierbrauer, Stefano Marcugini, and Fernanda Pambianco of Chap-
ter 9 develop the theory of cyclic additive codes, both in the permutation sense and in the
monomial sense when the code length is coprime to the characteristic of the underlying field.
This generalizes the classical theory of cyclic and constacyclic codes, respectively, from the
category of linear codes to the category of additive codes. The cyclic quantum codes corre-
spond to a special case when the codes are self-orthogonal with respect to the symplectic
bilinear form.

Up to this point the codes considered are block codes where codewords all have fixed
length. That is no longer the case in Chapter 10, coauthored by Julia Lieb, Raquel Pinto,
and Joachim Rosenthal. This chapter provides a survey of convolutional codes stressing the
connections to module theory and systems theory. Constructions of codes with maximal
possible distance and distance profile are provided.

Chapter 11, written by Elisa Gorla, provides a mathematical introduction to rank-
metric codes, beginning with the definition of the rank metric and the corresponding codes,
whose elements can be either vectors or matrices. This is followed by the definition of code
equivalence and the notion of support for a codeword and for a code. This chapter treats
some of the basic concepts in the mathematical theory of rank-metric codes: duality, weight
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enumerators and the MacWilliams Identities, higher rank weights, MRD codes, optimal
anticodes, and q-polymatroids associated to a rank-metric code.

The final two chapters of Part I deal with the important technique of linear programming
and a related generalization to produce bounds. As described in Chapter 12, coauthored by
Peter Boyvalenkov and Danyo Danev, general linear programming methods imply universal
bounds for codes and designs. The explanation is organized in the Levenshtein framework
extended with recent developments on universal bounds for the energy of codes, including
the concept of universal optimality. The exposition is done separately for codes in Hamming
spaces and for spherical codes.

Linear programming bounds, initially developed by Delsarte, belong to the most power-
ful and flexible methods to obtain bounds for extremal problems in coding theory. In recent
years, after the pioneering work of Schrijver, semidefinite programming bounds have been
developed with two aims: to strengthen linear programming bounds and to find bounds
for more general spaces. Chapter 13, by Frank Vallentin, introduces semidefinite program-
ming bounds with an emphasis on error-correcting codes and its relation to semidefinite
programming hierarchies for difficult combinatorial optimization problems.

The next eight chapters make up Part II of the Concise Encyclopedia of Coding Theory,
where the focus is on specific families of codes. The codes presented fall into two categories,
with some overlap. Some of them are generalizations of classical codes from Part I. The rest
have a direct connection to algebraic, geometric, or graph theoretic structures. They all are
interesting theoretically and often possess properties useful for application.

There are many problems in coding theory which are equivalent to geometrical prob-
lems in Galois geometries. Certain formulations of some of the classical codes have direct
connections to geometry. Chapter 14, written by Leo Storme, describes a number of the
many links between coding theory and Galois geometries, and shows how these two research
areas influence and stimulate each other.

Chapter 15, written by Alain Couvreur and Hugues Randriambololona, surveys the
development of the theory of algebraic geometry codes since their discovery in the late
1970s. The authors summarize the major results on various problems such as asymptotic
parameters, improved estimates on the minimum distance, and decoding algorithms. In
addition, the chapter describes various modern applications of these codes such as public-
key cryptography, algebraic complexity theory, multiparty computation, and distributed
storage.

Very often the parameters of good/optimal linear codes can be realized by group codes,
that is, ideals in a group algebra FG where G is a finite group and F is a finite field. Such
codes, the topic of Chapter 16 written by Wolfgang Willems, carry more algebraic structure
than only linear codes, which leads to an easier analysis of the codes. In particular, the full
machinery of representation theory of finite groups can be applied to prove interesting
coding theoretical properties.

Chapter 17, coauthored by Hai Q. Dinh and Sergio R. López-Permouth, discusses foun-
dational and theoretical aspects of the role of finite rings as alphabets in coding theory, with
a concentration on the class of constacyclic codes over finite commutative chain rings. The
chapter surveys both the simple-root and repeated-root cases. Several directions in which
the notion of constacyclicity has been extended are also presented.

The next three chapters focus on codes with few weights; such codes have applications
delineated throughout this encyclopedia. As described in Chapter 18, written by Minjia Shi,
one important construction technique for few-weight codes is to use trace codes. For example
the simplex code, a one-weight code, can be constructed as a trace code by using finite field
extensions. In recent years, this technique has been refined by using ring extensions of a
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finite field coupled with a linear Gray map. Moreover, these image codes can be applied to
secret sharing schemes.

Codes with few weights often have an interesting geometric structure. Chapter 19, writ-
ten by Andries E. Brouwer, focuses specifically on codes with exactly two nonzero weights.
The chapter discusses the relationship between two-weight linear codes, strongly regular
graphs, and 2-character subsets of a projective space.

Functions in general and more specifically cryptographic functions, that is highly non-
linear functions (PN, APN, bent, AB, plateaued), have important applications in coding
theory since they are used to construct optimal linear codes and linear codes useful for
applications such as secret sharing, two-party computation, and storage. The ultimate goal
of Chapter 20, by Sihem Mesnager, is to provide an overview and insights into linear codes
with good parameters that are constructed from functions and polynomials over finite fields
using multiple approaches.

Chapter 21 by Christine A. Kelley, the concluding chapter of Part II, gives an overview of
graph-based codes and iterative message-passing decoding algorithms for these codes. Some
important classes of low-density parity check codes, such as finite geometry codes, expander
codes, protograph codes, and spatially coupled codes are discussed. Moreover, analysis tech-
niques of the decoding algorithm for both the finite length case and the asymptotic length
case are summarized. While the area of codes over graphs is vast, a few other families such
as repeat accumulate and turbo-like codes are briefly mentioned.

The final chapter of Part II provides a natural bridge to the applications in Part III
as codes from graphs were designed to facilitate communication. The thirteen chapters of
Part III examine several applications that fall into two categories, again with some overlap.
Some of the applications present codes developed for specific uses; other applications use
codes to produce other structures that themselves become the main application.

The first chapter in Part III is again a bridge between the previous and successive
chapters as it has a distinct theoretical slant but its content is useful as well in applications.
Chapter 22, written by Marcelo Firer, gives an account of many metrics used in the context
of coding theory, mainly for decoding purposes. The chapter tries to stress the role of some
metric related invariants and aspects that are eclipsed at the usual setting of the Hamming
metric.

Chapter 23, written by Alfred Wassermann, examines algorithms for computer construc-
tion of “good” linear codes and methods to determine the minimum distance and weight
enumerator of a linear code. For code construction the focus is on the geometric view: a
linear code can be seen as a suitable set of points in a projective geometry. The search then
reduces to an integer linear programming problem. The chapter explores how the search
space can be much reduced by prescribing a group of symmetries and how to construct
special code types such as self-orthogonal codes or LCD codes.

In Chapter 24 by Swastik Kopparty we will see some algorithmic ideas based on polyno-
mial interpolation for decoding algebraic codes, applied to generalized Reed–Solomon and
interleaved generalized Reed–Solomon codes. These ideas will power decoding algorithms
that can decode algebraic codes beyond half the minimum distance.

The theory of pseudo-noise sequences has close connections with coding theory, cryptog-
raphy, combinatorics, and discrete mathematics. Chapter 25, coauthored by Tor Helleseth
and Chunlei Li, gives a brief introduction of two kinds of pseudo-noise sequences, namely
sequences with low correlation and shift register sequences with maximum periods, which
are of particular interest in modern communication systems.

Lattice coding is presented in Chapter 26, written by Frédérique Oggier, in the context
of Gaussian and fading channels, where channel models are presented. Lattice constructions
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from both quadratic fields and linear codes are described. Some variations of lattice coding
are also discussed.

A bridge between classical coding theory and quantum error control was firmly put in
place via the stabilizer formalism, allowing the capabilities of a quantum stabilizer code to
be inferred from the properties of the corresponding classical codes. Well-researched tools
and the wealth of results in classical coding theory often translate nicely to the design of
good quantum codes, the subject of Chapter 27 by Martianus Frederic Ezerman. Research
problems triggered by error-control issues in the quantum setup revive and expand studies
on specific aspects of classical codes, which were previously overlooked or deemed not so
interesting.

Chapter 28 on space-time coding, written by Frédérique Oggier, defines what space-time
coding actually is and what are variations of space-time coding problems. The chapter also
provides channel models and design criteria, together with several examples.

Chapter 29, by Frank R. Kschischang, describes error-correcting network codes for
packet networks employing random linear network coding. In such networks, packets sent
into the network by the transmitter are regarded as a basis for a vector space over a finite
field, and the network provides the receiver with random linear combinations of the trans-
mitted vectors, possibly also combined with noise vectors. Unlike classical coding theory—
where codes are collections of well-separated vectors, each of them a point of some ambient
vector space—here codes are collections of well-separated vector spaces, each of them a sub-
space of some ambient vector space. The chapter provides appropriate coding metrics for
such subspace codes, and describes various bounds and constructions, focusing particularly
on the case of constant-dimension codes whose codewords all have the same dimension.

Erasure codes have attained a position of importance for many streaming and file down-
load applications on the internet. Chapter 30, written by Ian F. Blake, outlines the devel-
opment of these codes from simple erasure correcting codes to the important Raptor codes.
Various decoding algorithms for these codes are developed and illustrated.

Chapter 31, with coauthors Vinayak Ramkumar, Myna Vajha, S. B. Balaji, M. Nikhil
Krishnan, Birenjith Sasidharan, and P. Vijay Kumar, deals with the topic of designing
reliable and efficient codes for the storage and retrieval of large quantities of data over
storage devices that are prone to failure. Historically, the traditional objective has been one
of ensuring reliability against data loss while minimizing storage overhead. More recently,
a third concern has surfaced, namely, the need to efficiently recover from the failure of a
single storage unit corresponding to recovery from the erasure of a single code symbol. The
authors explain how coding theory has evolved to tackle this fresh challenge.

Polar codes are error-correcting codes that achieve the symmetric capacity of discrete
input memoryless channels with a polynomial encoding and decoding complexity. Chap-
ter 32, coauthored by Noam Presman and Simon Litsyn, provides a general presentation
of polar codes and their associated algorithms. At the same time, most of the examples in
the chapter use the basic Arıkan’s (u+ v, v) original construction due to its simplicity and
wide applicability.

While one thinks of coding theory as the major tool to reveal correct information after
errors in that information have been introduced, the final two chapters of this encyclopedia
address the opposite problem: using coding theory as a tool to hide information. Chapter 33,
by Cunsheng Ding, first gives a brief introduction to secret sharing schemes, and then
introduces two constructions of secret sharing schemes with linear codes. It also documents
a construction of multisecret sharing schemes with linear codes. Basic results about these
secret sharing schemes are presented in this chapter.

Chapter 34, written by Philippe Gaborit and Jean-Christophe Deneuville, gives a gen-
eral overview of basic tools used for code-based cryptography. The security of the main diffi-
cult problem for code-based cryptography, the Syndrome Decoding problem, is considered,
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together with its quasi-cyclic variations. The current state-of-the-art for the cryptographic
primitives of encryption, signature, and authentication is the main focus of the chapter.

The editors of the Concise Encyclopedia of Coding Theory thank the 48 other authors
for sharing their expertise to make this project come to pass. Their cooperation and patience
were invaluable to us. We also thank Gayle Imamura-Huffman for lending her transparent
watercolor Coded Information and opaque watercolor Linear Subspaces for use on the front
and back covers of this encyclopedia. Additionally we thank the editorial staff at CRC
Press/Taylor and Francis Group: Sarfraz Khan, who helped us begin this project; Callum
Fraser, who became the Mathematical Editor at CRC Press as the project progressed; and
Robin Lloyd-Starkes, who is Project Editor. Also with CRC Press, we thank Mansi Kabra
for handling permissions and copyrights and Kevin Craig who assisted with the cover design.
We thank Meeta Singh, Senior Project Manager at KnowledgeWorks Global Ltd., and her
team for production of this encyclopedia. And of course, we sincerely thank our families for
their support and encouragement throughout this journey.
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1.1 Introduction

Coding theory had it genesis in the late 1940s with the publication of works by Claude
Shannon, Marcel Golay, and Richard Hamming. In 1948 Shannon published a landmark

3
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FIGURE 1.1: A simple communication channel
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paper A mathematical theory of communication [1661] which marked the beginning of both
information theory and coding theory. Given a communication channel, over which informa-
tion is transmitted and possibly corrupted, Shannon identified a number called the ‘channel
capacity’ and proved that arbitrarily reliable communication is possible at any rate below
the channel capacity. For example, when transmitting images of planets from deep space, it
is impractical to retransmit the images that have been altered by noise during transmission.
Shannon’s Theorem guarantees that the data can be encoded before transmission so that
the altered data can be decoded to the original, up to a specified degree of accuracy. Other
examples of communication channels include wireless communication devices and storage
systems such as DVDs or Blue-ray discs. In 1947 Hamming developed a code, now bearing
his name, in an attempt to correct errors that arose in the Bell Telephone Laboratories’
mechanical relay computer; his work was circulated through a series of memoranda at Bell
Labs and eventually published in [895]. Both Shannon [1661] and Golay [820] published
Hamming’s code, with Golay generalizing it. Additionally, Golay presented two of the four
codes that now bear his name. A monograph by T. M. Thompson [1801] traces the early
development of coding theory.

A simple communication channel is illustrated in Figure 1.1. At the source a mes-
sage, denoted x = x1 · · ·xk in the figure, is to be sent. If no modification is made to x and
it is transmitted directly over the channel, any noise would distort x so that it could not
be recovered. The basic idea of coding theory is to embellish the message by adding some
redundancy so that hopefully the original message can be recovered after reception even if
noise corrupts the embellished message during transmission. The redundancy is added by
the encoder and the embellished message, called a codeword c = c1 · · · cn in the figure, is
sent over the channel where noise in the form of an error vector e = e1 · · · en distorts the
codeword producing a received vector y.1 The received vector is then sent to be decoded
where the errors are removed. The redundancy is then stripped off, and an estimate x̃ of
the original message is produced. Hopefully x̃ = x. (There is a one-to-one correspondence

1Generally message and codeword symbols will come from a finite field F or a finite ring R. Messages
will be ‘vectors’ in Fk (or Rk), and codewords will be ‘vectors’ in Fn (or Rn). If c entered the channel and
y exited the channel, the difference y − c is what we have termed the error vector e in Figure 1.1. While
this is the normal scenario, other ambient spaces from which codes arise occur in this encyclopedia.
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between codewords and messages. In many cases, the real interest is not in the message x
but the codeword c. With this point of view, the job of the decoder is to obtain an estimate
ỹ from y and hope that ỹ = c.) For example in deep space communication, the message
source is the satellite, the channel is outer space, the decoder is hardware at a ground sta-
tion on Earth, and the receiver is the people or computer processing the information; of
course, messages travel from Earth to the satellite as well. For a DVD or Blue-ray disc, the
message source is the voice, music, video, or data to be placed on the disc, the channel is
the disc itself, the decoder is the DVD or Blue-ray player, and the receiver is the listener or
viewer.

Shannon’s Theorem guarantees that the hope of successful recovery will be fulfilled a
certain percentage of the time. With the right encoding based on the characteristics of the
channel, this percentage can be made as high as desired, although not 100%. The proof of
Shannon’s Theorem is probabilistic and nonconstructive. No specific codes were produced
in the proof that give the desired accuracy for a given channel. Shannon’s Theorem only
guarantees their existence. In essence, the goal of coding theory is to produce codes that
fulfill the conditions of Shannon’s Theorem and make reliable communication possible.

There are numerous texts, ranging from introductory to research-level books, on coding
theory including (but certainly not limited to) [170, 209, 896, 1008, 1323, 1505, 1506, 1520,
1521, 1602, 1836]. There are two books, [169] edited by E. R. Berlekamp and [212] edited by
I. F. Blake, in which early papers in the development of coding theory have been reprinted.

1.2 Finite Fields

Finite fields play an essential role in coding theory. The theory and construction of finite
fields can be found, for example, in [1254] and [1408, Chapter 2]. Finite fields, as related
specifically to codes, are described in [1008, 1323, 1602]. In this section we give a brief
introduction.

Definition 1.2.1 A field F is a nonempty set with two binary operations, denoted + and
·, satisfying the following properties.

(a) For all α, β, γ ∈ F, α+β ∈ F, α·β ∈ F, α+β = β+α, α·β = β·α, α+(β+γ) = (α+β)+γ,
α · (β · γ) = (α · β) · γ, and α · (β + γ) = α · β + α · γ.

(b) F possesses an additive identity or zero, denoted 0, and a multiplicative identity
or unity, denoted 1, such that α+ 0 = α and α · 1 = α for all α ∈ Fq.

(c) For all α ∈ F and all β ∈ F with β 6= 0, there exists α′ ∈ F, called the additive inverse
of α, and β∗ ∈ F, called the multiplicative inverse of β, such that α+ α′ = 0 and
β · β∗ = 1.

The additive inverse of α will be denoted −α, and the multiplicative inverse of β will be
denoted β−1. Usually the multiplication operation will be suppressed; that is, α · β will be
denoted αβ. If n is a positive integer and α ∈ F, nα = α+α+· · ·+α (n times), αn = αα · · ·α
(n times), and α−n = α−1α−1 · · ·α−1 (n times when α 6= 0). Also α0 = 1 if α 6= 0. The
usual rules of exponentiation hold. If F is a finite set with q elements, F is called a finite
field of order q and denoted Fq.

Example 1.2.2 Fields include the rational numbers Q, the real numbers R, and the com-
plex numbers C. Finite fields include Zp, the set of integers modulo p, where p is a prime.
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The following theorem gives some of the basic properties of finite fields.

Theorem 1.2.3 Let Fq be a finite field with q elements. The following hold.

(a) Fq is unique up to isomorphism.

(b) q = pm for some prime p and some positive integer m.

(c) Fq contains the subfield Fp = Zp.

(d) Fq is a vector space over Fp of dimension m.

(e) pα = 0 for all α ∈ Fq.
(f) If α, β ∈ Fq, (α+ β)p = αp + βp.

(g) There exists an element γ ∈ Fq with the following properties.

(i) Fq = {0, 1 = γ0, γ, . . . , γq−2} and γq−1 = 1,

(ii) {1 = γ0, γ, . . . , γm−1} is a basis of the vector space Fq over Fp, and

(iii) there exist a0, a1, . . . , am−1 ∈ Fp such that

γm = a0 + a1γ + · · ·+ am−1γ
m−1. (1.1)

(h) For all α ∈ Fq, αq = α.

Definition 1.2.4 In Theorem 1.2.3, p is called the characteristic of Fq. The element γ is
called a primitive element of Fq.

Remark 1.2.5 Using Theorem 1.2.3(f), the map σp : Fq → Fq given by σp(α) = αp is
an automorphism of Fq, called the Frobenius automorphism of Fq. Once one primitive
element γ of Fq is found, the remaining primitive elements of Fq are precisely γd where
gcd(d, q − 1) = 1.

The key to constructing a finite field is to find a primitive element γ in Fq and the
equation (1.1). We do not describe this process here, but refer the reader to the texts
mentioned at the beginning of the section. Assuming γ is found and the equation (1.1) is
known, we can construct addition and multiplication tables for Fq. This is done by writing
every element of Fq in two forms. The first form takes advantage of Theorem 1.2.3(g)(ii).
Every element α ∈ Fq is written uniquely in the form

α = a0γ
0 + a1γ + a2γ

2 + · · ·+ am−1γ
m−1 with ai ∈ Fp = Zp for 0 ≤ i ≤ m− 1,

which we abbreviate α = a0a1a2 · · · am−1, a vector in Zmp . Addition in Fq is accomplished
by ordinary vector addition in Zmp . To each α ∈ Fq, with α 6= 0, we associate a second form:

α = γi for some i with 0 ≤ i ≤ q − 2. Multiplication is accomplished by γiγj = γi+j where
we use γq−1 = 1 when appropriate. We illustrate this by constructing the field F9.

Example 1.2.6 The field F9 has characteristic 3 and is a 2-dimensional vector space over
Z3. One primitive element γ of F9 satisfies γ2 = 1 + γ. Table 1.1 gives the two forms of all
elements. The zero element is 0γ0 + 0γ = 00; the unity element is 1 = 1γ0 + 0γ = 10. Now
γ = 0γ0 +1γ = 01, γ2 = 1+γ = 1γ0 +1γ = 11, γ3 = γγ2 = γ(1+γ) = γ+γ2 = γ+(1+γ) =
1γ0+2γ = 12, and γ4 = γγ3 = γ(1+2γ) = γ+2γ2 = γ+2(1+γ) = 2γ0+0γ = 20. Note γ4 =
−1. γ5, γ6, γ7 are computed similarly. As an example, we compute (γ5−1+γ6)/(γ5 +γ3 +1)
as follows. First γ5−1+γ6 = 02−10+22 = 11 = γ2, and γ5+γ3+1 = 02+12+10 = 21 = γ7.
So (γ5 − 1 + γ6)/(γ5 + γ3 + 1) = γ2/γ7 = γ−5 = γ3 since γ8 = 1.

Tables 1.2, 1.3, and 1.4 give addition and multiplication tables for F4, F8, and F16,
respectively. These fields have characteristic 2. Notice that F16 contains the subfield F4

where ω = ρ5.
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TABLE 1.1: F9 with primitive element γ where γ2 = 1 + γ and γ8 = 1

vector power of γ vector power of γ vector power of γ

00 — 11 γ2 02 γ5

10 γ0 = 1 12 γ3 22 γ6

01 γ 20 γ4 = −1 21 γ7

TABLE 1.2: F4 with primitive element ω where ω2 = 1 + ω and ω3 = 1

vector power of ω vector power of ω vector power of ω vector power of ω

00 — 10 ω0 = 1 01 ω 11 ω2

1.3 Codes

In this section we introduce the concept of codes over finite fields. We begin with some
notation.

The set of n-tuples with entries in Fq forms an n-dimensional vector space, denoted
Fnq = {x1x2 · · ·xn | xi ∈ Fq, 1 ≤ i ≤ n}, under componentwise addition of n-tuples and
componentwise multiplication of n-tuples by scalars in Fq. The vectors in Fnq will often be
denoted using bold Roman characters x = x1x2 · · ·xn. The vector 0 = 00 · · · 0 is the zero
vector in Fnq .

For positive integers m and n, Fm×nq denotes the set of all m × n matrices with
entries in Fq. The matrix in Fm×nq with all entries 0 is the zero matrix denoted 0m×n.

The identity matrix of Fn×nq will be denoted In. If A ∈ Fm×nq , AT ∈ Fn×mq will denote

the transpose of A. If x ∈ Fmq , xT will denote x as a column vector of length m, that is,

an m× 1 matrix. The column vector 0T and the m× 1 matrix 0m×1 are the same.
If S is any finite set, its order or size is denoted |S|.

Definition 1.3.1 A subset C ⊆ Fnq is called a code of length n over Fq; Fq is called the
alphabet of C, and Fnq is the ambient space of C. Codes over Fq are also called q-ary
codes. If the alphabet is F2, C is binary. If the alphabet is F3, C is ternary. The vectors
in C are the codewords of C. If C has M codewords (that is, |C| = M) C is denoted an
(n,M)q code, or, more simply, an (n,M) code when the alphabet Fq is understood. If C is a
linear subspace of Fnq , that is C is closed under vector addition and scalar multiplication, C
is called a linear code of length n over Fq. If the dimension of the linear code C is k, C is
denoted an [n, k]q code, or, more simply, an [n, k] code. An (n,M)q code that is also linear
is an [n, k]q code where M = qk. An (n,M)q code may be referred to as an unrestricted
code; a specific unrestricted code may be either linear or nonlinear. When referring to a
code, expressions such as (n,M), (n,M)q, [n, k], or [n, k]q are called the parameters of
the code.

Example 1.3.2 Let C = {1100, 1010, 1001, 0110, 0101, 0011} ⊆ F4
2. Then C is a (4, 6)2

binary nonlinear code. Let C1 = C ∪ {0000, 1111}. Then C1 is a (4, 8)2 binary linear code.
As C1 is a subspace of F4

2 of dimension 3, C1 is also a [4, 3]2 code.

