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In 2008, the world economy was brought to its knees by the worst financial 
crisis since the Great Depression. Many countries around the globe, if not 
every one of them, were impacted in one way or another, some suffered far 
more severely than others did. All this created a welcome breeding ground 
for the concept of crowdfunding: a cooperative, Internet-facilitated solution 
of apportioning funds and resources, across geographical confines, directly 
to the projects of interest, circumnavigating and complementing the 
incumbent financial services institutions. Unsurprisingly, crowdfunding is 
rapidly becoming part of the world’s advancement towards a shared and 
digital economy. If 2008 was signalling a great increase in crowdfunding 
related activities, 2013 was the year crowdfunding started receiving 
global recognition and drawing the attention of various bodies, such as 
the established financial services industry, economists, politicians, and 
enterprises. The impression of the scale of the crowdfunding market has 
since attracted numerous large institutions to jump on the bandwagon.

Simultaneously, the scientific research underbuilding the 
crowdfunding phenomenon has been gaining momentum. Since 2010, 
crowdfunding relevant topics have been gradually studied from multiple 
perspectives across distinct disciplines such as psychology, social science, 
information and communication technology, economics, computer 
science, engineering, and entrepreneurship. But the establishment of 
an elaborated research domain is still far away from us. In 2013, the 
corresponding academic discussion on crowdfunding was still very rare. 
Only thereafter, some publications had begun to emerge here and there, 
and several conferences selected crowdfunding as a side topic, but the 
scope was nearly negligible from an academic viewpoint.   

This is what Smart Computing Applications in Crowdfunding is about. 
In this book, Bo and Tshilidzi offer their readers a new angle from which 
to view crowdfunding, i.e., via less model-based smart computing 
algorithms which have their roots in engineering, in computer science, and 
in informatics. Though less mathematically rigorous to some extent, these 
intelligent algorithms, often nature-inspired, can cope with numerous real-
world hard problems efficiently. Thus, the marriage of smart computing 
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and crowdfunding has the potential to spark novel methods, ways, and 
means of understanding crowdfunding that worth further dissemination 
and continuous development.

Overall, this book is a welcome addition to the literature of 
crowdfunding, artificial intelligence, granular computing, and beyond. I 
wish all of you lots of joy in reading this exciting work. So, read on.

 Ben Shenglin, Ph.D.
December 2017  Dean and Professor, Academy of Internet Finance

Zhejiang University, China
Director of International Monetary Institute 

 Renmin University of China



Preface

Finance has a great impact on real economy’s development. From 
a historical perspective, financial innovation is often coupled with 
technological advancement. Among various innovations in the financial 
sector, crowdfunding is a burgeoning and dynamic industry, in which a 
diverse variety of business models are incorporated. It is, thus, imperative 
to conduct a comprehensive exploration of the crowdfunding landscape. 
Meanwhile, the uprising of smart computing-enabled artificial intelligence 
is also broadly witnessed, which has inspired (or even forced) numerous 
sectors (including the financial sector) all over the world to react. Motivated 
by these two noteworthy phenomena, this book covers the key players and 
critical issues typically encountered in the crowdfunding domain from the 
smart computing perspective. Under each player, the application of smart 
computing technique(s) towards the representative issues is elaborated. 
It is hoped that this book, Smart Computing Applications in Crowdfunding, 
could be a timely publication that may meet the requirements of a wide 
spectrum of readerships. 

The book consists of eleven chapters which are organized into seven parts. 
The interrelationship of chapters and sections is illustrated in Fig. P.1 (next 
page).
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Figure P.1: Interrelationship among different chapters of the book.
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ChaPter 1

Introduction to Smart Computing 
Approximate Reasoning 

1.1 The Necessity of Computing in Practice: A Brief Reminder

The main aim of this chapter is to introduce smart computing to anyone 
who intends to apply the corresponding approaches to the interested 
practical problems. In view of this aim, we begin with simplifying why 
computations are generally required in practice. Then, we explain the 
uncertain aspects associated with various practical applications. This will 
bring us the main theme of this chapter, smart computing. 

As quoted by Reed and Dongarra (2015), the English chemist  
Humphrey Davy once wrote, about two hundred years ago, “Nothing tends 
so much to the advancement of knowledge as the application of a new instrument. 
The native intellectual powers of men in different times are not so much the causes of 
the different success of their labors, as the peculiar nature of the means and artificial 
resources in their possession”. Such observation is no less true nowadays that 
the competitive advantages can be obtained by someone who has the most 
powerful scientific tools at hand. In 2013, the Nobel Prize in chemistry 
was shared among three chemists for their remarkable achievements in 
computational modelling. Actually, computer models simulating real life 
have turned to be a crucial element for many advancements achieved in 
numerous domains today, ranging from describing high-energy particle 
accelerators’ advantages (Hamada, 2017), mighty astronomical equipment 
(e.g., Hubble Space Telescope) (Chen, 2015a), DNA sequencing (Sung, 
2017), to agent-based computational economics or artificial economics 
(LeBaron, 2000; Tesfatsion, 2003; Martinez-Jaramillo, 2007; Marwala, 
2013d; Xing et al., 2011; Xing et al., 2012a; Xing et al., 2012b; Marwala, 
2013c; Xing et al., 2014; Chen, 2008; Hamill and Gilbert, 2016), and agent-
based manufacturing environments (Xing, 2016a; Xing and Gao, 2014gg; 
Xing and Gao, 2014kk; Xing and Gao, 2014qq; Xing et al., 2014; Xing et 
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al., 2011; Xing and Gao, 2014a). The scientific instruments are becoming 
increasingly powerful and continuously advancing human knowledge. 
Here, computing is largely needed inside each one of these instruments 
in order to facilitate functions such as sensor controlling, data processing, 
wireless communication, and many more. 

In the scientific domain, researchers tend to have many types of tools; 
however, many of them are often constrained within a specific niche. 
On the contrary, computing is not just a science augmenter but rather 
something with inherent computational modelling and data analytics 
capabilities that can be potentially applied to all patches of science and 
engineering landscape (Ceruzzi, 2012; Gustafsson, 2011).

1.1.1  Practical Problems Generalization and Classification
In order to grasp the necessity of computations in practice, we need to 
recall what types of practical issues we would like to resolve. Broadly 
speaking, we can classify the majority of these problems into the following 
categories:
	 •	 Learning: We are curious about what is happening around us; in 

particular, we want to acquire different quantities’ numerical values.
	 •	 Predicting: Upon having these values at hand, we are interested in 

forecasting the future status of our surroundings along the time axis.
	 •	 Controlling: By roughly knowing the subsequent states of our 

environment, we are eager to figure out what changes we can make, if 
possible, so that the desired future outputs can be obtained.

It should be noted that, more often than not, practical problems 
involve addressing all three types of tasks. In fact, according to Kreinovich 
(2008), this categorization can lead us to perceive the differences between 
science and engineering disciplines.

	 •	 Science	Discipline: The tasks related to learning and predicting world 
states are usually treated as science.

	 •	 Engineering	 Discipline: The tasks of identifying a proper control 
strategy can be generally regarded as engineering. 

 A crowdfunding example for explaining such differences can be 
stated as follows:

1) The problems of measuring fundraising amount at different time 
intervals and predicting how a particular fundraising campaign 
will evolve over time belong to the science discipline.

2) The problems of finding the best means to control this development 
trajectory (e.g