Remark 1.3.3 Basic development of linear codes is found in papers by D. Slepian [1722,
1723, 1724]. In some chapters of this book, codes will be considered where the alphabet is
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TABLE 1.3: F8 with primitive element δ where δ3 = 1 + δ and δ7 = 1

vector power of δ vector power of δ vector power of δ vector power of δ

000 — 010 δ 110 δ3 111 δ5

100 δ0 = 1 001 δ2 011 δ4 101 δ6

TABLE 1.4: F16 with primitive element ρ where ρ4 = 1 + ρ and ρ15 = 1

vector power of ρ vector power of ρ vector power of ρ vector power of ρ

0000 — 0001 ρ3 1101 ρ7 0111 ρ11

1000 ρ0 = 1 1100 ρ4 1010 ρ8 1111 ρ12

0100 ρ 0110 ρ5 0101 ρ9 1011 ρ13

0010 ρ2 0011 ρ6 1110 ρ10 1001 ρ14

not necessarily a field but rather a ring R. In these situations, the vector space Fnq will be
replaced by an R-module such as Rn = {x1x2 · · ·xn | xi ∈ R, 1 ≤ i ≤ n}, and a code will
be considered linear if it is an R-submodule of that R-module. See for example Chapters 6,
17, and 18.

1.4 Generator and Parity Check Matrices

When choosing between linear and nonlinear codes, the added algebraic structure of
linear codes often makes them easier to describe and use. Generally, a linear code is defined
by giving either a generator or a parity check matrix.

Definition 1.4.1 Let C be an [n, k]q linear code. A generator matrix G for C is any
G ∈ Fk×nq whose row span is C. Because any k-dimensional subspace of Fnq is the kernel of

some linear transformation from Fnq onto Fn−kq , there exists H ∈ F(n−k)×n
q , with independent

rows, such that C = {c ∈ Fnq | HcT = 0T}. Such a matrix, of which there are generally
many, is called a parity check matrix of C.

Example 1.4.2 Continuing with Example 1.3.2, there are several generator matrices for
C1 including

G1 =

 1 0 0 1
0 1 0 1
0 0 1 1

, G′1 =

 1 1 1 1
1 1 0 0
0 1 1 0

, and G′′1 =

 1 1 0 0
0 1 1 0
0 0 1 1

.
In this case there is only one parity check matrix H1 =

[
1 1 1 1

]
.

Remark 1.4.3 Any matrix obtained by elementary row operations from a generator matrix
for a code remains a generator matrix of that code.

Remark 1.4.4 By Definition 1.4.1, the rows of G form a basis of C, and the rows of H
are independent. At times, the requirement may be relaxed so that the rows of G are only
required to span C. Similarly, the requirement that the rows of H be independent may be
dropped as long as C = {c ∈ Fnq | HcT = 0T} remains true.
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Theorem 1.4.5 ([1323, Chapter 1.1]) Let G ∈ Fk×nq and H ∈ F(n−k)×n
q each have in-

dependent rows. Let C be an [n, k]q code. The following hold.

(a) If G, respectively H, is a generator, respectively parity check, matrix for C, then
HGT = 0(n−k)×k.

(b) If HGT = 0(n−k)×k, then G is a generator matrix for C if and only if H is a parity
check matrix for C.

Definition 1.4.6 Let C be an [n, k]q linear code with generator matrix G ∈ Fk×nq . For
any set of k independent columns of G, the corresponding set of coordinates forms an
information set for C; the remaining n − k coordinates form a redundancy set for C.
If G has the form G =

[
Ik | A

]
, G is in standard form in which case {1, 2, . . . , k} is an

information set with {k + 1, k + 2, . . . , n} the corresponding redundancy set.

Theorem 1.4.7 ([1602, Chapter 2.3]) If G =
[
Ik | A

]
is a generator matrix of an [n, k]q

code C, then H =
[
−AT | In−k

]
is a parity check matrix for C.

Example 1.4.8 Continuing with Examples 1.3.2 and 1.4.2, the matrix G1 is in standard
form. Applying Theorem 1.4.7 to G1, we get the parity check matrix H1 of Example 1.4.2.
The matrices G′1 and G′′1 both row reduce to G1; so all three are generator matrices of the
same code, consistent with Remark 1.4.3. Any subset of {1, 2, 3, 4} of size 3 is an information
set for C1. The fact that HGT

1 = HG′T1 = HG′′T1 = 01×3 is consistent with Theorem 1.4.5.
Finally, let C2 = {0000, 1100, 0011, 1111} be the [4, 2]2 linear subcode of C1. C2 does not
have a generator matrix in standard form; the only information sets for C2 are {1, 3}, {1, 4},
{2, 3}, and {2, 4}.

Example 1.4.9 Generator and parity check matrices for the [7, 4]2 binary linear Hamming
code H3,2 are

G3,2 =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 and H3,2 =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 ,
respectively. G3,2 is in standard form. Two information sets for H3,2 are {1, 2, 3, 4} and
{1, 2, 3, 5} with corresponding redundancy sets {5, 6, 7} and {4, 6, 7}. The set {2, 3, 4, 5} is
not an information set. More general Hamming codes Hm,q are defined in Section 1.10.

1.5 Orthogonality

There is a natural inner product on Fnq that often proves useful in the study of codes.2

Definition 1.5.1 The ordinary inner product, also called the Euclidean inner prod-
uct, on Fnq is defined by x · y =

∑n
i=1 xiyi where x = x1x2 · · ·xn and y = y1y2 · · · yn. Two

vectors x,y ∈ Fnq are orthogonal if x · y = 0. If C is an [n, k]q code,

C⊥ = {x ∈ Fnq | x · c = 0 for all c ∈ C}
2There are other inner products used in coding theory. See for example Chapters 4, 5, 7, 11, and 13.
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is the orthogonal code or dual code of C. C is self-orthogonal if C ⊆ C⊥ and self-dual
if C = C⊥.

Theorem 1.5.2 ([1323, Chapter 1.8]) Let C be an [n, k]q code with generator and parity
check matrices G and H, respectively. Then C⊥ is an [n, n − k]q code with generator and
parity check matrices H and G, respectively. Additionally (C⊥)⊥ = C. Furthermore C is

self-dual if and only if C is self-orthogonal and k =
n

2
.

Example 1.5.3 C2 from Example 1.4.8 is a [4, 2]2 self-dual code with generator and parity
check matrices both equal to [

1 1 0 0
0 0 1 1

]
.

The dual of the Hamming [7, 4]2 code in Example 1.4.9 is a [7, 3]2 code H⊥3,2. H3,2 is a

generator matrix of H⊥3,2. As every row of H3,2 is orthogonal to itself and every other row

of H3,2, H⊥3,2 is self-orthogonal. As H⊥3,2 has dimension 3 and (H⊥3,2)⊥ = H3,2 has dimension

4, H⊥3,2 is not self-dual.

1.6 Distance and Weight

The error-correcting capability of a code is keyed directly to the concepts of Hamming
distance and Hamming weight.3

Definition 1.6.1 The (Hamming) distance between two vectors x,y ∈ Fnq , denoted
dH(x,y), is the number of coordinates in which x and y differ. The (Hamming) weight
of x ∈ Fnq , denoted wtH(x), is the number of coordinates in which x is nonzero.

Theorem 1.6.2 ([1008, Chapter 1.4]) The following hold.

(a) (nonnegativity) dH(x,y) ≥ 0 for all x,y ∈ Fnq .

(b) dH(x,y) = 0 if and only if x = y.

(c) (symmetry) dH(x,y) = dH(y,x) for all x,y ∈ Fnq .

(d) (triangle inequality) dH(x, z) ≤ dH(x,y) + dH(y, z) for all x,y, z ∈ Fnq .

(e) dH(x,y) = wtH(x− y) for all x,y ∈ Fnq .

(f) If x,y ∈ Fn2 , then

wtH(x + y) = wtH(x) + wtH(y)− 2wtH(x ? y)

where x ? y is the vector in Fn2 which has 1s precisely in those coordinates where both
x and y have 1s.

(g) If x,y ∈ Fn2 , then wtH(x ?y) ≡ x ·y (mod 2). In particular, wtH(x) ≡ x ·x (mod 2).

3There are other notions of distance and weight used in coding theory. See for example Chapters 6, 7,
10, 11, 17, 18, 22, and 29.
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(h) If x ∈ Fn3 , then wtH(x) ≡ x · x (mod 3).

Remark 1.6.3 A distance function on a vector space that satisfies parts (a) through (d) of
Theorem 1.6.2 is called a metric; thus dH is termed the Hamming metric. Other metrics
useful in coding theory are examined in Chapter 22.

Definition 1.6.4 Let C be an (n,M)q code with M > 1. The minimum (Hamming)
distance of C is the smallest distance between distinct codewords. If the minimum distance
d of C is known, C is denoted an (n,M, d)q code (or an [n, k, d]q code if C is linear of
dimension k). The (Hamming) distance distribution or inner distribution of C is the
list B0(C), B1(C), . . . , Bn(C) where, for 0 ≤ i ≤ n,

Bi(C) =
1

M

∑
c∈C

∣∣{v ∈ C | dH(v, c) = i}
∣∣.

The minimum (Hamming) weight of a nonzero code C is the smallest weight of nonzero
codewords. The (Hamming) weight distribution of C is the list A0(C), A1(C), . . . , An(C)
where, for 0 ≤ i ≤ n, Ai(C) is the number of codewords of weight i. If C is understood,
the distance and weight distributions of C are denoted B0, B1, . . . , Bn and A0, A1, . . . , An,
respectively.

Example 1.6.5 Let C be the (4, 6)2 code in Example 1.3.2. Its distance distribution is
B0(C) = B4(C) = 1, B2(C) = 4, B1(C) = B3(C) = 0, and its minimum distance is 2. In par-
ticular C is a (4, 6, 2)2 code. The weight distribution of C is A2(C) = 6 with Ai(C) = 0 other-
wise; its minimum weight is also 2. Let C′ = 1000+C = {0100, 0010, 0001, 1110, 1101, 1011}.
The distance distribution of C′ agrees with the distance distribution of C making C′ a
(4, 6, 2)2 code. However, the weight distribution of C′ is A1(C′) = A3(C′) = 3 with Ai(C′) = 0
otherwise; the minimum weight of C′ is 1.

Theorem 1.6.6 ([1008, Chapter 1.4]) Let C be an [n, k, d]q linear code with k > 0. The
following hold.

(a) The minimum distance and minimum weight of C are the same.

(b) Ai(C) = Bi(C) for 0 ≤ i ≤ n.

(c)
n∑
i=0

Ai(C) = qk.

(d) A0(C) = 1 and Ai(C) = 0 for 1 ≤ i < d.

(e) If q = 2 and 1 = 11 · · · 1 ∈ C, then Ai(C) = An−i(C) for 0 ≤ i ≤ n.

(f) If q = 2 and C is self-orthogonal, every codeword of C has even weight and 1 ∈ C⊥.

(g) If q = 3 and C is self-orthogonal, every codeword of C has weight a multiple of 3.

Remark 1.6.7 Analogous to Theorem 1.6.6(c) and (d), if C is an (n,M, d)q code, then
n∑
i=0

Bi(C) = M with B0(C) = 1 and Bi(C) = 0 for 1 ≤ i < d.

Binary vectors possess an important relationship between weights and inner products. If
x,y ∈ Fn2 and each have even weight, Theorem 1.6.2(f) implies x + y also has even weight.
If x,y ∈ Fn2 are orthogonal and each have weights a multiple of 4, Theorem 1.6.2(f) and (g)
show that x + y has weight a multiple of 4. This leads to the following definition for binary
codes.
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Definition 1.6.8 Let C be a binary linear code. C is called even if all of its codewords
have even weight. C is called doubly-even if all of its codewords have weights a multiple
of 4. An even binary code that is not doubly-even is singly-even.

Remark 1.6.9 By Theorem 1.6.6(e), self-orthogonal binary linear codes are even. The
converse is not true; code C1 from Example 1.3.2 is even but not self-orthogonal. Doubly-
even binary linear codes must be self-orthogonal by Theorem 1.6.2(f) and (g). There are
self-orthogonal binary codes that are singly-even; code C2 from Examples 1.4.8 and 1.5.3 is
singly-even and self-dual.

Example 1.6.10 Let H3,2 be the [7, 4]2 binary Hamming code of Example 1.4.9. With
Ai = Ai(H3,2), A0 = A7 = 1, A3 = A4 = 7, and A1 = A2 = A5 = A6 = 0, illustrating
Theorem 1.6.6(d) and (e), and showing H3,2 is a [7, 4, 3]2 code. The [7, 3]2 dual code H⊥3,2
is self-orthogonal by Example 1.5.3 and hence even. Also by self-orthogonality, H⊥3,2 ⊆
(H⊥3,2)⊥ = H3,2; the weight distribution of H3,2 shows that the 8 codewords of weights 0

and 4 must be precisely the codewords of H⊥3,2. In particular, H⊥3,2 is a doubly-even [7, 3, 4]2
code. H⊥3,2 is called a simplex code, described further in Section 1.10.

The minimum weight of a linear code is determined by a parity check matrix for the
code; see [1008, Corollary 1.4.14 and Theorem 1.4.15].

Theorem 1.6.11 A linear code has minimum weight d if and only if its parity check matrix
has a set of d linearly dependent columns but no set of d−1 linearly dependent columns. Also,
if C is an [n, k, d]q code, then every n − d + 1 coordinate positions contain an information
set; furthermore, d is the largest number with this property.

1.7 Puncturing, Extending, and Shortening Codes

There are several methods to obtain a longer or shorter code from a given code; while
this can be done for both linear and nonlinear codes, we focus on linear ones. Two codes
can be combined into a single code, for example as described in Section 1.11.

Definition 1.7.1 Let C be an [n, k, d]q linear code with generator matrix G and parity
check matrix H.

(a) For some i with 1 ≤ i ≤ n, let C∗ be the codewords of C with the ith component
deleted. The resulting code, called a punctured code, is an [n − 1, k∗, d∗] code. If
d > 1, k∗ = k, and d∗ = d unless C has a minimum weight codeword that is nonzero
on coordinate i, in which case d∗ = d − 1. If d = 1, k∗ = k and d∗ = 1 unless C has
a weight 1 codeword that is nonzero on coordinate i, in which case k∗ = k − 1 and
d∗ ≥ 1 as long as C∗ is nonzero. A generator matrix for C∗ is obtained from G by
deleting column i; G∗ will have dependent rows if d∗ = 1 and k∗ = k− 1. Puncturing
is often done on multiple coordinates in an analogous manner, one coordinate at a
time.

(b) Define Ĉ =
{
c1c2 · · · cn+1 ∈ Fn+1

q | c1c2 · · · cn ∈ C where
∑n+1
i=1 ci = 0

}
, called the

extended code. This is an [n + 1, k, d̂ ]q code where d̂ = d or d + 1. A generator
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matrix Ĝ for Ĉ is obtained by adding a column on the right of G so that every row
sum in this k × (n+ 1) matrix is 0. A parity check matrix Ĥ for Ĉ is

Ĥ =


1 · · · 1 1

0

H
...
0

 .
(c) Let S be any set of s coordinates. Let C(S) be all codewords in C that are zero on

S. Puncturing C(S) on S results in the [n − s, kS , dS ]q shortened code CS where
dS ≥ d. If C⊥ has minimum weight d⊥ and s < d⊥, then kS = k − s.

Example 1.7.2 Let H3,2 be the [7, 4, 3]2 binary Hamming code of Examples 1.4.9 and

1.6.10. Extending this code, we obtain Ĥ3,2 with generator and parity check matrices

Ĝ3,2 =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

 and Ĥ3,2 =


1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0

 ,
respectively. Given the weight distribution of H3,2 found in Example 1.6.10, the weight

distribution of Ĥ3,2 must be A0(Ĥ3,2) = A8(Ĥ3,2) = 1, A4(Ĥ3,2) = 14, and Ai(Ĥ3,2) = 0

otherwise, implying Ĥ3,2 is doubly-even and self-dual; see Remark 1.6.9. Certainly if Ĥ3,2

is punctured on its right-most coordinate, the resulting code is H3,2.

There is a relationship between punctured and shortened codes via dual codes.

Remark 1.7.3 If C is a linear code over Fq and S a set of coordinates, then (C⊥)S = (CS)⊥

and (C⊥)S = (CS)⊥ where CS and (C⊥)S are C and C⊥ punctured on S; see [1008, Theorem
1.5.7].

1.8 Equivalence and Automorphisms

Two vector spaces over Fq are considered the same (that is, isomorphic) if there is a
nonsingular linear transformation from one to the other. For linear codes to be considered
the same, we want these linear transformations to also preserve weights of codewords. In
Theorem 1.8.6, we will see that these weight preserving linear transformations are directly
related to monomial matrices. This leads to two different concepts of code equivalence for
linear codes.

Definition 1.8.1 If P ∈ Fn×nq has exactly one 1 in each row and column and 0 elsewhere,
P is a permutation matrix. If M ∈ Fn×nq has exactly one nonzero entry in each row
and column, M is a monomial matrix. If C is a code over Fq of length n and A ∈
Fn×nq , then CA = {cA | c ∈ C}. Let C1 and C2 be linear codes over Fq of length n.
C1 is permutation equivalent to C2 provided C2 = C1P for some permutation matrix
P ∈ Fn×nq . C1 is monomially equivalent to C2 provided C2 = C1M for some monomial
matrix M ∈ Fn×nq .
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Remark 1.8.2 Applying a permutation matrix to a code simply permutes the coordinates;
applying a monomial matrix permutes and re-scales coordinates. Applying either a permu-
tation or monomial matrix to a vector does not change its weight. Also applying either
a permutation or monomial matrix to two vectors does not change the distance between
these two vectors. There is a third more general concept of equivalence, involving semi-linear
transformations, where two linear codes C1 and C2 over Fq are equivalent provided one
can be obtained from the other by permuting and re-scaling coordinates and then applying
an automorphism of the field Fq. Note that applying such maps to a vector or to a pair of
vectors preserves the weight of the vector and the distance between the two vectors, respec-
tively; see [1008, Section 1.7] for further discussion of this type of equivalence. There are
other concepts of equivalence that arise when the code may not be linear but has some spe-
cific algebraic structure (e.g., additive codes over Fq that are closed under vector addition
but not necessarily closed under scalar multiplication). The common theme when defining
equivalence of such codes is to use a set of maps which preserve distance between the two
vectors, which preserve the algebraic structure under consideration, and which form a group
under composition of these maps. We will follow this theme when we define equivalence of
unrestricted codes at the end of this section.

Remark 1.8.3 Let C1 and C2 be linear codes over Fq of length n. Define C1 ∼P C2 to mean
C1 is permutation equivalent to C2; similarly define C1 ∼M C2 to mean C1 is monomially
equivalent to C2. Then both ∼P and ∼M are equivalence relations on the set of all linear
codes over Fq of length n; that is, both are reflexive, symmetric, and transitive. If q = 2,
the concepts of permutation and monomial equivalence are the same; if q > 2, they may
not be. Furthermore, two permutation or monomially equivalent codes have the same size,
weight and distance distributions, and minimum weight and distance. If two linear codes
are permutation equivalent and one code is self-orthogonal, so is the other; this may not be
true of two monomially equivalent codes.

Row reducing a generator matrix of a linear code to reduced echelon form and then
permuting columns yields the following result.

Theorem 1.8.4 Let C be a linear [n, k, d]q code with k ≥ 1. There is a code permutation
equivalent to C with a generator matrix in standard form.

Example 1.8.5 Let C be an [8, 4, 4]2 binary linear code. By Theorem 1.8.4, C is permuta-
tion equivalent to a code with generator matrix G =

[
I4 | A

]
. A straightforward argument

using minimum weight 4 shows that columns of A can be permuted so that the resulting
generator matrix is Ĝ3 from Example 1.7.2. This verifies that C is permutation equivalent
to Ĥ3,2.

The following is a generalization of a result of MacWilliams [1318]; see also [229, 1876].
This result motivated Definition 1.8.1.

Theorem 1.8.6 (MacWilliams Extension) There is a weight preserving linear trans-
formation between equal length linear codes C1 and C2 over Fq if and only if C1 and C2 are
monomially equivalent. Furthermore, the linear transformation agrees with the associated
monomial transformation on every codeword in C1.

Definition 1.8.7 Let C be a linear code over Fq of length n. If CP = C for some permutation
matrix P ∈ Fn×nq , then P is a permutation automorphism of C; the set of all permutation
automorphisms of C is a group under matrix multiplication, denoted PAut(C). Similarly, if
CM = C for some monomial matrix M ∈ Fn×nq , then M is a monomial automorphism of
C; the set of all monomial automorphisms of C is a matrix group, denoted MAut(C). Clearly
PAut(C) ⊆ MAut(C).
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We now consider when two unrestricted codes are equivalent. It should be noted that, in
this definition, a linear code may end up being equivalent to a nonlinear code. See Chapter 3
for more on this general equivalence.

Definition 1.8.8 Let C1 and C2 be unrestricted codes of length n over Fq of the same size.
Then C1 is equivalent to C2 provided the codewords of C2 are the images under a map
of the codewords of C1 where the map is a permutation of coordinates together with n
permutations of the alphabet Fq, independently within each coordinate.4

1.9 Bounds on Codes

In this section we present seven bounds relating the length, dimension or number of
codewords, and minimum distance of an unrestricted code. The first five are considered
upper bounds on the code size given length, minimum distance, and field size. By this,
we mean that there does not exist a code of size bigger than the upper bound with the
specified length, minimum distance, and field size. The last two are lower bounds on the
size of a linear code. This means that a linear code can be constructed with the given length
and minimum distance over the specified field having size equalling or exceeding the lower
bound. We also give asymptotic versions of these bounds. Some of these bounds will be
described using Aq(n, d) and Bq(n, d), which we now define.

Definition 1.9.1 For positive integers n and d, Aq(n, d) is the largest number of code-
words in an (n,M, d)q code, linear or nonlinear. Bq(n, d) is the largest number of code-
words in a [n, k, d]q linear code. An (n,M, d)q code is optimal provided M = Aq(n, d);
an [n, k, d]q linear code is optimal if qk = Bq(n, d). The concept of ‘optimal’ can also be
used in other contexts. Given n and d, kq(n, d) denotes the largest dimension of a linear code
over Fq of length n and minimum weight d; an [n, kq(n, d), d]q code could be called ‘optimal
in dimension’. Notice that kq(n, d) = logq Bq(n, d). Similarly, dq(n, k) denotes the largest
minimum distance of a linear code over Fq of length n and dimension k; an [n, k, dq(n, k)]q
may be called ‘optimal in distance’. Analogously, nq(k, d) denotes the smallest length of a
linear code over Fq of dimension k and minimum weight d; an [nq(k, d), k, d]q code might
be called ‘optimal in length’.5

Clearly Bq(n, d) ≤ Aq(n, d). On-line tables relating parameters of various types of codes
are maintained by M. Grassl [845].

The following basic properties of Aq(n, d) and Bq(n, d) are easily derived; see [1008,
Chapter 2.1].

Theorem 1.9.2 The following hold for 1 ≤ d ≤ n.

(a) Bq(n, d) ≤ Aq(n, d).

(b) Bq(n, n) = Aq(n, n) = q and Bq(n, 1) = Aq(n, 1) = qn.

4In a more general setting, unrestricted codes do not have to have Fq as an alphabet. If A is the alphabet,
the permutations within each coordinate are permutations of A.

5Further restrictions might be placed on a family of codes when discussing optimality. For example, given
n, a self-dual [n, n

2
, d]q code over Fq with largest minimum weight d is sometimes called an ‘optimal q-ary

self-dual code of length n’. Optimal codes are explored in chapters such as 2–5, 11, 12, 16, 18, 20, and 23.
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(c) Bq(n, d) ≤ qBq(n− 1, d) and Aq(n, d) ≤ qAq(n− 1, d) when 1 ≤ d < n.

(d) Bq(n, d) ≤ Bq(n− 1, d− 1) and Aq(n, d) ≤ Aq(n− 1, d− 1).

(e) If d is even, B2(n, d) = B2(n− 1, d− 1) and A2(n, d) = A2(n− 1, d− 1).

(f) If d is even and M = A2(n, d), then there is an (n,M, d)2 code such that all codewords
have even weight and the distance between all pairs of codewords is also even.

1.9.1 The Sphere Packing Bound

The Sphere Packing Bound, also called the Hamming Bound, is based on packing Fnq
with non-overlapping spheres.

Definition 1.9.3 The sphere of radius r centered at u ∈ Fnq is the set Sq,n,r(u) =
{v ∈ Fnq | dH(u,v) ≤ r} of all vectors in Fnq whose distance from u is at most r.

We need the size of a sphere, which requires use of binomial coefficients.

Definition 1.9.4 For a, b integers with 0 ≤ b ≤ a,

(
a

b

)
is the number of b-element subsets

in an a-element set.

(
a

b

)
=

a!

b!(a− b)! and is called a binomial coefficient.

The next result is the basis of the Sphere Packing Bound; part (a) is a direct count and
part (b) follows from the triangle inequality of Theorem 1.6.2.

Theorem 1.9.5 The following hold.

(a) For u ∈ Fnq , |Sq,n,r(u)| =
r∑
i=0

(
n

i

)
(q − 1)i.

(b) If C is an (n,M, d)q code and t =
⌊
d−1

2

⌋
, then spheres of radius t centered at distinct

codewords are disjoint.

Theorem 1.9.6 (Sphere Packing (or Hamming) Bound) Let d ≥ 1. If t =
⌊
d−1

2

⌋
,

then

Bq(n, d) ≤ Aq(n, d) ≤ qn∑t
i=0

(
n
i

)
(q − 1)i

.

Proof: Let C be an (n,M, d)q code. By Theorem 1.9.5, the spheres of radius t centered at

distinct codewords are disjoint, and each such sphere has α =

t∑
i=0

(
n

i

)
(q−1)i total vectors.

Thus Mα cannot exceed the number qn of vectors in Fnq . The result is now clear. �

Remark 1.9.7 The Sphere Packing Bound is an upper bound on the size of a code given its
length and minimum distance. Additionally the Sphere Packing Bound produces an upper
bound on the minimum distance d of an (n,M)q code in the following sense. Given n, M ,

and q, compute the smallest positive integer s with M >
qn∑s

i=0

(
n
i

)
(q − 1)i

; for an (n,M, d)q

code to exist, d < 2s− 1.
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Definition 1.9.8 If C is an (n,M, d)q code with M =
qn∑t

i=0

(
n
i

)
(q − 1)i

(that is, equality

holds in the Sphere Packing Bound), C is called a perfect code. Perfect codes are pre-
cisely those (n,M, d)q codes where the disjoint spheres of radius t =

⌊
d−1

2

⌋
centered at all

codewords fill the entire space Fnq . Perfect codes are discussed in Sections 3.3.1 and 5.3.

Example 1.9.9 The code H3,2 of Examples 1.4.9 and 1.6.10 is a [7, 4, 3]2 code. So in this

case t =
⌊

3−1
2

⌋
= 1 and qn∑t

i=0 (ni)(q−1)i
= 27

1+7 = 24 yielding equality in the Sphere Packing

Bound. So H3,2 is perfect.

1.9.2 The Singleton Bound

The Singleton Bound was formulated in [1717]. As with the Sphere Packing Bound, the
Singleton Bound is an upper bound on the size of a code.

Theorem 1.9.10 (Singleton Bound) For d ≤ n, Aq(n, d) ≤ qn−d+1. Furthermore, if an
[n, k, d]q linear code exists, then k ≤ n− d+ 1; i.e., kq(n, d) ≤ n− d+ 1.

Remark 1.9.11 In addition to providing an upper bound on code size, the Singleton Bound
yields the upper bound d ≤ n− logq(M)+1 on the minimum distance of an (n,M, d)q code.

Definition 1.9.12 A code for which equality holds in the Singleton Bound is called max-
imum distance separable (MDS). No code of length n and minimum distance d has
more codewords than an MDS code with parameters n and d; equivalently, no code of length
n with M codewords has a larger minimum distance than an MDS code with parameters n
and M . MDS codes are discussed in Chapters 3, 6, 8, 14, and 33.

The following theorem is proved using Theorem 1.6.11.

Theorem 1.9.13 C is an [n, k, n−k+1]q MDS code if and only if C⊥ is an [n, n−k, k+1]q
MDS code.

Example 1.9.14 Let H2,3 be the [4, 2]3 ternary linear code with generator matrix

G2,3 =

[
1 0 1 1
0 1 1 −1

]
.

Examining inner products of the rows of G2,3, we see that H2,3 is self-orthogonal of dimen-
sion half its length; so it is self-dual. Using Theorem 1.6.2(h), A0(H2,3) = 1, A3(H2,3) = 8,
and Ai(H2,3) = 0 otherwise. In particular H2,3 is a [4, 2, 3]3 code and hence is MDS.

1.9.3 The Plotkin Bound

The Binary Plotkin Bound [1527] is an upper bound on the size of an unrestricted binary
code of length n and minimum distance d provided d is close enough to n.

Theorem 1.9.15 (Binary Plotkin Bound) Let 2d > n. Then

A2(n, d) ≤ 2

⌊
d

2d− n

⌋
.

This result is generalized in [230] to unrestricted codes over Fq.
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Theorem 1.9.16 (Generalized Plotkin Bound) If an (n,M, d)q code exists, then

M(M − 1)d ≤ 2n

q−2∑
i=0

q−1∑
j=i+1

MiMj

where Mi =

⌊
M + i

q

⌋
.

Example 1.9.17 The Sphere Packing Bound yields A2(17, 9) ≤ 131 072
3 214 and A2(18, 10) ≤

262 144
4 048 ; so A2(17, 9) ≤ 40 and A2(18, 10) ≤ 64. The Singleton Bound produces A2(17, 9) ≤

512 and A2(18, 10) ≤ 512. The Binary Plotkin Bound gives A2(17, 9) ≤ 18 and A2(18, 10) ≤
10. Using Theorem 1.9.2(e), the Plotkin Bound is best with A2(18, 10) = A2(17, 9) ≤ 10.
According to [845], there is a (18, 10, 10)2 code implying A2(18, 10) = A2(17, 9) = 10.

1.9.4 The Griesmer Bound

The Griesmer Bound [855] is a lower bound on the length of a linear code given its
dimension and minimum weight.

Theorem 1.9.18 (Griesmer Bound) Let C be an [n, k, d]q linear code with k ≥ 1. Then

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

Remark 1.9.19 One can interpret the Griesmer Bound as an upper bound on the code
size given its length and minimum weight. Specifically, Bq(n, d) ≤ qk where k is the largest

positive integer such that n ≥ ∑k−1
i=0

⌈
d
qi

⌉
. This bound can also be interpreted as a lower

bound on the length of a linear code of given dimension and minimum weight; that is,
nq(k, d) ≥ ∑k−1

i=0

⌈
d
qi

⌉
. Finally, the Griesmer Bound can be understood as an upper bound

on the minimum weight given the code length and dimension; given n and k, dq(n, k) is at
most the largest d for which the bound holds.

Example 1.9.20 Suppose we wish to find the smallest code length n such that an [n, 4, 3]2
code can exist. By the Griesmer Bound n ≥

⌈
3
1

⌉
+
⌈

3
2

⌉
+
⌈

3
4

⌉
+
⌈

3
8

⌉
= 3 + 2 + 1 + 1 = 7.

Note that equality in this bound is attained by the [7, 4, 3]2 code H3,2 of Examples 1.4.9
and 1.6.10.

1.9.5 The Linear Programming Bound

The Linear Programming Bound is a result of the work of P. Delsarte in [517, 519, 521].
This is generally the most powerful of the bounds but does require setting up and solving
a linear program involving Krawtchouck polynomials.

Definition 1.9.21 For 0 ≤ k ≤ n, define the Krawtchouck polynomial K
(n,q)
k (x) of

degree k to be

K
(n,q)
k (x) =

k∑
j=0

(−1)j(q − 1)k−j
(
x

j

)(
n− x
k − j

)
.
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An extensive presentation of properties of the Krawtchouck polynomials can be found
in [1229, 1365] and in Section 12.1. A simple proof of the following result, known as the
Delsarte–MacWilliams Inequalities, is found in [1885].

Theorem 1.9.22 (Delsarte–MacWilliams Inequalities) Let C be an (n,M, d)q code
with distance distribution Bi(C) for 0 ≤ i ≤ n. Then for 0 ≤ k ≤ n

n∑
i=0

Bi(C)K(n,q)
k (i) ≥ 0.

Let C be an (n,M, d)q code with distance distribution Bi(C) for 0 ≤ i ≤ n. By Re-
mark 1.6.7, M =

∑n
i=0Bi(C), B0(C) = 1, and Bi(C) = 0 for 1 ≤ i ≤ d− 1. Although Bi(C)

may not be an integer, Bi(C) ≥ 0. By the Delsarte–MacWilliams Inequalities, we also have∑n
i=0Bi(C)K

(n,q)
k (i) ≥ 0 for 0 ≤ i ≤ n. As K

(n,q)
0 (i) = 1, the 0th Delsarte–MacWilliams

Inequality is merely
∑n
i=0Bi(C) ≥ 0, which is clearly already true. If q = 2, there are addi-

tional inequalities that hold. When q = 2, it is straightforward to show that Bn(C) ≤ 1. Fur-
thermore when q = 2 and d is even, we may also assume thatBi(C) = 0 when i is odd by The-

orem 1.9.2(f). Properties of binomial coefficients show that K
(n,2)
k (i) = (−1)iK

(n,2)
n−k (i); thus

the kth Delsarte–MacWilliams Inequality is the same as the (n−k)th Delsarte–MacWilliams
Inequality because Bi(C) = 0 when i is odd. This discussion leads to the linear program
that is set up to establish an upper bound on Aq(n, d).

Theorem 1.9.23 (Linear Programming Bound) The following hold.

(a) When q ≥ 2, Aq(n, d) ≤ max {∑n
i=0Bi} where the maximum is taken over all Bi

subject to the following conditions:

(i) B0 = 1 and Bi = 0 for 1 ≤ i ≤ d− 1,

(ii) Bi ≥ 0 for d ≤ i ≤ n, and

(iii)
∑n
i=0BiK

(n,q)
k (i) ≥ 0 for 1 ≤ k ≤ n.

(b) When d is even and q = 2, A2(n, d) ≤ max {∑n
i=0Bi} where the maximum is taken

over all Bi subject to the following conditions:

(i) B0 = 1 and Bi = 0 for 1 ≤ i ≤ d− 1 and all odd i,

(ii) Bi ≥ 0 for d ≤ i ≤ n and Bn ≤ 1, and

(iii)
∑n
i=0BiK

(n,2)
k (i) ≥ 0 for 1 ≤ k ≤

⌊
n
2

⌋
.

Sometimes additional constraints can be added to the linear program and reduce the
size of max {∑n

i=0Bi}. Linear Programming Bounds will be considered in more detail in
Chapters 12 and 13.

1.9.6 The Gilbert Bound

The Gilbert Bound [806] is a lower bound on Bq(n, d) and hence a lower bound on
Aq(n, d).

Theorem 1.9.24 (Gilbert Bound)

Bq(n, d) ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

.
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1.9.7 The Varshamov Bound

The Varshamov Bound [1844] is similar to the Gilbert Bound; asymptotically they are
the same as stated in Section 1.9.8.

Theorem 1.9.25 (Varshamov Bound)

Bq(n, d) ≥ qn−dlogq(1+
∑d−2
i=0 (n−1

i )(q−1)i)e.

1.9.8 Asymptotic Bounds

We now describe what happens to the bounds, excluding the Griesmer Bound, as the
code length approaches infinity; these bounds are termed asymptotic bounds. We first
need some terminology.

Definition 1.9.26 The information rate, or simply rate, of an (n,M, d)q code is defined

to be
logqM

n
. If the code is actually an [n, k, d]q linear code, its rate is

k

n
, measuring the

number of information coordinates relative to the total number of coordinates. In either the
linear or nonlinear case, the higher the rate, the higher the proportion of coordinates in a

codeword that actually contain information rather than redundancy. The ratio
d

n
is called

the relative distance of the code; as we will see later, the relative distance is a measure
of the error-correcting capability of the code relative to its length.

Each asymptotic bound will be either an upper or lower bound on the largest possible
rate for a family of (possibly nonlinear) codes over Fq of lengths going to infinity with
relative distances approaching δ. The function, called the asymptotic normalized rate
function, that determines this rate is

αq(δ) = lim sup
n→∞

logq Aq(n, δn)

n
.

As the exact value of αq(δ) is unknown, we desire upper and lower bounds on this function.
An upper bound would indicate that all families with relative distances approaching δ have
rates, in the limit, at most this upper bound. A lower bound indicates that there exists a
family of codes of lengths approaching infinity and relative distances approaching δ whose
rates are at least this bound. Three of the bounds in the next theorem involve the entropy
function.

Definition 1.9.27 The entropy function is defined for 0 ≤ x ≤ r = 1− q−1 by

Hq(x) =

{
0 if x = 0,
x logq(q − 1)− x logq x− (1− x) logq(1− x) if 0 < x ≤ r.

Discussion and proofs of the asymptotic bounds can be found in [1008, 1323, 1505, 1836].
The MRRW Bound, named after the authors of [1365] who developed the bound, is the
Asymptotic Linear Programming Bound. The MRRW Bound has been improved by M.
Aaltonnen [2] in the case q > 2.

Theorem 1.9.28 (Asymptotic Bounds) Let q ≥ 2 and r = 1−q−1. The following hold.

(a) (Asymptotic Sphere Packing) αq(δ) ≤ 1−Hq(δ/2) if 0 < δ ≤ r.
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(b) (Asymptotic Singleton) αq(δ) ≤ 1− δ if 0 ≤ δ ≤ 1.

(c) (Asymptotic Plotkin) αq(δ) = 0 if r ≤ δ ≤ 1 and αq(δ) ≤ 1− δ
r if 0 ≤ δ ≤ r.

(d) (MRRW)

(i) (First MRRW)

αq(δ) ≤ Hq

(
1
q

(
q − 1− (q − 2)δ − 2

√
(q − 1)δ(1− δ)

))
if 0 < δ < r.

(ii) (Second MRRW) Let g(x) = H2((1−
√

1− x )/2).

α2(δ) ≤ min0≤u≤1−2δ{1 + g(u2)− g(u2 + 2δu+ 2δ)} if 0 < δ < 1/2.

(e) (Asymptotic Gilbert–Varshamov) 1−Hq(δ) ≤ αq(δ) if 0 < δ ≤ r.

1.10 Hamming Codes

A binary code permutation equivalent to the code of Example 1.4.9 was discovered in
1947 by R. W. Hamming while working at Bell Telephone Laboratories. Because of patent
considerations, his work was not published until 1950; see [895]. This Hamming code actually
appeared earlier in C. E. Shannon’s seminal paper [1661]. It was also generalized to codes
over fields of prime order by M. J. E. Golay [820].

Given a positive integer m, if one takes an m × n binary matrix whose columns are
nonzero and distinct, the binary code with this parity check matrix must have minimum
weight at least 3 by Theorem 1.6.11. Binary Hamming codes Hm,2 arise by choosing an
m×n parity check matrix with the maximum number of columns possible that are distinct
and nonzero.

Definition 1.10.1 Let m ≥ 2 be an integer and n = 2m− 1. Let Hm,2 be an m×n matrix
whose columns are all 2m − 1 distinct nonzero binary m-tuples. A code with this parity
check matrix is called a binary Hamming code. Changing the column order of Hm,2

produces a set of pairwise permutation equivalent codes. Any code in this list is denoted
Hm,2 and is a [2m − 1, 2m − 1−m, 3]2 code.

The code H3,2 of Example 1.4.9 is indeed a binary Hamming code. These codes are
generalized to Hamming codes Hm,q over Fq, all with minimum weight 3 again from Theo-
rem 1.6.11.

Definition 1.10.2 Let m ≥ 2 be an integer and n = (qm−1)/(q−1). There are a total of n
1-dimensional subspaces of Fmq . Let Hm,q be an m×n matrix whose columns are all nonzero
m-tuples with one column from each of the distinct 1-dimensional subspaces of Fmq . A code
with this parity check matrix is called a Hamming code over Fq. Re-scaling columns
and/or changing column order of Hm,q produces a set of pairwise monomially equivalent
codes. Any code in this list is denotedHm,q and is a

[
(qm−1)/(q−1), (qm−1)/(q−1)−m, 3

]
q

code. The code H⊥m,q is called a simplex code.

Example 1.10.3 The parity check matrix of the code in Example 1.9.14 is[
−1 −1 1 0
−1 1 0 1

]
.

This code satisfies the definition of a Hamming [4, 2, 3]3 code, and so H2,3 is the appropriate
labeling of this code.
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The parameters of the Hamming codes in fact determine the code. That Hm,q is perfect
follows by direct computation from Definition 1.9.8.

Theorem 1.10.4 The following hold.

(a) If C is a [2m − 1, 2m − 1−m, 3]2 binary linear code, then C is permutation equivalent
to Hm,2.

(b) If C is a
[
(qm−1)/(q−1), (qm−1)/(q−1)−m, 3

]
q

linear code, then C is monomially

equivalent to Hm,q.

(c) Hm,q is perfect.

The weight distribution of H⊥3,2 was given in Example 1.6.10. The following generalizes
this; for a proof see [1008, Theorem 2.7.5].

Theorem 1.10.5 The nonzero codewords of the
[
(qm − 1)/(q − 1),m

]
q

simplex code over

Fq all have weight qm−1.

1.11 Reed–Muller Codes

In 1954 the binary Reed–Muller codes were first constructed and examined by D. E.
Muller [1409], and a majority logic decoding algorithm for them was described by I. S.
Reed [1581]. The non-binary Reed–Muller codes, called generalized Reed–Muller codes,
were developed in [1089, 1887]; see also Example 16.4.11 and Section 2.8. We define bi-
nary Reed–Muller codes recursively based on the (u | u + v) construction; see [1323]. Other
constructions of Reed–Muller codes can be found in Chapters 2, 16, and 20.

Definition 1.11.1 For i ∈ {1, 2}, let Ci be linear codes both of length n over Fq. The
(u | u + v) construction produces the linear code C of length 2n given by C = {(u,u + v) |
u ∈ C1, v ∈ C2}.

Remark 1.11.2 Let Ci, for i ∈ {1, 2}, be [n, ki, di]q codes with generator and parity check
matrices Gi and Hi, respectively. C obtained by the (u | u + v) construction is a [2n, k1 +
k2,min {2d1, d2}]q code with generator and parity check matrices

G =

[
G1 G1

0k2×n G2

]
and H =

[
H1 0(n−k1)×n
−H2 H2

]
. (1.2)

We now define the binary Reed–Muller codes.

Definition 1.11.3 Let r and m be integers with 0 ≤ r ≤ m and 1 ≤ m. The rth or-
der binary Reed–Muller (RM) code of length 2m, denoted RM(r,m), is defined
recursively. The code RM(0,m) = {0,1}, the [2m, 1, 2m]2 binary repetition code, and
RM(m,m) = F2m

q , a [2m, 2m, 1]2 code. For 1 ≤ r < m, define

RM(r,m) = {(u,u + v) | u ∈ RM(r,m− 1), v ∈ RM(r − 1,m− 1)}.
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Remark 1.11.4 Let G(r,m) be a generator matrix of RM(r,m). By Definition 1.11.3,
G(0,m) =

[
1 1 · · · 1

]
and G(m,m) = I2m . By Definition 1.11.3 and (1.2), for 1 ≤ r < m,

G(r,m) =

[
G(r,m− 1) G(r,m− 1)

O G(r − 1,m− 1)

]
where O = 0k×2m−1 with k the dimension of RM(r − 1,m− 1).

Example 1.11.5 We give generator matrices for RM(r,m) with 1 ≤ r < m ≤ 3:

G(1, 2) =

 1 0 1 0
0 1 0 1
0 0 1 1

 , G(1, 3) =


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

 ,

G(2, 3) =



1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1


.

From these generator matrices, we see that RM(1, 2) and RM(2, 3) consist of all even
weight binary vectors of lengths 4 and 8, respectively. Also RM(1, 3) is an [8, 4, 4]2 code,

which by Example 1.8.5 must be Ĥ3,2.

Using the definition of Reed–Muller codes and properties from the (u | u + v) construc-
tion, along with induction, the following hold; see [1008, Theorem 1.10.1].

Theorem 1.11.6 Let r and m be integers with 0 ≤ r ≤ m and 1 ≤ m. The following hold.

(a) RM(i,m) ⊆ RM(j,m) if 0 ≤ i ≤ j ≤ m.

(b) The dimension of RM(r,m) equals
(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
r

)
.

(c) The minimum weight of RM(r,m) equals 2m−r.

(d) RM(m,m)⊥ = {0}, and if 0 ≤ r < m, then RM(r,m)⊥ = RM(m− r − 1,m).

Remark 1.11.7 Theorem 1.11.6(a) is sometimes called the nesting property of Reed–

Muller codes. As observed in Example 1.11.5, RM(1, 3) = Ĥ3,2. Using Theorem 1.11.6(d),

it can be shown that RM(m−2,m) = Ĥm,2; see [1008, Exercise 61]. By Theorem 1.11.6(d),
RM(m− 1,m) = RM(0,m)⊥. Since RM(0,m) = {0,1}, RM(m− 1,m) must be all even
weight vectors in F2m

2 , a fact observed for m = 2 and m = 3 in Example 1.11.5.

1.12 Cyclic Codes

The study of cyclic codes seems to have begun with a series of four Air Force Cambridge
Research Laboratory (AFCRL) technical notes [1536, 1537, 1538, 1539] by E. Prange from
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1957 to 1959. The 1961 book by W. W. Peterson [1505] compiled extensive results about
cyclic codes and laid the framework for much of the present-day theory. In 1972 this book
was expanded and published jointly by Peterson and E. J. Weldon [1506].

Up to this point, the coordinates of Fnq have been denoted {1, 2, . . . , n}. For cyclic codes,
the coordinates of Fnq will be denoted {0, 1, . . . , n− 1}.

Definition 1.12.1 Let C be a code of length n over Fq. C is cyclic provided that for all
c = c0c1 · · · cn−1 ∈ C, the cyclic shift c′ = cn−1c0 · · · cn−2 ∈ C.

Remark 1.12.2 The cyclic shift described in Definition 1.12.1 is cyclic shift to the right
by one position with wrap-around. The code C is cyclic if and only if P ∈ PAut(C) where
the permutation matrix P = [pi,j ] is defined by pi,i+1 = 1 for 0 ≤ i ≤ n − 2, pn−1,0 = 1,
and pi,j = 0 otherwise. Cyclic codes are closed under cyclic shifts with wrap-around of any
amount and in either the left or right directions.

Example 1.12.3 Let C be the [7, 4]2 code with generator matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .
Labeling the rows of G as r1, r2, r3, r4 top to bottom, we see that r5 = 1000110 = r1+r2+r3,
r6 = 0100011 = r2 + r3 + r4, and r7 = 1010001 = r1 + r2 + r4. Since C is spanned by
{r1, r2, . . . , r7} and this list is closed under cyclic shifts, C must be a cyclic code. By row
reducing G, we obtain another generator matrix

G′ =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .
Label the columns of G′ left to right as 0, 1, . . . , 6. If P is the 7 × 7 permutation matrix
induced by the permutation that sends column 0 to column 2, column 2 to column 3, column
3 to column 1, column 1 to column 0, and fixes columns 4, 5, and 6, then G′P has the same
rows as G3,2, the generator matrix of H3,2 in Example 1.4.9. Therefore, by ordering the
coordinates of H3,2 appropriately, we see that H3,2 is a cyclic code.

While cyclic codes can be nonlinear, throughout this section we will examine only those
that are linear. To study linear cyclic codes it is useful to consider elements of Fnq as
polynomials inside a certain quotient ring of polynomials. In that framework, linear cyclic
codes are precisely the ideals of that quotient ring. We now establish the framework.

Definition 1.12.4 Let R be a commutative ring with identity. A subset I of R is an ideal
of R if for all a, b ∈ I and r ∈ R, then a − b ∈ I and ra ∈ I. The ideal I is a principal
ideal if there exists a ∈ I such that I = {ra | r ∈ R}; a is a generator of I and I
is denoted 〈a〉. 6 The ring R is an integral domain if whenever a, b ∈ R and ab = 0,
either a = 0 or b = 0. R is a principal ideal domain (PID) if it is an integral domain
and all its ideals are principal. The quotient ring of R by the ideal I, denoted R/I,
is the set of cosets {a + I | a ∈ R} with addition and multiplication of cosets given by
(r + I) + (s+ I) = (r + s) + I and (r + I)(s+ I) = rs+ I; two cosets a+ I and b+ I are
equal if and only if a− b ∈ I.

6In some chapters of this books, the principal ideal generated by a will be denoted (a).
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Definition 1.12.5 Let x be an indeterminate over Fq. The set

Fq[x] = {a0 + a1x+ · · ·+ amx
m | ai ∈ Fq for 0 ≤ i ≤ m and some m}

is the ring of polynomials with coefficients in Fq. Let a(x) = a0 + a1x+ · · ·+ amx
m ∈

Fq[x] be a nonzero polynomial where am 6= 0. The degree of a(x), denoted deg(a(x)), is
m. If am = 1, a(x) is monic. If deg(a(x)) ≥ 1 and there do not exist b(x), c(x) ∈ Fq[x] with
deg(b(x)) < deg(a(x)) and deg(c(x)) < deg(a(x)) such that a(x) = b(x)c(x), then a(x) is
irreducible over Fq.

The following result is standard; see for example [751].

Theorem 1.12.6 The following hold.

(a) Fq[x] is a commutative ring with identity 1.

(b) (Division Algorithm) For a(x), b(x) ∈ Fq[x] with b(x) nonzero, there exists unique
s(x), t(x) ∈ Fq[x] such that a(x) = b(x)s(x)+t(x) where either t(x) = 0 or deg(t(x)) <
deg(b(x)).

(c) Fq[x] is a PID.

(d) (Unique Factorization) Let p(x) ∈ Fq[x] with deg(p(x)) ≥ 1. There exists a unique set
{f1(x), f2(x), . . . , ft(x)} ⊆ Fq[x], a unique list n1, n2, . . . , nt of positive integers, and
a unique α ∈ Fq where each fi(x) is monic and irreducible over Fq such that

p(x) = αf1(x)n1f2(x)n2 · · · ft(x)nt .

(e) (Unique Coset Representatives) Let p(x) ∈ Fq[x] be nonzero. The distinct cosets
of the quotient ring Fq[x]/〈p(x)〉 are uniquely representable as a(x) + 〈p(x)〉 where
a(x) = 0 or deg(a(x)) < deg(p(x)); Fq[x]/〈p(x)〉 has order qdeg(p(x)). The quotient
ring Fq[x]/〈p(x)〉 is also a vector space over Fq of dimension deg(p(x)).

(f) If p(x) is irreducible over Fq, then Fq[x]/〈p(x)〉 is a field.

The map a = a0a1 · · · an−1 7→ a(x) + 〈xn−1〉 where a(x) = a0 +a1x+ · · ·+an−1x
n−1 is

a vector space isomorphism from Fnq onto Fq[x]/〈xn− 1〉. We denote this map by a 7→ a(x),
dropping the ‘+ 〈xn − 1〉’. Thus a linear code C of length n can be viewed equivalently as
a subspace of Fnq or as an Fq-subspace of Fq[x]/〈xn − 1〉. Notice that if a 7→ a(x), then
a′ = an−1a0 · · · an−2 7→ xa(x) as xn + 〈xn − 1〉 = 1 + 〈xn − 1〉. So C is a cyclic code in Fnq if
and only if C 7→ I where I is an ideal of Fq[x]/〈xn − 1〉. Therefore we study cyclic codes as
ideals of Fq[x]/〈xn − 1〉.

To find the ideals of Fq[x]/〈xn − 1〉 requires factorization of xn − 1. From the theory of
finite fields (see [170, 1254, 1362]), there is an extension field of Fq that contains all the roots
of xn − 1. The smallest such field, called a splitting field of xn − 1 over Fq, is Fqt where
t is the smallest integer such that n | (qt − 1). When gcd(n, q) = 1, there exists α ∈ Fqt ,
called a primitive nth root of unity, such that the n distinct roots of xn − 1 (called
the roots of unity) are α0 = 1, α, α2, . . . , αn−1; alternately if γ is a primitive element of

Fqt , one choice for α is γ(qt−1)/n. When gcd(n, q) 6= 1, xn − 1 has repeated roots. For the
remainder of this section, we assume gcd(n, q) = 1.7

7The theory of cyclic codes when gcd(n, q) 6= 1 has some overlap with the theory when gcd(n, q) = 1, but
there are significant differences. When gcd(n, q) 6= 1, cyclic codes are called repeated-root cyclic codes.
Repeated-root cyclic codes were first examined in their most generality in [369, 1835].
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Definition 1.12.7 Let s be an integer with 0 ≤ s < n. The q-cyclotomic coset of s
modulo n is the set

Cs = {s, sq, . . . , sqr−1} mod n

where r is the smallest positive integer such that sqr ≡ s (mod n). The distinct q-cyclotomic
cosets modulo n partition the set of integers {0, 1, 2, . . . , n− 1}.

Remark 1.12.8 A splitting field of xn − 1 over Fq is Fqt where t is the size of the q-
cyclotomic coset of 1 modulo n.

Theorem 1.12.9 ([1323, Chapter 7.5]) Let α be a primitive nth root of unity in the
splitting field Fqt of xn − 1 over Fq. For 0 ≤ s < n define Mαs(x) =

∏
i∈Cs(x− αi). Then

Mαs(x) ∈ Fq[x] and is irreducible over Fq. Furthermore, the unique factorization of xn − 1
into monic irreducible polynomials over Fq is given by xn − 1 =

∏
sMαs(x) where s runs

through a set of representatives of all distinct q-cyclotomic cosets modulo n.

Example 1.12.10 The 2-cyclotomic cosets modulo 7 are C0 = {0}, C1 = {1, 2, 4}, and
C3 = {3, 6, 5}. By Remark 1.12.8, F23 = F8 is the splitting field of x7 − 1 over F2. In
the notation of Table 1.3, α = δ is a primitive 7th root of unity. In the notation of The-
orem 1.12.9, Mα0(x) = −1 + x = 1 + x, Mα = (x − α)(x − α2)(x − α4) = 1 + x + x3,
Mα3 = (x− α3)(x− α6)(x− α5) = 1 + x2 + x3, and x7 − 1 = Mα0(x)Mα(x)Mα3(x).

Using Theorem 1.12.9, we have the following basic theorem [1008, Theorem 4.2.1] de-
scribing the structure of cyclic codes over Fq. We remark that all of this theorem except
part (g) is valid when gcd(n, q) 6= 1. We note that if a(x), b(x) ∈ Fq[x], then a(x) divides
b(x), denoted a(x) | b(x), means that there exists c(x) ∈ Fq[x] such that b(x) = a(x)c(x).

Theorem 1.12.11 Let C be a nonzero linear cyclic code over Fq of length n viewed as an
ideal of Fq[x]/〈xn − 1〉. There exists a polynomial g(x) ∈ C with the following properties.

(a) g(x) is the unique monic polynomial of minimum degree in C.

(b) C = 〈g(x)〉 in Fq[x]/〈xn − 1〉.

(c) g(x) | (xn − 1).

With k = n− deg(g(x)), let g(x) =
∑n−k
i=0 gix

i where gn−k = 1. Then

(d) the dimension of C is k and {g(x), xg(x), . . . , xk−1g(x)} is a basis for C,

(e) every element of C is uniquely expressible as a product g(x)f(x) where f(x) = 0 or
deg(f(x)) < k,

(f) a generator matrix G of C is

G =


g0 g1 g2 · · · gn−k · · · · · · 0
0 g0 g1 · · · gn−k−1 gn−k · · · 0
...

...
0 0 0 g0 · · · · · · · · · gn−k



↔


g(x)

xg(x)
. . .

xk−1g(x)

 ,
and
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(g) if α is a primitive nth root of unity in the splitting field Fqt of xn − 1 over Fq, then

g(x) =
∏
s

Mαs(x)

where the product is over a subset of representatives of distinct q-cyclotomic cosets
modulo n.

Definition 1.12.12 The polynomial g(x) in Theorem 1.12.11 is the generator polyno-
mial of C. By convention, the cyclic code C = {0} has generator polynomial g(x) = xn− 1.

The following are immediate consequences of Theorem 1.12.11.

Corollary 1.12.13 There are 2m linear cyclic codes of length n (including the zero code)
over Fq where m is the number of q-cyclotomic cosets modulo n.

Corollary 1.12.14 If g1(x) and g2(x) are generator polynomials of C1 and C2, respectively,
and if g1(x) | g2(x), then C2 ⊆ C1.

By Theorem 1.12.11, when gcd(n, q) = 1, a linear cyclic code of length n over Fq is
uniquely determined by its generator polynomial. This in turn is determined by its roots in
the splitting field of xn − 1 over Fq. This leads to the following definition.

Definition 1.12.15 Let C be a linear cyclic code of length n over Fq with generator poly-
nomial g(x) | (xn−1). Let α be a fixed primitive nth root of unity in a splitting field of xn−1
over Fq. By Theorems 1.12.9 and 1.12.11, g(x) =

∏
s

∏
i∈Cs(x − αi) where s runs through

some subset of representatives of the q-cyclotomic cosets Cs modulo n. Let T =
⋃
s Cs be

the union of these q-cyclotomic cosets. The roots of unity {αi | i ∈ T} are called the zeros
of C; {αi | 0 ≤ i < n, i 6∈ T} are the nonzeros of C. The set T is called the defining set
of C relative to α.

Remark 1.12.16 In Definition 1.12.15, if you change the primitive nth root of unity, you
change the defining set T ; so T is computed relative to a fixed primitive root of unity.

Remark 1.12.17 Corollary 1.12.14 can be translated into the language of defining sets: If
T1 and T2 are defining sets of C1 and C2, respectively, relative to the same primitive root of
unity, and if T1 ⊆ T2, then C2 ⊆ C1.

Example 1.12.18 Continuing with Example 1.12.10, Table 1.5 describes the 23 = 8 bi-
nary cyclic codes of length 7. The code with g(x) = 1 + x + x3 is H3,2 as discussed in
Example 1.12.3. The code with g(x) = 1 + x2 + x3 is permutation equivalent to H3,2. The
code of dimension k = 1 is the binary repetition code {0,1}.

The dual code of a cyclic code is also cyclic. We can determine its generator polynomial
and defining set; see [1323, Chapter 7.4].

Theorem 1.12.19 Let C be an [n, k]q cyclic code with generator polynomial g(x). Define

h(x) =
xn − 1

g(x)
. Then C⊥ is cyclic with generator polynomial g⊥(x) =

xkh(x−1)

h(0)
. Let α be

a primitive nth root of unity in a splitting field of xn− 1 over Fq. If T is the defining set of
C relative to α, the defining set of C⊥ is T⊥ = {0, 1, . . . , n− 1} \ (−1)T mod n.
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TABLE 1.5: The [7, k, d]2 cyclic codes with generator polynomial g(x) and defining set T
relative to α

k d g(x) T

0 — 1 + x7 = 0 {0, 1, 2, 3, 4, 5, 6}
1 7 1 + x+ x2 + x3 + x4 + x5 + x6 {1, 2, 3, 4, 5, 6}
3 4 1 + x2 + x3 + x4 {0, 1, 2, 4}
3 4 1 + x+ x2 + x4 {0, 3, 5, 6}
4 3 1 + x+ x3 {1, 2, 4}
4 3 1 + x2 + x3 {3, 5, 6}
6 2 1 + x {0}
7 1 1 ∅

Example 1.12.20 Continuing with Example 1.12.18, the dual of any code in Table 1.5
must be a code in the table. By comparing dimensions, the codes of dimension 0 and
7 in the table are duals of each other as are the codes of dimension 1 and 6; this is
confirmed by examining the defining sets and using Theorem 1.12.19. By this theorem,
{0, 1, 2, 3, 4, 5, 6} \ (−1){1, 2, 4} mod 7 = {0, 1, 2, 3, 4, 5, 6} \ {6, 5, 3} = {0, 1, 2, 4} showing
that the codes with defining sets {0, 1, 2, 4} and {1, 2, 4} are duals of each other. By Re-
mark 1.12.17, as {1, 2, 4} ⊆ {0, 1, 2, 4}, 〈1+x+x3〉⊥ = 〈1+x2+x3+x4〉 ⊆ 〈1+x+x3〉, a fact
we already observed in Example 1.6.10. Similarly, the codes with defining sets {0, 3, 5, 6}
and {3, 5, 6} are duals of each other.

The following is a somewhat surprising fact about cyclic self-orthogonal binary codes;
see [1008, Theorem 4.4.18].

Theorem 1.12.21 A cyclic self-orthogonal binary code is doubly-even.

Example 1.12.22 As detailed in Examples 1.6.10 and 1.12.20, H⊥3,2 is self-orthogonal and
doubly-even, illustrating Theorem 1.12.21.

Definition 1.12.23 Quasi-cyclic codes are a natural generalization of cyclic codes. Let C
be a code of length n and ` a positive integer dividing n. C is `-quasi-cyclic provided
whenever c0c1 · · · cn−1 ∈ C then cn−`cn−`+1 · · · cn−1c0 · · · cn−`−2cn−`−1 ∈ C. Cyclic codes
are 1-quasi-cyclic codes. Quasi-cyclic codes will be studied in Chapter 7.

See Chapter 2 and Sections 8.6 and 20.5 for more on cyclic codes over fields.

1.13 Golay Codes

In the same remarkable one-half page 1949 paper [820] in which Golay generalized the
Hamming codes, he also introduced what later became known as the [23, 12, 7]2 binary
Golay code and the [11, 6, 5]3 ternary Golay code. There are many ways to present these
two codes; one way is to describe them as cyclic codes.

Example 1.13.1 There are three 2-cyclotomic cosets modulo 23 with sizes 1, 11, and 11:
C0 = {0}, C1 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}, C5 = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.
Theorem 1.12.9 implies that, over F2, x23 − 1 = x23 + 1 factors into 3 monic irreducible
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polynomials of degrees 1, 11, and 11. These irreducible factors are b0(x) = 1 + x, b1(x) =
1 + x+ x5 + x6 + x7 + x9 + x11, and b2(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11. There are
8 binary linear cyclic codes of length 23 by Corollary 1.12.13. By Theorem 1.12.11(d), the
codes C1 = 〈b1(x)〉 and C2 = 〈b2(x)〉 are [23, 12]2 codes. The map that fixes coordinate 0
and switches coordinates i and 23− i for 1 ≤ i ≤ 11 leads to a permutation matrix P where
C1P = C2. Any code permutation equivalent to C1 is termed the [23, 12]2 binary Golay
code of length 23 and is denoted G23. The splitting field of x23−1 over F2 is F211 . In F211

there is a primitive 23rd root of unity α where the defining sets of C1 and C2 are C1 and
C5, respectively, relative to α. Another primitive 23rd root of unity is β = α5; relative to β,
the defining sets of C1 and C2 are C5 and C1, respectively. By Theorem 1.12.19 the defining
set of C⊥1 relative to α is C0 ∪ C1 implying by Remark 1.12.17 that C⊥1 ⊆ C1 showing C⊥1 is
self-orthogonal. Using Theorem 1.12.21, C⊥1 is the doubly-even [23, 11]2 code consisting of
all codewords in C1 of even weight.

Example 1.13.2 The 3-cyclotomic cosets modulo 11 are C0 = {0}, C1 = {1, 3, 9, 5, 4},
and C2 = {2, 6, 7, 10, 8} of sizes 1, 5, and 5, respectively. Theorem 1.12.9 implies that,
over F3, x11 − 1 factors into 3 monic irreducible polynomials of degrees 1, 5, and 5. These
irreducible factors are t0(x) = −1 + x, t1(x) = −1 + x2 − x3 + x4 + x5, and t2(x) =
−1−x+x2−x3+x5. There are 8 ternary linear cyclic codes of length 11 by Corollary 1.12.13.
By Theorem 1.12.11(d), the codes C1 = 〈t1(x)〉 and C2 = 〈t2(x)〉 are [11, 6]3 codes. The map
that fixes coordinate 0 and switches coordinates i and 11 − i for 1 ≤ i ≤ 5 leads to a
permutation matrix P where C1P = C2. Any code monomially equivalent to C1 is termed
the [11, 6]3 ternary Golay code of length 11 and is denoted G11. The splitting field of
x11 − 1 over F3 is F35 . In F35 there is a primitive 11th root of unity α where the defining
sets of C1 and C2 are C1 and C2, respectively, relative to α. Another primitive 11th root of
unity is β = α2; relative to β, the defining sets of C1 and C2 are C2 and C1, respectively.

Definition 1.13.3 G23 can be extended as in Section 1.7 to a [24, 12]2 code Ĝ23, denoted
G24, and called the binary Golay code of length 24. Similarly G11 can be extended to a
[12, 6]3 code Ĝ11, denoted G12, and called the ternary Golay code of length 12.

Remark 1.13.4 The automorphism groups of the four Golay codes involve the Mathieu
groups Mp for p ∈ {11, 12, 23, 24} discovered by Émile Mathieu [1352, 1353]. These four
permutation groups on p points are 4-fold transitive, when p ∈ {11, 23}, and 5-fold transitive,
when p ∈ {12, 24}, simple groups. Properties of these groups and their relationship to Golay
codes can be found in [442].

The following two theorems give basic properties of the four Golay codes. Parts (a), (b),
and (c) of each theorem can be found in most standard coding theory texts. The uniqueness
of these codes in part (d) of each theorem is a culmination of work in [525, 1514, 1518, 1732]
with a self-contained proof in [1008, Chapter 10]. Part (e) of each theorem follows by direct
computation from Definition 1.9.8. The automorphism groups in part (f) of each theorem
can be found in [434], which is also [442, Chapter 10].

Theorem 1.13.5 The following properties hold for the binary Golay codes.

(a) G23 has minimum distance 7 and weight distribution A0 = A23 = 1, A7 = A16 = 253,
A8 = A15 = 506, A11 = A12 = 1288, and Ai = 0 otherwise.

(b) G24 has minimum distance 8 and weight distribution A0 = A24 = 1, A8 = A16 = 759,
A12 = 2576, and Ai = 0 otherwise.

(c) G24 is doubly-even and self-dual.
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(d) Both a (23,M)2 and a (24,M)2, possibly nonlinear, binary code each containing 0
with M ≥ 212 codewords and minimum distance 7 and 8, respectively, are unique
up to permutation equivalence. They are the [23, 12, 7]2 and [24, 12, 8]2 binary Golay
codes.

(e) G23 is perfect.

(f) PAut(G23) = M23 and PAut(G24) = M24.

Theorem 1.13.6 The following properties hold for the ternary Golay codes.

(a) G11 has minimum distance 5 and weight distribution A0 = 1, A5 = A6 = 132, A8 =
330, A9 = 110, A11 = 24, and Ai = 0 otherwise.

(b) G12 has minimum distance 6 and weight distribution A0 = 1, A6 = 264, A9 = 440,
A12 = 24, and Ai = 0 otherwise.

(c) G12 is self-dual.

(d) Both a (11,M)3 and a (12,M)3, possibly nonlinear, ternary code each containing 0
with M ≥ 36 codewords and minimum distance 5 and 6, respectively, are unique up
to monomial equivalence. They are the [11, 6, 5]3 and [12, 6, 6]3 ternary Golay codes.

(e) G11 is perfect.

(f) MAut(G11) = M̃11 and MAut(G12) = M̃12 where M̃11 and M̃12 are isomorphic to the
double covers, or the non-splitting central extensions by a center of order 2, of M11

and M12.

Remark 1.13.7 If there is equality for given parameters of a code in a bound from Sec-
tion 1.9, we say the code meets the bound. Perfect codes are those meeting the Sphere
Packing Bound; MDS codes are those meeting the Singleton Bound. Using Theorem 1.10.5,
direct computation shows that the [(qm − 1)/(q − 1),m, qm−1]q simplex code meets the
Griesmer Bound, as do G11 and G12. Neither G23 nor G24 meet the Griesmer Bound.

1.14 BCH and Reed–Solomon Codes

There is a lower bound, presented in Theorem 1.14.3, on the minimum distance of a
cyclic code based on the defining set of the code. BCH codes take advantage of this bound.
The binary BCH codes were discovered by A. Hocquenghem [968] and independently by R.
C. Bose and D. K. Ray-Chaudhuri [248, 249], and were generalized to all finite fields by D.
C. Gorenstein and N. Zierler [840]. Some properties of BCH codes are given in Section 2.6.

Definition 1.14.1 Let N = {0, 1, . . . , n−1} and T ⊆ N . We say T contains a set of s ≤ n
consecutive elements provided there exists b ∈ N such that

{b, b+ 1, . . . , b+ s− 1} mod n ⊆ T.

Remark 1.14.2 When considering the notion of consecutive, wrap-around is allowed. For
example if n = 10, {8, 9, 0, 1} is a consecutive set in T = {0, 1, 2, 5, 8, 9}.
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TABLE 1.6: The [7, k, d]2 BCH codes with defining set T relative to α, b, and Bose distance
δ

k d T b δ

0 — {0, 1, 2, 3, 4, 5, 6} = C1 ∪ C2 ∪ · · · ∪ C6 ∪ C0 1 —
1 7 {1, 2, 3, 4, 5, 6} = C1 ∪ C2 ∪ · · · ∪ C6 1 7
3 4 {0, 1, 2, 4} = C0 ∪ C1 ∪ C2 0 4
3 4 {0, 3, 5, 6} = C5 ∪ C6 ∪ C0 5 4
4 3 {1, 2, 4} = C1 ∪ C2 1 3
4 3 {3, 5, 6} = C5 ∪ C6 5 3
6 2 {0} = C0 0 2

Rather surprisingly, the existence of consecutive elements in the defining set of a cyclic
code determines a lower bound, called the BCH Bound, on the minimum distance of the
code. A proof of the following can be found in [1323, Chapter 7.6].

Theorem 1.14.3 (BCH Bound) Let C be a linear cyclic code of length n over Fq and
minimum distance d with defining set T relative to some primitive nth root of unity. Assume
T contains δ − 1 consecutive elements for some integer δ ≥ 2. Then d ≥ δ.

Definition 1.14.4 Let δ be an integer with 2 ≤ δ ≤ n. A BCH code over Fq of length
n and designed distance δ is a linear cyclic code with defining set

T = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2

relative to some primitive nth root of unity where Ci is the q-cyclotomic coset modulo n
containing i. As T contains the consecutive set {b, b+1, . . . , b+δ−2}, this code has minimum
distance at least δ by the BCH Bound. If b = 1, the code is narrow-sense; if n = qt − 1
for some t, the code is primitive.

Definition 1.14.5 Sometimes a BCH code can have more than one designed distance; the
largest designed distance is called the Bose distance.

Example 1.14.6 Consider the eight [7, k, d]2 binary cyclic codes from Example 1.12.18 and
presented in Table 1.5. All except the code with defining set T = ∅ are BCH codes as seen
in Table 1.6. As 7 = 23 − 1, all these BCH codes are primitive. Technically, the zero code
is primitive with designed distance 8; of course distance in the zero code is meaningless.
Of the six remaining codes, three are narrow-sense. Notice that the code with defining set
{1, 2, 4} is narrow-sense with two designed distances 2 and 3 as {1, 2, 4} = C1 = C1 ∪ C2;
the Bose distance is 3. The code with defining set {1, 2, 3, 4, 5, 6} is narrow-sense with
designed distances 4 through 7 as {1, 2, 3, 4, 5, 6} = C1 ∪ C2 ∪ C3 = C1 ∪ C2 ∪ C3 ∪ C4 =
C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6; the Bose distance is 7. The Bose
designed distance and the true minimum distance are the same for the seven nonzero BCH
codes.

Example 1.14.7 In the notation of Example 1.13.1, G23 has defining set T = C1 which
contains 4 consecutive elements {1, 2, 3, 4}. By the BCH Bound, G23 has minimum weight
at least 5; its true minimum weight is 7 from Theorem 1.13.5(a). As the defining set of G23

is T = C1 = C1 ∪C2 ∪C3 ∪C4, G23 is a narrow-sense8 BCH code of Bose designed distance

8G23 is permutation equivalent to the BCH code with designed distance 5 and defining set C5 = C19 =
C19 ∪ C20 ∪ C21 ∪ C22; in this formulation G23 is not narrow-sense.
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δ = 5 with b = 1. Similarly, G11 of Example 1.13.2 is a BCH code viewed in several ways.
G11 is a narrow-sense BCH code with b = 1, δ = 2 and defining set C1 = {1, 3, 4, 5, 9}. It is
also a BCH code with b = 3, δ = 2, 3, or 4 as {1, 3, 4, 5, 9} = C3 = C3 ∪C4 = C3 ∪C4 ∪C5.
The Bose distance of G11 is 4 while its true minimum distance is 5 from Theorem 1.13.6(a).

At about the same time as BCH codes appeared in the literature, I. S. Reed and G.
Solomon [1582] published their work on the codes that now bear their names. These codes,
which are now commonly presented as a special case of BCH codes, were actually first
constructed by K. A. Bush [319] in 1952 in the context of orthogonal arrays. Because
of their burst error-correction capabilities, Reed–Solomon codes are used to improve the
reliability of compact discs, digital audio tapes, and other data storage systems.

Definition 1.14.8 A Reed–Solomon (RS) code9 of length n over Fq is a primitive
BCH code of length n = q − 1.

When n = q− 1, the q-cyclotomic coset modulo n containing s is Cs = {s}. So if C is an
[n, k, d]q Reed–Solomon code, its defining set T has size n− k and must be {b, b+ 1, . . . , b+
(n−k− 1)} mod n for some b. By the BCH Bound, d ≥ n−k+ 1. By the Singleton Bound,
d ≤ n− k + 1. Therefore d = n− k + 1 and C is MDS; in particular the designed distance
δ = n− k + 1 equals the true minimum distance. In general the dual code of an MDS code
is also MDS by Theorem 1.9.13. The dual code of a BCH code may not be BCH; however
the dual of a Reed–Solomon code is Reed–Solomon as follows. By Theorem 1.12.19, C⊥
has defining set T⊥ = N \ (−1)T mod n where N = {0, 1, . . . , n − 1}. Since (−1)T mod n
consists of n−k consecutive elements of N , T⊥ is the remaining k elements N , which clearly
must be consecutive (recalling that wrap-around is allowed in consecutive sets modulo n).
This discussion yields the following result.

Theorem 1.14.9 Let C be a Reed–Solomon code over Fq of length n = q − 1 and designed
distance δ. The following hold.

(a) C has defining set T = {b, b+ 1, . . . , b+ δ − 2} for some integer b.

(b) C has minimum distance d = δ and dimension k = n− d+ 1.

(c) C is MDS.

(d) C⊥ is a Reed–Solomon code of designed distance k + 1.

Example 1.14.10 Using Table 1.1, γ is both a primitive element of F9 and a primitive 8th

root of unity. Let C be the narrow-sense Reed–Solomon code over F9 of length 8 and designed
distance δ = 4. Then C has defining set {1, 2, 3} relative to γ and generator polynomial
g(x) = (x−γ)(x−γ2)(x−γ3) = γ2+γx+γ3x2+x3. C is an [8, 5, 4]9 code. By Theorem 1.12.19,
C⊥ has defining set T⊥ = {0, 1, . . . , 7} \ (−1){1, 2, 3} mod 8 = {0, 1, . . . , 7} \ {7, 6, 5} =
{0, 1, 2, 3, 4} and hence generator polynomial g⊥(x) = (x−1)(x−γ)(x−γ2)(x−γ3)(x−γ4) =
(x2 − 1)g(x) = γ6 + γ5x+ γ5x2 + γ7x3 + γ3x4 + x5. So C⊥ is an [8, 3, 6]9 non-narrow-sense
Reed–Solomon code with b = 0 and designed distance 6, consistent with Theorem 1.14.9(d).
As T ⊆ T⊥, C⊥ ⊆ C by Remark 1.12.17.

The original formulation of Reed and Solomon for the narrow-sense Reed–Solomon codes
is different from that of Definition 1.14.8. This alternative formulation of narrow-sense
Reed–Solomon codes is of particular importance because it is the basis for the definitions

9While this is a common definition of Reed–Solomon codes, there are other codes of lengths different
from q − 1 that are also called Reed–Solomon codes. See Remark 15.3.21.
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of generalized Reed–Solomon codes, Goppa codes, and algebraic geometry codes; see Chap-
ters 15 and 24.

For this formulation, let Pk,q = {p(x) ∈ Fq[x] | p(x) = 0 or deg(p(x)) < k} when k ≥ 0.
See [1008, Theorem 5.2.3] for a proof of the following.

Theorem 1.14.11 Let n = q − 1 and let α be a primitive nth root of unity in Fq. For
0 < k ≤ n = q − 1, let RSk(α) =

{(
p(α0), p(α), . . . , p(αq−2)

)
∈ Fnq | p(x) ∈ Pk,q

}
. Then

RSk(α) is the narrow-sense [q − 1, k, q − k]q Reed–Solomon code.

In general, extending an MDS code may not produce an MDS code; however extending
a narrow-sense Reed–Solomon code does produce an MDS code. With the notation of The-
orem 1.14.11, Fq = {0, 1 = α0, α, α2, . . . , αq−2} and, when q ≥ 3,

∑q−2
i=0 α

i = 0. Using this,
it is straightforward to show that if q ≥ 3, k < q−1, and p(x) ∈ Pk,q, then

∑
β∈Fq p(β) = 0.

This leads to the following result.

Theorem 1.14.12 With the notation of Theorem 1.14.11 and 0 < k < n = q − 1,
R̂Sk(α) =

{(
p(α0), p(α), . . . , p(αq−2), p(0)

)
∈ Fnq | p(x) ∈ Pk,q

}
is a [q, k, q − k + 1]q

MDS code.

Remark 1.14.13 The code RSq−1(α) omitted from consideration in Theorem 1.14.12

equals Fq−1
q . Its extension is not as given in Theorem 1.14.12; however R̂Sq−1(α) is still a

[q, q − 1, 2]q MDS code.

1.15 Weight Distributions

The weight distribution of a linear code determines the weight distribution of its dual
code via a series of equations, called the MacWilliams Identities or the MacWilliams Equa-
tions. They were first developed by F. J. MacWilliams in [1319]. There are in fact several
equivalent formulations of these equations. Among these are the Pless Power Moments dis-
covered by V. S. Pless [1513]. The most compact form of these identities is expressed in a
single polynomial equation relating the weight distribution of a code and its dual.

Definition 1.15.1 Let C be a linear code of length n over Fq with weight distribution
Ai(C) for 0 ≤ i ≤ n. Let x and y be independent indeterminates over Fq. The (Hamming)
weight enumerator of C is defined to be

HweC(x, y) =

n∑
i=0

Ai(C)xiyn−i.

The formulation of the Pless Power Moments involves Stirling numbers.

Definition 1.15.2 The Stirling numbers S(r, ν) of the second kind are defined for
nonnegative integers r, ν by the equation

S(r, ν) =
1

ν!

ν∑
i=0

(−1)ν−i
(
ν

i

)
ir;

ν!S(r, ν) is the number of ways to distribute r distinct objects into ν distinct boxes with
no box left empty.
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The next theorem gives six equivalent formulations of the MacWilliams Identities or
MacWilliams Equations. The fourth in the list involves the Krawtchouck polynomials;
see Definition 1.9.21. The last two are the Pless Power Moments. One proof of the
equivalence of these identities is found in [1008, Chapter 7.2].

Theorem 1.15.3 (MacWilliams Identities and Pless Power Moments) Let C be a
linear [n, k]q code and C⊥ its [n, n − k]q dual code. Let Ai = Ai(C) and A⊥i = Ai(C⊥), for
0 ≤ i ≤ n, be the weight distributions of C and C⊥, respectively. The following are equivalent.

(a)
n−ν∑
j=0

(
n− j
ν

)
Aj = qk−ν

ν∑
j=0

(
n− j
n− ν

)
A⊥j for 0 ≤ ν ≤ n.

(b)
n∑
j=ν

(
j

ν

)
Aj = qk−ν

ν∑
j=0

(−1)j
(
n− j
n− ν

)
(q − 1)ν−jA⊥j for 0 ≤ ν ≤ n.

(c) HweC⊥(x, y) =
1

|C|HweC(y − x, y + (q − 1)x).

(d) A⊥j =
1

|C|
n∑
i=0

AiK
(n,q)
j (i) for 0 ≤ j ≤ n.

(e)
n∑
j=0

jrAj =

min{n,r}∑
j=0

(−1)jA⊥j

 r∑
ν=j

ν!S(r, ν)qk−ν(q − 1)ν−j
(
n− j
n− ν

) for 0 ≤ r.

(f)
n∑
j=0

(n− j)rAj =

min{n,r}∑
j=0

A⊥j

 r∑
ν=j

ν!S(r, ν)qk−ν
(
n− j
n− ν

) for 0 ≤ r.

Remark 1.15.4 In the case of a linear code, the Delsarte–MacWilliams Inequalities of
Theorem 1.9.22 follow from Theorem 1.15.3(d).

Example 1.15.5 In Theorem 1.13.6(b), we gave the weight distribution of G12. Using the
Pless Power Moments of Theorem 1.15.3(e), we can verify this weight distribution using
only the fact that G12 is a [12, 6, 6]3 self-dual code. As G12 is self-dual, A⊥i = Ai and Ai = 0
when 3 - i by Theorem 1.6.2(h). As A0 = 1 and the minimum weight of G12 is 6, the only
unknown Ai are A6, A9, and A12. We can find these from the first three power moments in
Theorem 1.15.3(e). For a general [n, k]q code, as A⊥0 = 1, the first three power moments are

n∑
j=0

Aj = qk,

n∑
j=0

jAj = qk−1(qn− n−A⊥1 ), and

n∑
j=0

j2Aj = qk−2
(
(q − 1)n(qn− n+ 1)− (2qn− q − 2n+ 2)A⊥1 + 2A⊥2

)
.

Applied specifically to G12, these become

1 +A6 +A9 +A12 = 729

6A6 + 9A9 + 12A12 = 5 832

36A6 + 81A9 + 144A12 = 48 600.
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The unique solution to this system is A6 = 264, A9 = 440, and A12 = 24. Thus the weight
enumerator of G12 is

HweG12(x, y) = y12 + 264x6y6 + 440x9y3 + 24x12.

Example 1.15.6 Let C be the
[
(qm−1)/(q−1),m, qm−1

]
q

simplex code of Theorem 1.10.5;

by this theorem, with n = (qm − 1)/(q − 1),

HweC(x, y) = yn + (qm − 1)xq
m−1

yn−q
m−1

.

By Definition 1.10.1, C⊥ = Hm,q. Using Theorem 1.15.3(d),

Aj(Hm,q) =
1

qm
(
K

(n,q)
j (0) + (qm − 1)K

(n,q)
j (qm−1)

)
for 0 ≤ j ≤ n

noting that

K
(n,q)
j (0) = (q − 1)j

(
n

j

)
and

K
(n,q)
j (qm−1) =

j∑
i=1

(−1)i(q − 1)j−i
(
qm−1

i

)(
n− qm−1

j − i

)
.

The MacWilliams Identities can be used to find the weight distribution of an MDS
code as found, for example, in [1323, Theorem 6 of Chapter 11]. A resulting corollary gives
bounding relations on the length, dimension, and field size.

Theorem 1.15.7 Let C be an [n, k, d]q MDS code over Fq. The weight distribution of C is
given by A0(C) = 1, Ai(C) = 0 for 1 ≤ i < d = n− k + 1 and

Ai(C) =

(
n

i

) i−d∑
j=0

(−1)j
(
i

j

)(
qi+1−d−j − 1

)
for d ≤ i ≤ n.

Corollary 1.15.8 Let C be an [n, k, d]q MDS code over Fq.

(a) If 2 ≤ k, then d = n− k + 1 ≤ q.

(b) If k ≤ n− 2, then k + 1 ≤ q.

This corollary becomes a foundation for the MDS Conjecture 3.3.21 in Chapter 3.

1.16 Encoding

Figure 1.1 shows a simple communication channel that includes a component called an
encoder, in which a message is encoded to produce a codeword. In this section we examine
two encoding processes.

As in Figure 1.1, a message is any of the qk possible k-tuples x ∈ Fkq . The encoder will

convert x to an n-tuple c from a code C over Fq with qk codewords; that codeword will then
be transmitted over the communication channel.
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Suppose that C is an [n, k, d]q linear code with generator matrix G and parity check
matrix H. We first describe an encoder that uses the generator matrix G. The most common
way to encode the message x is as x 7→ c = xG. If G is replaced by another generator matrix,
the encoding of x will, of course, be different. A nice relationship exists between message
and codeword if G is in standard form

[
Ik | A

]
. In that case the first k coordinates of

the codeword c are the information symbols x in order; the remaining n − k symbols are
the parity check symbols, that is, the redundancy added to x in order to help recover x
if errors occur during transmission. A similar relationship between message and codeword
can exist even if G is not in standard form. Specifically, suppose there exist column indices
i1, i2, . . . , ik such that the k×k matrix consisting of these k columns of G is the k×k identity
matrix. In that case the message is found in the k coordinates i1, i2, . . . , ik of the codeword
scrambled but otherwise unchanged; that is, the message symbol xj is in component ij of the
codeword. If this occurs where the message is embedded in the codeword, we say that the
encoder is a systematic encoder of C. We can always force an encoder to be systematic.
For example, if G is row reduced to a matrix G1 in reduced row echelon form, G1 remains
a generator matrix of C by Remark 1.4.3; the encoding x 7→ c = xG1 is systematic as G1

has k columns which together form Ik. Another way to force an encoder to be systematic
is as follows. By Theorem 1.8.4, C is permutation equivalent to an [n, k, d]q code C′ with
generator matrix G′ in standard form. If the code C′ is used in place of C, the encoder
x 7→ xG′ is a systematic encoder of C′.

Example 1.16.1 Let C be the [7, 4, 3]2 binary Hamming code H3,2 with generator matrix
G3,2 from Example 1.4.9. Encoding x = x1x2x3x4 ∈ F4

2 as xG3,2 produces the codeword
c = x1x2x3x4(x2 + x3 + x4)(x1 + x3 + x4)(x1 + x2 + x4).

Example 1.16.2 Let C be an [n, k, d]q cyclic code with generator polynomial g(x) and
generator matrix G obtained from cyclic shifts of g(x) as in Theorem 1.12.11(f). Suppose
the message m = m0m1 · · ·mk−1 is to be encoded as c = mG. Using the polynomial m(x) =
m0 +m1x+ · · ·+mk−1x

k−1 to represent the message m and c(x) = c0 +c1x+ · · ·+cn−1x
n−1

to represent the codeword c, it is a simple calculation to show c(x) = m(x)g(x). Generally,
this encoding is not systematic. Recall from Examples 1.12.3 and 1.12.18 that the Hamming
[7, 4, 3]2 code H3,2 has a cyclic form with generator polynomial g(x) = 1 + x + x3. The
nonsystematic encoder m(x) 7→ c(x) = m(x)g(x) yields c(x) = m0 + (m0 + m1)x + (m1 +
m2)x2 + (m0 +m2 +m3)x3 + (m1 +m3)x4 +m2x

5 +m3x
6.

The second method to encode uses the parity check matrix H. This is easiest to do when
G is in standard form

[
Ik | A

]
; in this case H =

[
−AT | In−k

]
by Theorem 1.4.7. Suppose

that x = x1x2 · · ·xk is to be encoded as the codeword c = c1c2 · · · cn = xG. As G is in stan-
dard form, c1c2 · · · ck = x1x2 · · ·xk. So we need to determine the n−k redundancy symbols
ck+1ck+2 · · · cn. Because 0T = HcT =

[
−AT | In−k

]
cT, we have ATxT = ck+1ck+2 · · · cTn,

or equivalently ck+1ck+2 · · · cn = xA. This process can be generalized when x 7→ xG is a
systematic encoder.

Example 1.16.3 Continuing with Example 1.16.1, we can encode x = x1x2x3x4 using
H3,2 from Example 1.4.9. Here c5c6c7 = xA where

A =


0 1 1
1 0 1
1 1 0
1 1 1

 .
Thus c5 = x2 + x3 + x4, c6 = x1 + x3 + x4, and c7 = x1 + x2 + x4, consistent with
Example 1.16.1.
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Example 1.16.4 Let C be an [n, k, d]q cyclic code with generator polynomial g(x). In
Example 1.16.2 a nonsystematic encoder was described that encodes a cyclic code using
g(x). There is a systematic encoder of C using the generator polynomial g⊥(x) of C⊥.
By Theorem 1.12.19, g⊥(x) = xkh(x−1)/h(0) = h′0 + h′1x + · · · + h′k−1x

k−1 + h′kx
k where

h(x) = (xn−1)/g(x) and h′k = 1. Let H, which is a parity check matrix for C, be determined
from the shifts of g⊥(x) as follows:

H =


h′0 h′1 h′2 · · · h′k · · · · · · 0
0 h′0 h′1 · · · h′k−1 h′k · · · 0
...

...
0 0 0 h′0 · · · · · · · · · h′k



↔


g⊥(x)

xg⊥(x)
. . .

xn−k−1g⊥(x)

 .
Examining the generator matrix G for C in Theorem 1.12.11(f), {0, 1, . . . , k−1} is an infor-
mation set for C. Let c = c0c1 · · · cn−1 ∈ C; so c0c1 · · · ck−1 can be considered the associated
message. The redundancy components ckck+1 · · · cn−1 are determined from HcT = 0T and
can be computed in the order i = k, k + 1, . . . , n− 1 where

ci = −
k−1∑
j=0

h′jci−k+j . (1.3)

Example 1.16.5 We apply the systematic encoding of Example 1.16.4 to the cyclic version
of the Hamming [7, 4, 3]2 code H3,2 with generator polynomial g(x) = 1 + x + x3; see
Example 1.12.18. By Example 1.12.20, g⊥(x) = 1 + x2 + x3 + x4 and (1.3) yields c4 =
c0 + c2 + c3, c5 = c1 + c3 + c4, and c6 = c2 + c4 + c5. In terms of the information bits
c0c1c2c3, we have c4 = c0 + c2 + c3, c5 = c0 + c1 + c2, and c6 = c1 + c2 + c3.

As discussed in Section 1.1, sometimes the receiver is interested only in the sent code-
words rather than the sent messages. However, if there is interest in the actual message, a
question arises as to how to recover the message from a codeword. If the encoder x 7→ xG
is systematic, it is straightforward to recover the message. What can be done otherwise?
Because G has independent rows, there is an n × k matrix K such that GK = Ik; K is
called a right inverse for G. A right inverse is not necessarily unique. As c = xG, the
message x = xGK = cK.

Example 1.16.6 In Example 1.16.2, we encoded the message m0m1m2m3 using the
[7, 4, 3]2 cyclic version of H3,2 with generator polynomial g(x) = 1 + x + x3. The resulting
codeword was c =

(
m0,m0 +m1,m1 +m2,m0 +m2 +m3,m1 +m3,m2,m5

)
. The generator

matrix G obtained from g(x) as in Theorem 1.12.11(f) has right inverse

K =



1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

Computing cK gives m0m1m2m3 as expected.
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FIGURE 1.2: Binary symmetric channel with crossover probability %
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1.17 Decoding

Decoding is the process of determining which codeword c was sent when a vector y is
received. Decoding is generally more complex than encoding. Decoding algorithms usually
vary with the type of code being used. In this section we discuss only the basics of hard-
decision decoding. Decoding is discussed more in depth in Chapters 15, 21, 24, 28–30, and
32.

Definition 1.17.1 A hard-decision decoder is a decoder that inputs ‘hard’ data from
the channel (e.g., elements from Fq) and outputs hard data to the receiver. A soft-decision
decoder is one which inputs ‘soft’ data from the channel (e.g., estimates of the symbols
with attached probabilities) and generally outputs hard data.

Initially we focus our discussion to the decoding of binary codes. To set the stage for
decoding, we begin with one possible mathematical model of a channel that transmits binary
data. Before stating the model, we establish some notation. If E is an event, Prob(E) is
the probability that E occurs. If E1 and E2 are events, Prob(E1 |E2) is the conditional
probability that E1 occurs given that E2 occurs. The model for transmitting binary data
we explore is called the binary symmetric channel (BSC) with crossover probability
% as illustrated in Figure 1.2. In a BSC, we have the following conditional probabilities: For
y, c ∈ F2,

Prob(y is received | c is sent) =

{
1− % if y = c,
% if y 6= c.

(1.4)

In a BSC we also assume that the probability of error in one bit is independent of previous
bits. We will assume that it is more likely that a bit is received correctly than in error; so
% < 1

2 . 10

Let C be a binary code of length n. Assume that c ∈ C is sent and y ∈ Fn2 is received
and decoded as c̃ ∈ C. Of course the hope is that c̃ = c; otherwise the decoder has made a
decoding error. So Prob(c |y) is the probability that the codeword c is sent given that y
is received, and Prob(y | c) is the probability that y is received given that the codeword c

10While % is usually very small, if % > 1
2

, the probability that a bit is received in error is higher than
the probability that it is received correctly. One strategy is to then immediately interchange 0 and 1 at
the receiving end. This converts the BSC with crossover probability % to a BSC with crossover probability
1− % < 1

2
. This of course does not help if % = 1

2
; in this case communication is not possible.
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is sent. These probabilities are related by Bayes’ Rule

Prob(c |y) =
Prob(y | c)Prob(c)

Prob(y)

where Prob(c) is the probability that c is sent and Prob(y) is the probability that y is
received. There are two natural means by which a decoder can make a choice based on
these two probabilities. First the decoder could decode y as c̃ ∈ C where Prob(c̃ |y) is max-
imum; such a decoder is called a maximum a posteriori probability (MAP) decoder.
Symbolically a MAP decoder makes the decision

c̃ = arg max
c∈C

Prob(c |y).

Here arg maxc∈C Prob(c |y) is the argument c of the probability function Prob(c |y) that
maximizes this probability. Alternately the decoder could decode y as c̃ ∈ C where
Prob(y | c̃) is maximum; such a decoder is called a maximum likelihood (ML) decoder.
Symbolically an ML decoder makes the decision

c̃ = arg max
c∈C

Prob(y | c).

We further analyze ML decoding over a BSC. If y = y1y2 · · · yn and c = c1c2 · · · cn,

Prob(y | c) =

n∏
i=1

Prob(yi | ci)

since bit errors are independent. By (1.4) Prob(yi | ci) = % if yi 6= ci and Prob(yi | ci) = 1−%
if yi = ci. Therefore

Prob(y | c) = %dH(y,c)(1− %)n−dH(y,c) = (1− %)n
(

%

1− %

)dH(y,c)

. (1.5)

Since 0 < % < 1
2 , 0 < %

1−% < 1. Thus maximizing Prob(y | c) is equivalent to minimizing

dH(y, c); so a ML decoder finds the codeword c closest to the received vector y in Hamming
distance.

Definition 1.17.2 If a decoder decodes a received vector y as the codeword c with dH(y, c)
minimized, the decoder is called a nearest neighbor decoder.

From this discussion, on a BSC, maximum likelihood and nearest neighbor decoding are
the same. We can certainly perform nearest neighbor decoding on any code over any field.

Before presenting an example of a nearest neighbor decoder, we need to establish the
relationship between the minimum distance of a code and the error-correcting capability of
the code under nearest neighbor decoding. Notice this theorem is valid for any code, linear
or not, over any finite field.

Theorem 1.17.3 Let C be an (n,M, d)q code and t =
⌊
d−1

2

⌋
. If a codeword c ∈ C is sent

and y is received where t or fewer errors have occurred, then c is the unique codeword
closest to y. In particular nearest neighbor decoding uniquely and correctly decodes any
received vector in which at most t errors have occurred in transmission.

Proof: By definition y ∈ Sq,n,t(c), the sphere of radius t in Fnq centered at c. By The-
orem 1.9.5(b), spheres of radius t centered at codewords are pairwise disjoint; hence if
y ∈ Sq,n,t(c1) with c1 ∈ C, then c = c1. �
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Definition 1.17.4 A code C is a t-error-correcting code provided that whenever any
c ∈ C is transmitted and y ∈ Fnq is received, where y differs from c in at most t coordinates,
then every other codeword in C differs from y in more than t coordinates.

Remark 1.17.5 By Theorem 1.17.3, an (n,M, d)q code C is t-error-correcting for any t ≤⌊
d−1

2

⌋
. Furthermore, when M > 1 and t =

⌊
d−1

2

⌋
, there exist two distinct codewords such

that the spheres of radius t + 1 about them are not disjoint; if this were not the case, the
minimum distance of C is in fact larger than d. Thus when M > 1 and t =

⌊
d−1

2

⌋
, C is not

(t+ 1)-error-correcting.11

The nearest neighbor decoding problem for an (n,M, d)q code becomes one of finding an
efficient algorithm that will correct up to t =

⌊
d−1

2

⌋
errors. An obvious decoding algorithm

is to examine all codewords until one is found with distance t or less from the received
vector. This is a realistic decoding algorithm only for M small. Another obvious algorithm
is to make a table consisting of a nearest codeword for each of the qn vectors in Fnq and then
look up a received vector in the table to decode it. This is impractical if qn is very large.

For an [n, k, d]q linear code, we can devise an algorithm using a table with qn−k rather
than qn entries where one can find the nearest codeword by looking up one of these qn−k

entries. This general nearest neighbor decoding algorithm for linear codes is called syndrome
decoding, which is the subject of the remainder of the section.

Definition 1.17.6 Let C be an [n, k, d]q linear code. For y ∈ Fnq , the coset of C with coset
representative y is y +C = {y + c | c ∈ C}. The weight of the coset y +C is the smallest
weight of a vector in the coset, and any vector of this smallest weight in the coset is called
a coset leader.

The next result follows from the theory of finite groups as a linear code is a group under
addition.

Theorem 1.17.7 Let C be an [n, k, d]q linear code. The following hold for y,y′, e ∈ Fnq .

(a) y + C = y′ + C if and only if y − y′ ∈ C.

(b) Cosets of C all have size qk.

(c) Cosets of C are either equal or disjoint. There are qn−k distinct cosets of C and they
partition Fnq .

(d) If e is a coset representative of y +C, then e+C = y +C. In particular, if e is a coset
leader of y + C, then e + C = y + C.

(e) Any coset of weight at most t =
⌊
d−1

2

⌋
has a unique coset leader.

Let C be an [n, k, d]q code; fix a parity check matrix H of C. For y ∈ Fnq , syn(y) = HyT

is called the syndrome of y. Syndromes are column vectors in Fn−kq . The code C consists

of all vectors whose syndrome equals 0T. As H has rank n−k, every column vector in Fn−kq

is a syndrome. From Theorem 1.17.7, if y,y′ ∈ Fnq are in the same coset of C, then y − y′ =

c ∈ C. Therefore syn(y) = HyT = H(y′ + c)T = Hy′
T

+ HcT = Hy′
T

+ 0T = syn(y′).
Conversely, if syn(y) = syn(y′), then H(y − y′)T = 0T and so y − y′ ∈ C. Thus we have
the following theorem.

11In the trivial case where M = 1, C is n-error-correcting as every received vector decodes to the only
codeword in C. However, since the information rate (Definition 1.9.26 ) of such a code is 0, it is never used
in practice.
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Theorem 1.17.8 Two vectors belong to the same coset if and only if they have the same
syndrome.

Hence there is a one-to-one correspondence between cosets of C and syndromes. For
s ∈ Fn−kq , denote by Cs the coset of C consisting of all vectors in Fnq with syndrome sT. Also
let es be a coset leader of Cs. Thus Cs = es + C.

Suppose a codeword sent over a communication channel is received as a vector y. In
nearest neighbor decoding we seek a vector e of smallest weight such that y − e ∈ C. So
nearest neighbor decoding is equivalent to finding a coset leader e of the coset y + C and
decoding the received vector y as y − e. The Syndrome Decoding Algorithm is the following
implementation of nearest neighbor decoding.

Algorithm 1.17.9 (Syndrome Decoding)

Use the above notation.

Step 1: For each syndrome s ∈ Fn−kq , choose a coset leader es of the coset Cs. Create a table
pairing the syndrome with the coset leader.

Step 2: After receiving a vector y, compute s = syn(y).

Step 3: Decode y as the codeword y − es.

Step 1 of this algorithm can be somewhat involved, but it is a one-time preprocessing
task that is carried out before received vectors are analyzed. We briefly describe this table
creation. Begin with all vectors in Fnq of weight t =

⌊
d−1

2

⌋
or less and place them in the

table paired with their syndromes; by Theorem 1.17.7(e), no syndrome is repeated. If all
syndromes have not been accounted for, place all vectors in Fnq of weight t + 1, one at a
time, paired with their syndromes into the table as long as the syndrome is not already
in the table. If all syndromes have still not been accounted for, repeat this procedure with
vectors in Fnq of weight t+ 2, then weight t+ 3, and continue inductively. End the process
when all syndromes are in the table.

Example 1.17.10 Let C be the [6, 3, 3]2 binary code with parity check matrix

H =

 0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 .
The table of Step 1 in the Syndrome Decoding Algorithm is the following.

leader syndrome leader syndrome leader syndrome leader syndrome

000000 000T 010000 101T 000100 100T 000001 001T

100000 011T 001000 110T 000010 010T 100100 111T

Notice that the coset with syndrome 111T has weight 2 and does not have a unique coset
leader. This coset has two other coset leaders: 010010 and 001001. All other cosets have
unique coset leaders by Theorem 1.17.7(e). We analyze three received vectors.

• Suppose y = 110110 is received. Then syn(y) = HyT = 000T and y is decoded as y.
y was the sent codeword provided 2 or more errors were not made.
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• Now suppose that y = 101000 is received. Then syn(y) = 101T and y is decoded as
y − 010000 = 111000. This was the sent codeword provided only 1 error was made.

• Finally suppose that y = 111111 is received. Then syn(y) = 111T and y is decoded
as y − 100100 = 011011 and at least 2 errors were made in transmission. If exactly 2
errors were made, and we had chosen one of the other two possible coset leaders for
the table, y would have been decoded as y−010010 = 101101 or y−001001 = 110110.

For this code, any received vector where 0 or 1 errors were made would be decoded correctly.
If 2 errors were made, the decoder would decode the received vector to one of three possible
equally likely codewords; there is no way to determine which was actually sent. If more than
2 errors were made, the decoder would always decode the received vector incorrectly.

Example 1.17.11 Nearest neighbor decoding of the binary Hamming code Hm,2 is par-
ticularly easy. The parity check matrix for this code consists of the 2m − 1 nonzero binary
m-tuples of column length m; these can be viewed as the binary expansions of the integers
1, 2, . . . , 2m−1. Choose the parity check matrix H for Hm,2 where column i is the associated
binary m-tuple expansion of i. Step 1 of the Syndrome Decoding Algorithm 1.17.9 can be
skipped and the algorithm becomes the following: If y is received, compute s = syn(y). If
s = 0T, decode y as the codeword y. Otherwise s represents the binary expansion of some
integer i; the nearest codeword c to y is obtained from y by adding 1 to the ith bit.

As an illustration, the parity check matrix to use for H4,2 is

H =


0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 .
Suppose y = 100110001111000 is received. Then syn(y) = 0100T, which is column 4 of H.
Hence 1 is added to coordinate 4 of y to yield the codeword c = 100010001111000.

1.18 Shannon’s Theorem

Shannon’s Channel Coding Theorem [1661] guarantees that good codes exist making
reliable communication possible. We will discuss this theorem in the context of binary
linear codes for which maximum likelihood decoding over a BSC is used. Note however that
the theorem can be stated in a more general setting.

Assume that the communication channel is a BSC with crossover probability % and that
syndrome decoding is used as the implementation of ML decoding to decode an [n, k, d]2
code C. The word error rate Perr for this channel and decoding scheme is the probability
that the decoder makes an error, averaged over all codewords of C; for simplicity assume
that each codeword of C is equally likely to be sent. A decoder error occurs when c̃ =
arg maxc∈C Prob(y | c) is not the originally transmitted codeword c when y is received. The
syndrome decoder makes a correct decision if y − c is a coset leader. The probability that
the decoder makes a correct decision is

%wtH(y−c)(1− %)n−wtH(y−c)

by (1.5). Therefore the probability that the syndrome decoder makes a correct decision
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averaged over all equally likely transmitted codewords is
∑n
i=0 αi%

i(1 − %)n−i where αi is
the number of coset leaders of weight i. Thus

Perr = 1−
n∑
i=0

αi%
i(1− %)n−i. (1.6)

Example 1.18.1 Suppose binary messages of length k are sent unencoded over a BSC
with crossover probability %. This in effect is the same as transmitting codewords from the
[k, k, 1]2 code C = Fk2 . This code has a unique coset, the code itself, and its leader is the
zero codeword of weight 0. Hence α0 = 1 and αi = 0 for i > 0. Therefore (1.6) shows that
the probability of decoder error is

Perr = 1− %0(1− %)k = 1− (1− %)k.

This is precisely what we expect as the probability of no decoding error is the probability
(1− %)k that the k bits are received without error. For instance if % = 0.01 and k = 4, Perr

without coding the length 4 messages is 0.03940399.

Example 1.18.2 We compare sending 24 = 16 binary messages unencoded to encoding
using the [7, 4, 3]2 binary Hamming code H3,2. By Theorem 1.17.7(c), there are 27−4 = 8
cosets of H3,2 in F7

2. Since F7
2 has 1 vector of weight 0 and 7 vectors of weight 1, these

must be the coset leaders for all 8 cosets of H3,2 in F7
2 by Theorem 1.17.7(e). Thus α0 = 1,

α1 = 7, and αi = 0 for i > 1. Hence the probability of decoder error is

Perr = 1− (1− %)7 − 7%(1− %)6

by (1.6). For example if % = 0.01, Perr = 0.00203104 · · · , significantly lower than the word er-
ror rate for unencoded transmissions of binary messages of length 4 found in Example 1.18.1.
For comparison, when transmitting 10 000 unencoded binary messages each of length 4, one
can expect about 394 to be received in error. On the other hand, when transmitting 10 000
binary messages each of length 4 encoded to length 7 codewords from H3,2, one can expect
about 20 to be decoded in error.

In order to state Shannon’s Theorem, we need to define the channel capacity.

Definition 1.18.3 For a BSC with crossover probability %, the capacity of the channel
is

C(%) = 1 + % log2 %+ (1− %) log2(1− %).

The capacity C(%) = 1−H2(%) where H2(%) is the binary entropy function defined in more
generality in Section 1.9.8.12 See Figure 1.3.

The next theorem is Shannon’s Theorem for binary symmetric channels. Shannon’s orig-
inal theorem was stated for nonlinear codes but was later shown to be valid for linear codes
as well. The theorem also holds for other channels provided channel capacity is appropri-
ately defined. For discussion and proofs of various versions of Shannon’s Theorem, see for
example [467, 1314]. For binary symmetric channels, Shannon’s Theorem is as follows.

Theorem 1.18.4 (Shannon) Let δ > 0 and R < C(%). Then for large enough n, there
exists an [n, k]2 binary linear code C with k

n ≥ R such that Perr < δ when C is used for
communication over a BSC with crossover probability %. Furthermore no such code exists if
R > C(%).

12When q = 2, the domain of the entropy function H2(x) can be extended from 0 ≤ x < 1
2

to 0 ≤ x < 1.
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FIGURE 1.3: Channel capacity for a BCS with crossover probability ρ
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Remark 1.18.5 When the crossover probability is ρ = 1
2 , C

(
1
2

)
= 0. In this case Shannon’s

Theorem indicates that communication is not possible. This is not surprising; when ρ = 1
2 ,

whether a binary symbol is received correctly or incorrectly is essentially determined by a
coin flip. See Footnote 10.

Remark 1.18.6 Recall that k
n is the information rate of the code as in Definition 1.9.26.

The proof of Shannon’s Theorem is nonconstructive, but the theorem does guarantee that
good codes exist with information rates just under channel capacity and decoding error rates
arbitrarily small; unfortunately these codes may have to be extremely long. The objective
becomes to find codes with a large number of codewords (to send many messages), large
minimum distance (to correct many errors), and short length (to minimize transmission
time or storage space). These goals conflict as seen in Section 1.9.



Chapter 2

Cyclic Codes over Finite Fields

Cunsheng Ding

The Hong Kong University of Science and Technology

2.1 Notation and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Subfield Subcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Fundamental Constructions of Cyclic Codes . . . . . . . . . . . . . . . . . . . . 47
2.4 The Minimum Distances of Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Irreducible Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 BCH Codes and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.1 The Minimum Distances of BCH Codes . . . . . . . . . . . . . . . . 51
2.6.2 The Dimensions of BCH Codes . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.3 Other Aspects of BCH Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Duadic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 Punctured Generalized Reed–Muller Codes . . . . . . . . . . . . . . . . . . . . . 55
2.9 Another Generalization of the Punctured Binary Reed–Muller

Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.10 Reversible Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1 Notation and Introduction

A brief introduction to cyclic codes over finite fields was given in Section 1.12. The
objective of this chapter is to introduce several important families of cyclic codes over finite
fields. We will follow the notation of Chapter 1 as closely as possible.

By an [n, κ, d]q code, we mean a linear code over Fq with length n, dimension κ and
minimum distance d. Notice that the minimum distance of a linear code is equal to the
minimum nonzero weight of the code. By the parameters of a linear code, we mean its
length, dimension and minimum distance. An [n, κ, d]q code is said to be distance-optimal
(respectively dimension-optimal) if there is no [n, κ, d + 1]q (respectively [n, κ + 1, d]q)
code. By the best known parameters of [n, κ] linear codes over Fq we mean an [n, κ, d]q code
with the largest known d reported in the tables of linear codes maintained at [845].

In this chapter, we deal with cyclic codes of length n over Fq and always assume that
gcd(n, q) = 1. Under this assumption, xn− 1 has no repeated factors over Fq. Denote by Ci
the q-cyclotomic coset modulo n that contains i for 0 ≤ i ≤ n − 1. Put m = ordn(q), and
let γ be a generator of F∗qm := Fqm \ {0}. Define α = γ(qm−1)/n. Then α is a primitive nth

root of unity. The canonical factorization of xn − 1 over Fq is given by

xn − 1 = Mαi0 (x)Mαi1 (x) · · ·Mαit (x), (2.1)

45
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where i0, i1, . . . , it are representatives of the q-cyclotomic cosets modulo n, and

Mαij (x) =
∏
h∈Cij

(x− αh),

which is the minimal polynomial of αij over Fq and is irreducible over Fq.
Throughout this chapter, we define R(n,q) = Fq[x]/〈xn − 1〉 and use Trqm/q to denote

the trace function from Fqm to Fq defined by Trqm/q(x) =
∑m−1
j=0 xq

j

. The ring of integers
modulo n is denoted by Zn = {0, 1, . . . , n− 1}.

Cyclic codes form an important subclass of linear codes over finite fields. Their algebraic
structure is richer. Because of their cyclic structure, they are closely related to number
theory. In addition, they have efficient encoding and decoding algorithms and are the most
studied linear codes. In fact, most of the important families of linear codes are either cyclic
codes or extended cyclic codes.

2.2 Subfield Subcodes

Let C be an [n, κ]qt code. The subfield subcode C|Fq of C with respect to Fq is the set
of codewords in C each of whose components is in Fq. Since C is linear over Fqt , C|Fq is a
linear code over Fq.

The dimension, denoted κq, of the subfield subcode C|Fq may not have an elementary
relation with that of the code C. However, we have the following lower and upper bounds
on κq.

Theorem 2.2.1 Let C be an [n, κ]qt code. Then C|Fq is an [n, κq] code over Fq, where
κ ≥ κq ≥ n− t(n− κ). If C has a basis of codewords in Fnq , then this is also a basis of C|Fq
and C|Fq has dimension κ.

Example 2.2.2 The Hamming codeH3,22 over F22 has parameters [21, 18, 3]4. The subfield
subcode H3,22 |F2

is a [21, 16, 3]2 code with parity check matrix
1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1
0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

 .
In this case, n = 21, κ = 18, and n− t(n− κ) = 15. Hence κq = 16, which is very close to
n− t(n− κ) = 15.

The following is called Delsarte’s Theorem, which exhibits a dual relation between
subfield subcodes and trace codes. This theorem is very useful in the design and analysis of
linear codes.

Theorem 2.2.3 (Delsarte) Let C be a linear code of length n over Fqt . Then

(C|Fq )⊥ = Trqt/q(C⊥),

where Trqt/q(C⊥) =
{(

Trqt/q(v1), . . . ,Trqt/q(vn)
)
| (v1, . . . , vn) ∈ C⊥

}
.

Theorems 2.2.1 and 2.2.3 work for all linear codes, including cyclic codes. Their proofs
could be found in [1008, Section 3.8]. We shall need them later.
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2.3 Fundamental Constructions of Cyclic Codes

In Section 1.12, it was shown that every cyclic code of length n over Fq can be gener-
ated by a generator polynomial g(x) ∈ Fq[x]. The objective of this section is to describe
several other fundamental constructions of cyclic codes over finite fields. By a fundamental
construction, we mean a construction method that can produce every cyclic code over any
finite field.

An element e in a commutative ring R is called an idempotent if e2 = e. The ring
R(n,q) has in general quite a number of idempotents. Besides its generator polynomial,
many other polynomials can generate a cyclic code C. Let C be a cyclic code over Fq with
generator polynomial g(x). It is easily seen that a polynomial f(x) ∈ Fq[x] generates C if
and only if gcd(f(x), xn − 1) = g(x).

If an idempotent e(x) ∈ R(n,q) generates a cyclic code C, it is then unique in this ring and
called the generating idempotent. Given the generator polynomial of a cyclic code, one
can compute its generating idempotent with the following theorem [1008, Theorem 4.3.3].

Theorem 2.3.1 Let C be a cyclic code of length n over Fq with generator polynomial g(x).
Let h(x) = (xn − 1)/g(x). Then gcd(g(x), h(x)) = 1, as it was assumed that gcd(n, q) = 1.
Employing the Extended Euclidean Algorithm, one computes two polynomials a(x) ∈ Fq[x]
and b(x) ∈ Fq[x] such that 1 = a(x)g(x) + b(x)h(x). Then e(x) = a(x)g(x) mod (xn − 1) is
the generating idempotent of C.

The polynomial h(x) in Theorem 2.3.1 is called the parity check polynomial of C.
Given the generating idempotent of a cyclic code, one obtains the generator polynomial of
this code as follows [1008, Theorem 4.3.3].

Theorem 2.3.2 Let C be a cyclic code over Fq with generating idempotent e(x). Then the
generator polynomial of C is given by g(x) = gcd(e(x), xn − 1), which is computed in Fq[x].

Example 2.3.3 The cyclic code C of length 11 over F3 with generator polynomial g(x) =
x5 + x4 + 2x3 + x2 + 2 has parameters [11, 6, 5] and parity check polynomial h(x) = x6 +
2x5 + 2x4 + 2x3 + x2 + 1.

Let a(x) = 2x5 + x4 + x2 and b(x) = x4 + x3 + 1. It is then easily verified that 1 =
a(x)g(x) + b(x)h(x). Hence

e(x) = a(x)g(x) mod (x11 − 1) = 2x10 + 2x8 + 2x7 + 2x6 + 2x2,

which is the generating idempotent of C. On the other hand, we have g(x) = gcd(e(x), x11−
1).

A generator matrix of a cyclic code can be derived from its generating idempotent as
follows [1008, Theorem 4.3.6].

Theorem 2.3.4 If C is an [n, κ] cyclic code with generating idempotent e(x) =
∑n−1
i=0 eix

i,
then the κ× n matrix

e0 e1 e2 · · · en−2 en−1

en−1 e0 e1 · · · en−3 en−2
...

...
...

...
...

...
en−κ+1 en−κ+2 en−κ+3 · · · en−κ−1 en−κ


is a generator matrix of C.
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Let f(x) = f0 + f1x + · · · + f`x
` be a polynomial over a field with f` 6= 0. Then the

reciprocal of f is defined by
f⊥(x) = f−1

` x`f(x−1).

Another fundamental construction of cyclic codes over finite fields is the following trace
construction [1899], which is a direct consequence of Theorem 2.2.3.

Theorem 2.3.5 Let C be a cyclic code of length n over Fq with parity check polynomial
h(x). Let J be a subset of Zn such that

h⊥(x) =
∏
j∈J

Mαj (x),

where h⊥(x) is the reciprocal of h(x). Then C consists of all the following codewords:

ca(x) =
n−1∑
i=0

Trqm/q(fa(αi))xi

where
fa(x) =

∑
j∈J

ajx
j for aj ∈ Fqm .

The trace and generator polynomial approaches are the most popular and effective ways
for constructing and analysing cyclic codes. In particular, the trace approach allows the use
of exponential sums for the determination of the weight distribution of cyclic codes. A lot
of progress in this direction has been made in the past decade [560]. A less investigated fun-
damental approach to cyclic codes is the q-polynomial method developed in [562]. Another
fundamental construction uses sequences as described in Section 20.5.

The following theorem says that every projective linear code is a punctured code of a
special cyclic code [1914].

Theorem 2.3.6 Every linear code C of length n over Fq with minimum distance of C⊥ at
least 3 is a punctured code of the cyclic code{(

Trqm/q(aγ
0),Trqm/q(aγ

1), . . . ,Trqm/q(aγ
qm−2)

)
| a ∈ Fqm

}
.

for some integer m, where γ is a generator of F∗qm .

2.4 The Minimum Distances of Cyclic Codes

The length of a cyclic code is clear from its definition. However, determining the dimen-
sions and minimum distances of cyclic codes is nontrivial. If a cyclic code C of length n is
defined by its generator polynomial g(x), then the dimension of C equals n− deg(g). But it
may be hard to find the degree of g(x) when g(x) is given as the least common multiple of a
number of polynomials. If a cyclic code is defined in the trace form, it may also be difficult
to determine the dimension. Determining the exact minimum distance of a cyclic code is
more difficult. In the case that the minimum distance of a cyclic code cannot be settled,
the best one could expect is to develop a good lower bound on the minimum distance.
Unlike many other subclasses of linear codes, cyclic codes have some lower bounds on their
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minimum distances. Some of the bounds are easy to use, while others are hard to employ.
Below we introduce a few effective lower bounds on the minimum distances of cyclic codes.

Let C be a cyclic code of length n over Fq with generator polynomial

g(x) =
∏
i∈T

(x− αi)

where T is the union of some q-cyclotomic cosets modulo n, and is called the defining set
of C relative to α. The following is a simple but very useful lower bound ([248] and [968]).

Theorem 2.4.1 (BCH Bound) Let C be a cyclic code of length n over Fq with defining
set T and minimum distance d. Assume T contains δ − 1 consecutive integers for some
integer δ. Then d ≥ δ.

The BCH Bound depends on the choice of the primitive nth root of unity α. Different
choices of the primitive root may yield different lower bounds. When applying the BCH
Bound, it is crucial to choose the right primitive root. However, it is open how to choose
such a primitive root. In many cases the BCH Bound may be far away from the actual
minimum distance. In such cases, the lower bound given in the following theorem may be
much better. It was discovered by Hartmann and Tzeng [914]. To introduce this bound, we
define

A+B = {a+ b | a ∈ A, b ∈ B},
where A and B are two subsets of the ring Zn, n is a positive integer, and + denotes the
integer addition modulo n.

Theorem 2.4.2 (Hartmann–Tzeng Bound) Let C be a cyclic code of length n over Fq
with defining set T and minimum distance d. Let A be a set of δ−1 consecutive elements of
T and B(b, s) = {jb mod n | 0 ≤ j ≤ s}, where gcd(b, n) < δ. If A + B(b, s) ⊆ T for some
b and s, then d ≥ δ + s.

When s = 0, the Hartmann–Tzeng Bound becomes the BCH Bound. Other lower bounds
can be found in [1838]. As cyclic codes are a special case of quasi-cyclic codes, bounds on
such codes found in Section 7.4 can be applied to cyclic codes.

2.5 Irreducible Cyclic Codes

Let C(q, n, i) denote the cyclic code of length n over Fq with parity check polynomial
Mαi(x), which is the minimal polynomial of αi over Fq, and where α is a primitive nth

root of unity over an extension field of Fq. These C(q, n, i) are called irreducible cyclic
codes. Since the ideals 〈(xn − 1)/Mαi(x)〉 of R(n,q) are minimal, these C(q, n, i) are also
called minimal cyclic codes.

By Theorem 2.3.5, C(q, n, i) has the following trace representation:

C(q, n, i) =
{(

Trqmi/q(aβ
0),Trqmi/q(aβ), . . . ,Trqmi/q(aβ

n−1)
)
| a ∈ Fqmi

}
,

where β = α−i ∈ Fqmi and mi = |Ci|.
Example 2.5.1 Let n = (qm − 1)/(q − 1) and α = γq−1, where γ is a generator of F∗qm .
If gcd(q − 1,m) = 1, then C(q, n, 1) has parameters [n,m, qm−1] and is equivalent to the
simplex code whose dual is the Hamming code. Hence, when gcd(q−1,m) = 1, the Hamming
code is equivalent to a cyclic code.
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Example 2.5.2 The celebrated Golay codes introduced in Section 1.13 are also irreducible
cyclic codes and the binary [24, 12, 8] extended Golay code was used on the Voyager 1 and
Voyager 2 missions to Jupiter, Saturn, and their moons.

By definition, the dimension of C(q, n, i) equals deg(Mαi(x)), which is a divisor of
m := ordn(q). The determination of the weight enumerators of irreducible cyclic codes
is equivalent to the evaluation of Gaussian periods, which is extremely difficult in general.
However, in a small number of cases, the weight enumerator of some irreducible cyclic
codes is known. One-weight, two-weight and three-weight irreducible cyclic codes exist. It
is in general hard to determine the minimum distance of an irreducible cyclic code. A lower
bound on the minimum distances of irreducible cyclic codes has been developed. The reader
is referred to [568] for detailed information.

Irreducible cyclic codes are very important for many reasons. First of all, every cyclic
code is the direct sum of a number of irreducible cyclic codes. Secondly, the automorphism
group of some irreducible codes (Golay codes) has high transitivity. Thirdly, some irreducible
codes can be employed to construct maximal arcs, elliptic quadrics (ovoids), inversive planes,
and t-designs. Hence, irreducible cyclic codes are closely related to group theory, finite
geometry and combinatorics. In addition, irreducible cyclic codes also have a number of
applications in engineering.

2.6 BCH Codes and Their Properties

BCH codes are a subclass of cyclic codes with special properties and are important in
both theory and practice. Experimental data shows that binary and ternary BCH codes of
certain lengths are the best cyclic codes in almost all cases; see [549, Appendix A]. BCH
codes were briefly introduced in Section 1.14. This section treats BCH codes further and
summarizes their basic properties.

Let δ be an integer with 2 ≤ δ ≤ n and let b be an integer. A BCH code over Fq of
length n and designed distance δ, denoted by C(q,n,δ,b), is a cyclic code with defining set

T (b, δ) = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2 (2.2)

relative to the primitive nth root of unity α, where Ci is the q-cyclotomic coset modulo n
containing i.

When b = 1, the code C(q,n,δ,b) with defining set in (2.2) is called a narrow-sense
BCH code. If n = qm − 1, then C(q,n,δ,b) is referred to as a primitive BCH code. The
Reed–Solomon code introduced in Section 1.14 is a primitive BCH code.

Sometimes T (b1, δ1) = T (b2, δ2) for two distinct pairs (b1, δ1) and (b2, δ2). The maxi-
mum designed distance of a BCH code is defined to be the largest δ such that the set
T (b, δ) in (2.2) defines the code for some b ≥ 0. The maximum designed distance of a BCH
code is also called the Bose distance.

Given the canonical factorization of xn − 1 over Fq in (2.1), we know that the total
number of nonzero cyclic codes of length n over Fq is 2t+1 − 1. Then the following two
natural questions arise:

1. How many of the 2t+1 − 1 cyclic codes are BCH codes?

2. Which of the 2t+1 − 1 cyclic codes are BCH codes?
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The first question is open. Regarding the second question, we have the next result whose
proof is straightforward.

Theorem 2.6.1 A cyclic code of length n over Fq with defining set T ⊆ Zn is a BCH code
if and only if there exists an integer δ with 2 ≤ δ ≤ n, an integer b with −(n−1) ≤ b ≤ n−1,
and an element a ∈ Zn such that gcd(n, a) = 1 and

aT mod n =
δ−2⋃
i=0

Ci+b.

In general it is not easy to use Theorem 2.6.1 to check if a cyclic code is a BCH code.
In addition, it looks hard to answer the first question above with Theorem 2.6.1.

Definition 2.6.2 A family of codes is asymptotically good, provided that there exists
an infinite subset of [ni, ki, di] codes from this family with limi→∞ ni = ∞ such that both
lim infi→∞ ki/ni > 0 and lim infi→∞ di/ni > 0.

The family of primitive BCH codes over Fq is asymptotically bad in the following sense
[1262].

Theorem 2.6.3 If Ci are [ni, ki, di]q codes for i = 1, 2, . . . with limi→∞ ni =∞, then either
lim infi→∞ ki/ni = 0 or lim infi→∞ di/ni = 0.

Despite this asymptotic property, binary primitive BCH codes of length up to 127 are
among the best linear codes known [549]. It is questionable if the definition of asymptotic
badness above makes sense for applications.

2.6.1 The Minimum Distances of BCH Codes

It follows from Theorem 2.4.1 that a cyclic code with designed distance δ has minimum
weight at least δ. It is possible that the actual minimum distance is equal to the designed
distance. Sometimes the actual minimum distance is much larger than the designed distance.

A codeword (c0, . . . , cn−1) of a linear code C is even-like if
∑n−1
j=0 cj = 0, and odd-

like otherwise. The weight of an even-like (respectively odd-like) codeword is called an
even-like weight (respectively odd-like weight). Let C be a primitive narrow-sense BCH
code of length n = qm − 1 over Fq with designed distance δ. The defining set is then
T (1, δ) = C1 ∪ C2 ∪ · · · ∪ Cδ−1. The following theorem provides useful information on the
minimum weight of narrow-sense primitive BCH codes.

Theorem 2.6.4 Let C be the narrow-sense primitive BCH code of length n = qm − 1 over
Fq with designed distance δ. Then the minimum weight of C is its minimum odd-like weight.

The coordinates of the narrow-sense primitive BCH code C of length n = qm − 1 over
Fq with designed distance δ can be indexed by the elements of F∗qm , and the extended

coordinate in the extended code Ĉ can be indexed by the zero element of Fqm . The general

affine group GA1(Fqm) then acts on Fqm and also on Ĉ doubly transitively, where

GA1(Fqm) = {ax+ b | a ∈ F∗qm , b ∈ Fqm}.

Since GA1(Fqm) is transitive on Fqm , it is a subgroup of the permutation automorphism

group of Ĉ. Theorem 2.6.4 then follows.
In the following cases, the minimum distance of the BCH code C(q,n,δ,b) is known. We

first have the following [1323, p. 260].



52 Concise Encyclopedia of Coding Theory

Theorem 2.6.5 For any h with 1 ≤ h ≤ m − 1, the narrow-sense primitive BCH code
C(q,qm−1,qh−1,1) has minimum distance d = qh − 1.

It is easy to prove the following result [1247], which is a generalization of the classical
result for the narrow-sense primitive case.

Theorem 2.6.6 The code C(q,n,δ,b) has minimum distance d = δ if δ divides gcd(n, b− 1).

The following is proved in [1245], which is a generalization of a classical result of Kasami
and Lin for the case q = 2.

Theorem 2.6.7 Let m ≥ 3 for q = 2, m ≥ 2 for q = 3, and m ≥ 1 for q ≥ 4. For
the narrow-sense primitive BCH code C(q,qm−1,δ,1) with δ = qm − qm−1 − qi − 1, where
(m− 2)/2 ≤ i ≤ m− bm/3c − 1, the minimum distance d = δ.

Although it is notoriously difficult to find out the minimum distance of a BCH code in
general, in a small number of cases other than the cases dealt with in the three theorems
above, the minimum distance of the BCH code C(q,n,δ,b) is known. In several cases, the
weight distribution of some BCH codes are known. Detailed information can be found in
[551, 555, 1245, 1246, 1247, 1277].

2.6.2 The Dimensions of BCH Codes

The dimension of the BCH code C(q,n,δ,b) with defining set T (b, δ) in (2.2) is n−|T (b, δ)|.
Since |T (b, δ)| may have a very complicated relation with n, q, b and δ, the dimension of
the BCH code cannot be given exactly in terms of these parameters. The best one can do in
general is to develop tight lower bounds on the dimension of BCH codes. The next theorem
introduces such bounds [1008, Theorem 5.1.7].

Theorem 2.6.8 Let C be an [n, κ] BCH code over Fq of designed distance δ. Then the
following statements hold.

(a) κ ≥ n− ordn(q)(δ − 1).

(b) If q = 2 and C is a narrow-sense BCH code, then δ can be assumed odd; furthermore
if δ = 2w + 1, then κ ≥ n− ordn(q)w.

The bounds in Theorem 2.6.8 may not be improved for the general case, as demonstrated
by the following example. However, in some special cases, they could be improved.

Example 2.6.9 Note that m = ord15(2) = 4, and the 2-cyclotomic cosets modulo 15 are

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12},
C5 = {5, 10}, C7 = {7, 11, 13, 14}.

Let γ be a generator of F∗24 with γ4 + γ+ 1 = 0 and let α = γ(24−1)/15 = γ be the primitive
15th root of unity.

When (b, δ) = (0, 3), the defining set T (b, δ) = {0, 1, 2, 4, 8}, and the binary cyclic code
has parameters [15, 10, 4] and generator polynomial x5 +x4 +x2 +1. In this case, the actual
minimum weight is more than the designed distance, and the dimension is larger than the
bound in Theorem 2.6.8(a).

When (b, δ) = (1, 3), the defining set T (b, δ) = {1, 2, 4, 8}, and the binary cyclic code
has parameters [15, 11, 3] and generator polynomial x4 + x + 1. It is a narrow-sense BCH
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code. In this case, the actual minimum weight is equal to the designed distance, and the
dimension reaches the bound in Theorem 2.6.8(b).

When (b, δ) = (2, 3), the defining set T (b, δ) = {1, 2, 3, 4, 6, 8, 9, 12}, and the binary
cyclic code has parameters [15, 7, 5] and generator polynomial x8 +x7 +x6 +x4 + 1. In this
case, the actual minimum weight is more than the designed distance, and the dimension
achieves the bound in Theorem 2.6.8(a).

When (b, δ) = (1, 5), the defining set T (b, δ) = {1, 2, 3, 4, 6, 8, 9, 12}, and the binary cyclic
code has parameters [15, 7, 5] and generator polynomial x8 + x7 + x6 + x4 + 1. In this case,
the actual minimum weight is equal to the designed distance, and the dimension is larger
than the bound in Theorem 2.6.8(a). Note that the three pairs (b1, δ1) = (2, 3), (b2, δ2) =
(2, 4) and (b3, δ3) = (1, 5) define the same binary cyclic code with generator polynomial
x8 + x7 + x6 + x4 + 1. Hence the maximum designed distance of this [15, 7, 5] cyclic code is
5.

When (b, δ) = (3, 4), the defining set T (b, δ) = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12}, and the binary
cyclic code has parameters [15, 5, 7] and generator polynomial x10 +x8 +x5 +x4 +x2 +x+1.
In this case, the actual minimum weight is more than the designed distance, and dimension
is larger than the bound in Theorem 2.6.8(a).

The following is a general result on the dimension of BCH codes [47].

Theorem 2.6.10 Let gcd(n, q) = 1 and qbm/2c < n ≤ qm − 1, where m = ordn(q). Let
2 ≤ δ ≤ min {bnqdm/2e/(qm − 1)c, n}. Then

dim(C(q,n,δ,1)) = n−md(δ − 1)(1− 1/q)e.

Theorem 2.6.10 is useful when n = qm − 1 or n = (qm − 1)/(q − 1), but may not
be useful in some cases as the range for δ may be extremely small. It is in general very
difficult to determine the dimensions of BCH codes. In a very small number of cases, the
dimension of the BCH code C(q,n,δ,1) is known. For further information, the reader is referred
to [551, 555, 1245, 1246, 1247, 1277].

2.6.3 Other Aspects of BCH Codes

The automorphism groups of BCH codes in most cases are open, but are known in some
cases [161]. The weight distributions of the cosets of some BCH codes were considered in
[386, 387, 388]. This problem is as hard as the determination of the weight distributions of
BCH codes. The dual of a BCH code may not be a BCH code. An interesting problem is
to characterise those BCH codes whose duals are also BCH codes.

Almost all references on BCH codes are about the primitive case. Only a few references
on BCH codes with lengths n = (qm − 1)/(q − 1) or n = q` + 1 exist in the literature
[1246, 1247, 1277]. Most BCH codes have never been investigated. This is due to the fact
that the q-cyclotomic cosets modulo n are very irregular and behave very badly in most
cases. For example, in most cases it is extremely difficult to determine the largest coset
leader, not to mention the dimension and minimum distance of a BCH code. This partially
explains the difficulty in researching into BCH codes. A characteristic of BCH codes is that
it is hard in general to determine both the dimension and minimum distance of a BCH
code.
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2.7 Duadic Codes

Duadic codes are a family of cyclic codes and are generalizations of the quadratic residue
codes. Binary duadic codes were defined in [1220] and were generalized to arbitrary finite
fields in [1517, 1519]. Some duadic codes have very good parameters, while some have very
bad parameters. The objective of this section is to give a brief introduction of duadic codes.

As before, let n be a positive integer and q a prime power with gcd(n, q) = 1. Let S1

and S2 be two subsets of Zn such that

• S1 ∩ S2 = ∅ and S1 ∪ S2 = Zn \ {0}, and

• both S1 and S2 are a union of some q-cyclotomic cosets modulo n.

If there is a unit µ ∈ Zn such that S1µ = S2 and S2µ = S1, then (S1, S2, µ) is called a
splitting of Zn.

Recall that m := ordn(q) and α is a primitive nth root of unity in Fqm . Let (S1, S2, µ)
be a splitting of Zn. Define

gi(x) =
∏
i∈Si

(x− αi) and g̃i(x) = (x− 1)gi(x)

for i ∈ {1, 2}. Since both S1 and S2 are unions of q-cyclotomic cosets modulo n, both g1(x)
and g2(x) are polynomials over Fq. The pair of cyclic codes C1 and C2 of length n over Fq
with generator polynomials g1(x) and g2(x) are called odd-like duadic codes, and the

pair of cyclic codes C̃1 and C̃2 of length n over Fq with generator polynomials g̃1(x) and
g̃2(x) are called even-like duadic codes.

By definition, C1 and C2 have parameters [n, (n+ 1)/2] and C̃1 and C̃2 have parameters
[n, (n−1)/2]. For odd-like duadic codes, we have the following result [1008, Theorem 6.5.2].

Theorem 2.7.1 (Square Root Bound) Let C1 and C2 be a pair of odd-like duadic codes
of length n over Fq. Let do be their (common) minimum odd-like weight. Then the following
hold.

(a) d2
o ≥ n.

(b) If the splitting defining the duadic codes is given by µ = −1, then d2
o − do + 1 ≥ n.

(c) Suppose d2
o − do + 1 = n, where do > 2, and assume that the splitting defining the

duadic codes is given by µ = −1. Then do is the minimum weight of both C1 and C2.

Example 2.7.2 Let (n, q) = (49, 2). Define

S1 = {1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46} ∪ {7, 14, 28}

and
S2 = {1, 2, . . . , 48} \ S1.

It is easily seen that (S1, S2,−1) is a splitting of Z49. The pair of odd-like duadic codes
C1 and C2 defined by this splitting have parameters [49, 25, 4] and generator polynomials

x24 + x22 + x21 + x10 + x8 + x7 + x3 + x+ 1

and
x24 + x23 + x21 + x17 + x16 + x14 + x3 + x2 + 1



Cyclic Codes over Finite Fields 55

respectively. The minimum weight of the two codes is even (i.e., 4), while the minimum
odd-like weight in the two codes is 9. Note the lower bound on do given in Theorem 2.7.1
is 7.

Duadic codes of prime lengths are of special interest as they include the quadratic residue
codes, which are defined as follows.

Definition 2.7.3 Let n be an odd prime and q be a quadratic residue modulo n. Denote by
S1 and S2 the set of quadratic residues and the set of quadratic non-residues, respectively.
Let µ be an element of S2. Then (S1, S2, µ) is a splitting of Zn. The corresponding four

duadic codes C1, C2, C̃1, C̃2 are called quadratic residue codes.

It is known that the automorphism groups of the extended odd-like quadratic residue
codes are transitive. Hence, their minimum weight codewords must be odd-like. We then
have the following.

Theorem 2.7.4 (Square Root Bound) Let n be an odd prime and q be a quadratic
residue modulo n. Let C1 and C2 be a pair of odd-like quadratic residue codes of length
n over Fq. Let d be their (common) minimum weight. Then the following hold.

(a) d2 ≥ n.

(b) If −1 is a quadratic non-residue, then d2 − d+ 1 ≥ n.

(c) Suppose d2− d+ 1 = n, where d > 2, and assume that −1 is a quadratic non-residue.
Then d is the minimum weight of both C1 and C2.

The Golay codes C1 and C2 introduced in Section 1.13 of Chapter 1 are the odd-like
quadratic residue binary codes of length 23 and have parameters [23, 12, 7]2. The corre-
sponding even-like quadratic residue codes have parameters [23, 11, 8]2. The ternary Golay
codes described in Section 1.13 are also quadratic residue codes.

It is very hard to determine the minimum distance of quadratic residue codes. However,
the Square Root Bound on their minimum distances is good enough. Quadratic residue
codes are interesting partly because their extended codes hold 2-designs and 3-designs.
Quadratic residue codes of length the product of two primes were introduced in [546].

Under certain conditions the extended odd-like duadic codes are self-dual [1220]. Duadic
codes have a number of interesting properties. For further information on the existence,
constructions, and properties of duadic codes, the reader is referred to [1008, Chapter 6],
[546], [559], and [565].

2.8 Punctured Generalized Reed–Muller Codes

Binary Reed–Muller codes were introduced in Section 1.11. It is known that these codes
are equivalent to the extended codes of some cyclic codes. In other words, after puncturing
the binary Reed–Muller codes at a proper coordinate, the obtained codes are permutation
equivalent to some cyclic codes. The purpose of this section is to introduce a family of cyclic
codes of length n = qm − 1 over Fq whose extended codes are the generalized Reed–Muller
code over Fq.
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Let q be a prime power as before. For any integer j =
∑m−1
i=0 jiq

i, where 0 ≤ ji ≤ q − 1
for all 0 ≤ i ≤ m− 1 and m is a positive integer, we define

ωq(j) =
m−1∑
i=0

ji,

where the sum is taken over the ring of integers, and is called the q-weight of j.
Let ` be a positive integer with 1 ≤ ` < (q−1)m. The `th order punctured generalized

Reed–Muller code RMq(`,m)∗ over Fq is the cyclic code of length n = qm − 1 with
generator polynomial

g(x) =
∑

1≤j≤n−1
ωq(j)<(q−1)m−`

(x− αj),

where α is a generator of F∗qm . Since ωq(j) is a constant function on each q-cyclotomic coset
modulo n = qm − 1, g(x) is a polynomial over Fq.

The parameters of the punctured generalized Reed–Muller code RMq(`,m)∗ are known
and summarized in the next theorem [71, Section 5.5].

Theorem 2.8.1 For any ` with 0 ≤ ` < (q − 1)m, RMq(`,m)∗ is a cyclic code over Fq
with length n = qm − 1, dimension

κ =
∑̀
i=0

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m− 1

i− jq

)
and minimum weight d = (q− `0)qm−`1−1− 1, where ` = `1(q− 1) + `0 and 0 ≤ `0 < q− 1.

Example 2.8.2 Let (q,m, `) = (3, 3, 3), and let α be a generator of F∗33 with α3+2α+1 = 0.
Then RM3(3, 3)∗ is a ternary code with parameters [26, 17, 5] and generator polynomial

g(x) = x9 + 2x8 + x7 + x6 + x5 + 2x4 + 2x3 + 2x2 + x+ 1.

The dual of the punctured generalized Reed–Muller code is described in the following
theorem [71, Corollary 5.5.2].

Theorem 2.8.3 For 0 ≤ ` < m(q − 1), the code (RMq(`,m)∗)⊥ is the cyclic code with
generator polynomial

h(x) =
∑

0≤j≤n−1
ωq(j)≤`

(x− αj),

where α is a generator of F∗qm . In addition,

(RMq(`,m)∗)⊥ = (Fq1)⊥ ∩RMq(m(q − 1)− 1− `,m)∗,

where 1 is the all-one vector in Fnq and Fq1 denotes the code over Fq with length n generated
by 1.

Example 2.8.4 Let (q,m, `) = (3, 3, 3), and let α be a generator of F∗33 with α3+2α+1 = 0.
Then (RM3(3, 3)∗)⊥ is a ternary code with parameters [26, 9, 9] and generator polynomial

g⊥(x) = x17 + 2x16 + 2x15 + x14 + x13 + x11 + 2x10 + 2x9 +

x8 + 2x7 + 2x5 + x4 + 2x3 + 2x+ 2.

The codes RMq(`,m)∗ have a geometric interpretation. Their extended codes hold 2-
designs for q > 2, and 3-designs for q = 2. The reader is referred to [71, Corollary 5.2] for
further information.
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2.9 Another Generalization of the Punctured Binary Reed–Muller
Codes

The punctured generalized Reed–Muller codes are a generalization of the classical punc-
tured binary Reed–Muller codes, and were introduced in the previous section. A new gen-
eralization of the classical punctured binary Reed–Muller codes was given recently in [561].
The task of this section is to introduce the newly generalized cyclic codes.

Let n = qm − 1. For any integer a with 0 ≤ a ≤ n − 1, we have the following q-adic
expansion

a =
m−1∑
j=0

ajq
j ,

where 0 ≤ aj ≤ q − 1. The Hamming weight of a, denoted by wtH(a), is the number of
nonzero coordinates in the vector (a0, a1, . . . , am−1).

Let α be a generator of F∗qm . For any 1 ≤ h ≤ m, we define a polynomial

g(q,m,h)(x) =
∏

1≤a≤n−1
1≤wtH(a)≤h

(x− αa).

Since wtH(a) is a constant function on each q-cyclotomic coset modulo n, g(q,m,h)(x) is a
polynomial over Fq. By definition, g(q,m,h)(x) is a divisor of xn − 1.

Let f(q,m, h) denote the cyclic code over Fq with length n and generator polynomial
g(m,q,h)(x). By definition, g(q,m,m)(x) = (xn − 1)/(x− 1). Therefore, the code f(q,m,m) is
trivial, as it has parameters [n, 1, n] and is spanned by the all-1 vector. Below we consider
the code f(q,m, h) for 1 ≤ h ≤ m− 1 only.

Theorem 2.9.1 Let m ≥ 2 and 1 ≤ h ≤ m − 1. Then f(q,m, h) has parameters [qm −
1, κ, d], where

κ = qm −
h∑
i=0

(
m

i

)
(q − 1)i

and
qh+1 − 1

q − 1
≤ d ≤ 2qh − 1. (2.3)

When q = 2, the code f(q,m, h) clearly becomes the classical punctured binary Reed–
Muller code RM(m−1−h,m)∗. Hence, f(q,m, h) is indeed a generalization of the original
punctured binary Reed–Muller code. In addition, when q = 2, the lower bound and the
upper bound in (2.3) become identical. It is conjectured that the lower bound on d is the
actual minimum distance.

Example 2.9.2 The following is a list of examples of the code f(q,m, h).

1. When (q,m, h) = (3, 3, 1), f(q,m, h) has parameters [26, 20, 4], and is distance-
optimal.

2. When (q,m, h) = (3, 4, 1), f(q,m, h) has parameters [80, 72, 4], and is distance-
optimal.

3. When (q,m, h) = (3, 4, 2), f(q,m, h) has parameters [80, 48, 13], and its minimum
distance is one less than that of the best code with parameters [80, 48, 14].
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4. When (q,m, h) = (3, 4, 3), the code f(q,m, h) has parameters [80, 16, 40], which are
the best parameters known.

5. When (q,m, h) = (4, 3, 1), the code f(q,m, h) has parameters [63, 54, 5], which are
the best parameters known.

An interesting fact about the family of newly generalized codes f(q,m, h) is the follow-
ing.

Corollary 2.9.3 Let m ≥ 2. Then the ternary code f(3,m, 1) has parameters [3m−1, 3m−
1− 2m, 4] and is distance-optimal.

We have also the next two special cases in which the parameters of the code f(q,m, h)
are known.

Theorem 2.9.4 Let m be even. Then the cyclic code f(q,m, 1) has parameters [qm−1, qm−
1−m(q − 1), q + 1].

Theorem 2.9.5 Let m ≥ 2. Then the cyclic code f(q,m,m− 1) has parameters [qm −
1, (q − 1)m, (qm − 1)/(q − 1)].

The following theorem gives information on the parameters of the dual code f(q,m, h)
⊥

.

Theorem 2.9.6 Let m ≥ 2 and 1 ≤ h ≤ m− 1. The dual code f(q,m, h)
⊥

has parameters
[qm − 1, κ⊥, d⊥], where

κ⊥ =

h∑
i=1

(
m

i

)
(q − 1)i.

The minimum distance d⊥ of f(q,m, h)
⊥

is bounded below by

d⊥ ≥ qm−h + q − 2.

When q = 2, the lower bound on the minimum distance d⊥ of f(q,m, h)
⊥

given in
Theorem 2.9.6 is achieved. Experimental data shows that the lower bound on d⊥ in Theorem
2.9.6 is not tight for q > 2. It is open how to improve it or determine the exact minimum
distance.

The code f(q,m, h) is clearly different from the punctured generalized Reed–Muller
code. It is open if f(q,m, h) has a geometric interpretation. For a proof of the results
introduced above and further properties of the cyclic code f(q,m, h), the reader is referred
to [561].

2.10 Reversible Cyclic Codes

Definition 2.10.1 A linear code C is reversible1 if (c0, c1, . . . , cn−1) ∈ C implies that
(cn−1, cn−2, . . . , c0) ∈ C.

1A linear code of length n over Fq is called an LCD code (linear code with complementary dual)
if C ∩ C⊥ = {0}, which is equivalent to C ⊕ C⊥ = Fnq . Reversible cyclic codes are in fact LCD codes.



Cyclic Codes over Finite Fields 59

Reversible cyclic codes were considered in [1346, 1347]. A cryptographic application of
reversible cyclic codes was proposed in [353]. A well rounded treatment of reversible cyclic
codes was given in [1236]. The objective of this section is to deliver a basic introduction to
reversible cyclic codes.

Definition 2.10.2 A polynomial f(x) over Fq is called self-reciprocal if it equals its
reciprocal f⊥(x).

The conclusions of the following theorem are known in the literature [1323, page 206]
and are easy to prove.

Theorem 2.10.3 Let C be a cyclic code of length n over Fq with generator polynomial g(x).
Then the following statements are equivalent.

(a) C is reversible.

(b) g(x) is self-reciprocal.

(c) β−1 is a root of g(x) for every root β of g(x) over the splitting field of g(x).

Furthermore, if −1 is a power of q mod n, then every cyclic code over Fq of length n is
reversible.

Now we give an exact count of reversible cyclic codes of length n = qm − 1 for odd
primes m. Recall the q-cyclotomic cosets Ca modulo n given in Definition 1.12.7. It is
straightforward that −a = n− a ∈ Ca if and only if a(1 + qj) ≡ 0 (mod n) for some integer
j. The following two lemmas are straightforward and hold whenever gcd(n, q) = 1.

Lemma 2.10.4 The irreducible polynomial Mαa(x) is self-reciprocal if and only if n− a ∈
Ca.

Lemma 2.10.5 The least common multiple lcm(Mαa(x),Mαn−a(x)) is self-reciprocal for
every a ∈ Zn.

Definition 2.10.6 The least nonnegative integer in a q-cyclotomic coset modulo n is called
the coset leader of this coset.

By Lemma 2.10.4, we have that

lcm(Mαa(x),Mαn−a(x)) =

{
Mαa(x) if n− a ∈ Ca,
Mαa(x)Mαn−a(x) otherwise.

Let Γ(n,q) denote the set of coset leaders of all q-cyclotomic cosets modulo n. Define

Π(n,q) = Γ(n,q) \
{

max{a, leader(n− a)} | a ∈ Γ(n,q), n− a 6∈ Ca
}
,

where leader(i) denotes the coset leader of Ci. Then {Ca ∪Cn−a | a ∈ Π(q,n)} is a partition
of Zn.

The following conclusion then follows directly from Lemmas 2.10.4, 2.10.5, and Theorem
2.10.3.

Theorem 2.10.7 The total number of reversible cyclic codes over Fq of length n is equal
to 2|Π(q,n)|, including the zero code and the code Fnq . Every reversible cyclic code over Fq of
length n is generated by a polynomial

g(x) =
∏
a∈S

lcm (Mαa(x),Mαn−a(x)) ,

where S is a (possibly empty) subset of Π(q,n).
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Example 2.10.8 Let (n, q) = (15, 2). The 2-cyclotomic cosets modulo 15 are

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 9, 12}, C5 = {5, 10}, and C7 = {7, 11, 13, 14}.

We also have
x15 − 1 = Mα0(x)Mα1(x)Mα3(x)Mα5(x)Mα7(x),

where

Mα0(x) = x+ 1,

Mα1(x) = x4 + x+ 1,

Mα3(x) = x4 + x3 + x2 + x+ 1,

Mα5(x) = x2 + x+ 1,

Mα7(x) = x4 + x3 + 1.

Note that Mαi(x) are self-reciprocal for i ∈ {0, 3, 5} while Mα1(x) and Mα7(x) are recipro-
cals of each other. In this case,

Γ(n,q) = {0, 1, 3, 5, 7}.

But
Π(n,q) = {0, 1, 3, 5}.

Hence, there are 16 reversible binary cyclic codes of length 15, including the zero code and
the code F15

2 .

Corollary 2.10.9 Let q be an even prime power and n = qm−1. If m is odd, then the only
self-reciprocal irreducible divisor of xn − 1 over Fq is x− 1. If m is an odd prime, then the

total number of reversible cyclic codes of length n over Fq is equal to 2
qm+(m−1)q

2m , including
the zero code and the code Fnq .

Corollary 2.10.10 Let q be an odd prime power and n = qm − 1. If m is odd, then the
only self-reciprocal irreducible divisors of xn − 1 over Fq are x − 1 and x + 1. If m is an
odd prime, then the total number of reversible cyclic codes of length n over Fq is equal to

2
qm+(m−1)q+m

2m , including the zero code and the code Fnq .

The following three theorems follow directly from Theorem 2.10.3 and the definition of
BCH codes, and can be viewed as corollaries of Theorem 2.10.3.

Theorem 2.10.11 The BCH code C(q,n,δ,b) is reversible if b = −t and the designed distance
is δ = 2t+ 2 for any nonnegative integer t.

Theorem 2.10.12 The BCH code C(q,n,δ,b) is reversible if n is odd, b = (n− t)/2 and the
designed distance is δ = t+ 2 for any odd integer t with 1 ≤ t ≤ n− 2.

Theorem 2.10.13 The BCH code C(q,n,δ,b) is reversible if n is even, b = (n − 2t)/2 and
the designed distance is δ = 2t+ 2 for any integer t with 0 ≤ t ≤ n/2.

The dimensions of some of the reversible BCH codes described in Theorems 2.10.11,
2.10.12, and 2.10.13 were determined in [1236]. Two families of reversible BCH codes were
studied in [1247]. Non-primitive reversible cyclic codes were also treated in [1236]. There
are many reversible cyclic codes and it is easy to construct them. However, determining
their parameters is a difficult problem in general. There are clearly reversible cyclic codes
with both good and bad parameters.
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3.1 Introduction

Shannon’s seminal work [1661] showed in a nonconstructive way that good codes exist,
as discussed in Section 1.1, and marked the birth of coding and information theory. One of
the main goals of coding theory is to construct codes that are as good as possible for given
parameters and types of codes. There is a mathematical as well as an engineering dimen-
sion of the construction problem. Whereas mathematicians may wish to study arbitrary
parameters and the behavior of codes when the length tends to infinity, the parameters of
a code used in some engineering applications are necessarily fixed and bounded. Depend-
ing on one’s philosophical viewpoint, one may say that codes are discovered rather than
constructed. Hence, perhaps the most fundamental question in coding theory can also be
phrased in terms of existence: Does a code with given parameters exist or not?

If the answer to an existence question is affirmative, one may further wish to carry out a
classification of those codes, that is, to determine all possible such codes up to symmetry
(equivalence, isomorphism). Also classification has both a theoretical and a practical side.
Classified codes can be studied to gain more insight into codes, to state or refute conjectures,
and so on. But they also form an exhaustive set of candidate codes, whose performance can
be tested in actual applications.

Remark 3.1.1 A nonexistence result is intrinsically a classification result, where the out-
come is the empty set.

61
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A lot of (manual and/or computational) resources may be required for the study of
existence or classification of codes with certain parameters. However, whereas verifying
correctness of a (positive) outcome is fast and straightforward for a constructed code, it can
be as time-consuming as the original work for a set of classified codes.

Validation of classification results is considered in [1090, Chap. 10]. Especially double-
counting techniques have turned out to be useful. If we know the total number of codes—for
example, through a mass formula—then we can check whether the orbit-stabilizer theorem
applied to a set of classified codes leads to the same number; see for example Theorem 4.5.2.
This approach can even be used to show that a set of codes found in a non-exhaustive search
is complete. Lam and Thiel [1192] showed how double-counting can be integrated into
classification algorithms when no mass formula is available (which is the typical situation).

The main classical reference in coding theory, The Theory of Error-Correcting Codes
by MacWilliams and Sloane [1323], considers the existence problem extensively and is still,
many decades after the publication of the first edition, a good source of information. The
theme of classifying codes, on the other hand, has flourished much later, in part because of
its high dependence on computational resources; the monograph [1090] provides an in-depth
treatment of this theme.

In this chapter, a general overview of existence and classification problems will be given,
and some highlights from the past will be singled out. The chapter touches upon several of
the problems and problem areas presented in the list of major open problems in algebraic
coding theory in [630].

3.2 Equivalence and Isomorphism

The concepts of equivalence and isomorphism of codes are briefly discussed in Section 1.8.
Generally, the term symmetry covers both of those concepts, especially when considering
maps from a code onto itself, that is, automorphisms. Namely, such maps lead to groups
under composition, and groups are essentially about symmetries. The group formed by all
automorphisms of a code is, whenever the type of automorphisms is understood, simply
called the automorphism group of the code. A subgroup of the automorphism group is
called a group of automorphisms.

Symmetries play a central role when constructing as well as classifying codes: several
types of constructions are essentially about prescribing symmetries, and one core part of
classification is about dealing with maps and symmetries.

On a high level of abstraction, the same questions are asked for linear and unrestricted
codes and analogous techniques are used. On a detailed level, however, there are significant
differences between those two types of codes.

Consider codes of length n over Fq. We have seen in Definition 1.8.8 that equivalence
of unrestricted codes is about permuting coordinates and the elements of the alphabet,
individually within each coordinate. All such maps form a group that is isomorphic to the
wreath product Sq o Sn. For linear codes on the other hand, the concepts of permutation
equivalence, monomial equivalence, and equivalence lead to maps that form groups isomor-
phic to Sn, F∗q o Sn, and the semidirect product (F∗q o Sn)oθ Aut(Fq), respectively, where F∗q
is the multiplicative group of Fq and θ : Aut(Fq)→ Aut(F∗q oSn) is a group homomorphism.

Remark 3.2.1 For binary linear codes, all three types of equivalence coincide.
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3.2.1 Prescribing Symmetries

A code of size M is a subset of M vectors from the n-dimensional vector space over
Fq which fulfills some requirements depending on the type of code. The number of ways

to choose M arbitrary vectors from such a space is
(
qn

M

)
, which becomes astronomically

large already for rather small parameters. (This is obviously the total number of (n,M)q
codes.) Although no general conclusion regarding the hardness of solving construction and
classification problems can be drawn from this number, the number does give a clue that
the limit of what is feasible might be reached quite early. Indeed, this is what happens, but
perhaps not as early as one would think.

Example 3.2.2 In some special cases—in particular, for perfect codes—quite large unre-
stricted codes have been classified, such as the (23, 4096, 7)2 code (the binary Golay code is
unique [1732]; see also [525]) and the (15, 2048, 3)2 codes (with the parameters of a Hamming
code; there are 5983 such codes [1472]).

But what can be done if we go beyond parameters for which the size of an optimal
code can be determined and the optimal codes can be classified? Analytical upper bounds
and constructive lower bounds on the size of codes can still be used. One way to speed up
computer-aided constructive techniques—some of which are discussed in Chapter 23—is to
restrict the search by imposing a structure on the codes. This is a two-edged sword: the
search space is reduced, but good codes might not have that particular structure. Hence
some experience is of great help in tuning the search. A very common approach is that of
prescribing symmetries (automorphisms).

Remark 3.2.3 In the discussion of groups in the context of automorphism groups of codes,
we are not only interested in the abstract group but in the group and its action. This is
implicitly understood in the sequel when talking about one particular group or all groups
of certain orders. For example, “prescribing a group” means “prescribing a group and its
action” and “considering all groups” means “considering all groups and all possible actions
of those groups”.

By prescribing a group G, the n-dimensional vector space is partitioned into orbits
of vectors. The construction problem then becomes a problem of finding a set of those
orbits rather than finding a set of individual vectors. It must further be checked that the
orbits themselves are feasible; an orbit whose codewords do not fulfill the minimum distance
criterion can be discarded immediately.

Remark 3.2.4 An [n, k]q linear code can be viewed as an unrestricted code which contains
the all-zero codeword and has a particular group of automorphisms G of order qk, which
only permutes elements of the alphabet, individually within each coordinate.

Example 3.2.5 Consider the [4, 2]2 binary linear code generated by

G =

[
1 0 1 0
0 1 1 1

]
.

If this code contains some word c, then it also contains, for example, c+1010. Adding 0 to a
coordinate value means applying a value permutation that is the identity permutation, and
adding 1 to a coordinate value means applying the value permutation 0 ↔ 1. Permuting
elements of the alphabet, individually within each coordinate, is indeed covered by the
definition of equivalence of unrestricted codes.
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Unrestricted codes that consist of cosets of a linear code can in a similar manner be
considered in the framework of prescribed groups of automorphisms. Let H be an (n−k)×n
parity check matrix for an [n, k, d′]q linear code1, let x,y ∈ Fn−kq , and let S ⊆ Fn−kq . Then,
if wtH(t) is the Hamming weight of t, we define

dH(x,y) = min {wtH(t) | HtT = (x− y)T, t ∈ Fnq },
dH(S) = min

a,b∈S,a6=b
dH(a,b).

The following theorem [1470, Theorem 1] shows that the situation here is a generalization
of the standard approach of finding arbitrary codes with minimum distance 2r+1 by packing
Hamming balls of radius r. Here we are packing more general geometrical objects given by
the columns of H, and we get the standard approach when k = 0 and thereby H = In.

Theorem 3.2.6 Let H be an (n− k)× n parity check matrix for an [n, k, d′]q linear code,
and let S ⊆ Fn−kq . Then the code C = {c ∈ Fnq | HcT ∈ S} has minimum distance

min {dH(S), d′}.
When searching for unrestricted codes, one may consider any subgroup of Sq o Sn. Due

to the large number of (conjugacy classes of) subgroups, it is typically necessary to restrict
the set of subgroups considered. The subgroups should not be too small, whence the search
would not be limited enough, and not too big either. Experiments and experience, especially
regarding automorphism groups of known good codes, are helpful in the process of sifting
candidate groups. For unrestricted codes, Theorem 3.2.6 has turned out to be very useful.
Groups that act transitively on the n coordinates or even on the qn coordinate–value pairs
have also been considered with success [1186].

Arguably the principal automorphism for good linear as well as unrestricted codes is a
cyclic permutation of the coordinates. Codes with such an automorphism are called cyclic.
Cyclic linear codes—which have a nice algebraic structure as they can be viewed as ideals
of certain quotient rings—are discussed in Section 1.12 and Chapter 2.

We have seen a generalization of cyclic codes to l-quasi-cyclic codes in Definition 1.12.23,
and these are covered in Chapter 7; cyclic codes are 1-quasi-cyclic. Other possible automor-
phisms that are generalizations of the cyclic ones and that are common amongst good codes
are given by the following definition. The definition applies to both linear and unrestricted
codes. For linear codes, these types of codes can be considered algebraically. See also Chap-
ter 17.

Definition 3.2.7 Fix α ∈ F∗q . A code C is called α-constacyclic (or α-twisted)
if c0c1 · · · cn−1 ∈ C implies that (αcn−1)c0c1 · · · cn−2 ∈ C. A 1-constacyclic code is
cyclic. A code C is (α, l)-quasi-twisted if l divides n and c0c1 · · · cn−1 ∈ C implies
that (αcn−l)(αcn−l+1) · · · (αcn−1)c0c1 · · · cn−l−1 ∈ C. An (α, 1)-quasi-twisted code is α-
constacyclic (or α-twisted).

Important types of codes with a large automorphism group include quadratic residue
codes.

Definition 3.2.8 Let p be an odd prime, let Q be the set of quadratic residues modulo p,
let q ∈ Q be a prime, and let ζ be a primitive pth root of unity in some finite extension field
of Fq. A quadratic residue code of length p over Fq is a cyclic code with generator
polynomial

f(x) =
∏
j∈Q

(x− ζj).

1This means that H has full rank, which is a reasonable assumption. We get essentially the same main
theorem when H does not have full rank, but then some details regarding distances have to be tuned.
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Remark 3.2.9 The quadratic residue codes in Definition 3.2.8 can be generalized to codes
whose alphabet size is a prime power and to codes whose length is a prime power.

The dimension of a quadratic residue code of length p is (p+1)/2. The minimum distance
is known to be at least

√
p, which can be further strengthened for various parameters; see

Theorem 2.7.4. The true minimum distance typically has to be determined on a case-by-case
basis.

Example 3.2.10 The [7, 4, 3]2 binary Hamming code, the [23, 12, 7]2 binary Golay code,
and the [11, 6, 5]3 ternary Golay code are quadratic residue codes.

Gleason and Prange showed that the automorphism group of an extended quadratic
residue code is rather large. The result was originally published only in a laboratory research
report, but it has later been discussed in most coding theory textbooks, including [1323,
Chap. 16]. See also [210, 1002]. When extending quadratic residue codes, the standard
Definition 1.7.1 can be used for q = 2, 3, but a different definition has to be used for general
values of q; see, for example, [1323, Chap. 16] for details.

Theorem 3.2.11 (Gleason–Prange) Every extended quadratic residue code of length p
has a group of automorphisms that is isomorphic to the projective special linear group
PSL2(p).

Remark 3.2.12 The extensions of the three codes in Example 3.2.10 are exceptional ex-
amples of extended quadratic residue codes whose automorphism group has PSL2(p) as a
proper subgroup.

There is a two-way interaction between codes and groups: known good codes (or fam-
ilies of good codes) can be studied to find their automorphism groups, and groups can be
prescribed to find good codes with such automorphisms.

A search for codes with prescribed automorphisms that has a negative outcome leads to
results of scientific value only if the search is exhaustive and the parameters are of general
interest. For the most important open existence problems, smaller and smaller orders of
automorphisms and groups of automorphisms are commonly considered in a sequence of
publications. The hope in each and every such study is clearly to find codes with the
prescribed groups of automorphisms.

Remark 3.2.13 If the answer to a general existence problem is negative, then even a proof
that a code cannot have nontrivial automorphisms does not essentially bring us closer to a
nonexistence proof. However, this is not work in vain, but forms a strong basis for making
a nonexistence conjecture.

Example 3.2.14 Neil Sloane [1726] asked in 1973 whether there is a self-dual doubly-
even [72, 36, 16]2 code. This would be the third code in a sequence of self-dual doubly-even
[24m, 12m, 4m + 4]2 codes, which begins with the extended binary Golay code (m = 1)
and the extended binary quadratic residue code of length 48 (m = 2). The latter code is a
unique such code [991]; the extended binary Golay code is unique as a general linear code
[1514] and even as an unrestricted code [1732].

Jessie MacWilliams, in her review of [1726] for Mathematical Reviews, mentions that
the author had offered $10 for a solution and added another $10 to the prize money. It
was thus clear from the very beginning that this is an important and interesting problem.
Almost half a century later, the problem is still open, no less fascinating, and arguably the
most important open specific case in the theory of linear codes.
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Conway and Pless [437] showed that the possible prime orders for automorphisms of
a self-dual doubly-even [72, 36, 16]2 code are 2, 3, 5, 7, 11, 17, and 23. Starting from the
biggest order, the largest four orders have been eliminated in [1516], [1525], [1010], and
[723], respectively. After further elimination of various groups of orders 2i3j5k, i, j, k ≥ 0 in
[238, 239, 241, 274, 280, 1422, 1922, 1930, 1931], the groups of order at most 5, except for
the cyclic group of order 4, remain. Moreover, automorphisms of order 2 and 3 cannot have
fixed points [273, 274], and automorphisms of order 5 must have exactly two fixed points
[437]. See also [240] and Section 4.3.

3.2.2 Determining Symmetries

The obvious recurrent specific questions when studying equivalence (or isomorphism) of
(linear and unrestricted) codes and the symmetries of such codes are the following:

1. Given two codes, C1 and C2, are these equivalent (isomorphic) or not?

2. Given a code C, what is the automorphism group of C?

The two questions are closely related, since if we are able to find all possible maps
between two codes, C1 and C2, we can answer both of them (the latter by letting C1 = C2 =
C).

Invariants can be very useful in studying the first question.

Definition 3.2.15 An invariant is a property of a code that depends only on the abstract
structure, that is, two equivalent (isomorphic) codes necessarily have the same value of an
invariant.

Remark 3.2.16 Two inequivalent (non-isomorphic) codes may or may not have the same
value of an invariant.

Example 3.2.17 The distance distribution is an invariant of codes. This invariant can
be used to show that the two unrestricted (4, 3, 2)3 codes C1 = {0000, 0120, 2121} and
C2 = {1000, 1111, 2112} are inequivalent. Actually, to distinguish these codes an even less
sensitive invariant suffices: the number of pairs of codewords with mutual Hamming distance
3 is 0 for C1 and 1 for C2.

Since invariants are only occasionally able to provide the right answer to the first question
above, alternative techniques are needed for providing the answer in all possible situations.
One such technique relies on producing canonical representatives of codes.

Definition 3.2.18 Let S be a set of possible codes, and let r : S → S be a map with the
properties that (i) r(C1) = r(C2) if and only if C1 and C2 are equivalent (isomorphic) and
(ii) r(C) = r(r(C)). The canonical representative (or canonical form) of a code C ∈ S
with respect to this map is r(C).

To test whether two codes are equivalent (isomorphic), it suffices to test their canonical
representatives for equality.

Remark 3.2.19 The number of equivalence (isomorphism) classes that can be handled
when comparing canonical representatives is limited by the amount of computer memory
available. However, in the context of classifying codes, there are actually methods that do
not require any comparison between codes; see [1090].
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For particular codes with special properties, algebraic and combinatorial techniques can
be used to determine the automorphism group of a code.

Example 3.2.20 The automorphism group of the [2m−1, 2m− r−1, 3]2 binary Hamming
code is isomorphic to the general linear group GLm(2).

Remark 3.2.21 Determining the automorphism group essentially consists of two parts:
finding the set of all automorphisms and proving that the set is complete. The latter task
is trivial in cases where the automorphism group is a maximal subgroup of the group of all
possible symmetries.

In the general case, algorithmic tools are required to answer the questions above. In
the early 1980s, Leon [1217] published an algorithm for computing automorphism groups of
linear codes over arbitrary fields, considering monomial equivalence. More recently, Feulner
[721] developed an algorithm for computing automorphism groups and canonical represen-
tatives of linear codes, considering equivalence.

Algorithms similar to those developed by Leon and Feulner could also be developed
for unrestricted codes. However, the task of developing such tailored algorithms is rather
tedious. An alternative, convenient approach for unrestricted codes and their various sub-
classes is to map the codes to colored graphs, which can be then be considered in the
framework of graph isomorphism. In particular, the nauty graph automorphism software
[1370] can then be used.

Maps from codes to colored graphs are discussed in [1090, Chap. 3]. For unrestricted
codes over Fq with length n and size M , one may consider the following graph with M + qn
vertices. Take one vertex for each codeword and a complete graph with q vertices for each
coordinate. Insert edges so that the neighbors of a codeword vertex show the values in the
respective coordinates. One may color the graph so that no automorphism can map a vertex
of one of the two types to the other (although the structure of the graph is such that for
nontrivial codes no such maps are possible even if the graph is uncolored).

Example 3.2.22 For the two codes in Example 3.2.17, one may construct the graphs in
Figure 3.1. The leftmost vertex in each triangle corresponds to value 0, and the other
two vertices correspond to 1 and 2 in a clockwise manner. Now we can also use graph
invariants, such as the distribution of the degrees of the vertices, to see that the graphs are
non-isomorphic, which in turn implies that the codes are inequivalent.

Remark 3.2.23 The number of codewords of linear codes grows exponentially as a function
of the dimension of the codes. Hence we do not wish to map individual codewords to
vertices of some graph, so an approach similar to that for unrestricted codes is not practical.
However, various other approaches have been proposed which partly rely on nauty; see
[483, 1467, 1608] and [1090, Chap. 7]. Further algorithms for classifying linear codes are
presented in [190].

3.3 Some Central Classes of Codes

By Definition 1.9.1, the maximum size of error-correcting codes with length n and mini-
mum distance d are given by the functions Aq(n, d) and Bq(n, d) for unrestricted and linear
codes, respectively. Most general bounds on these functions, such as those in Section 1.9,


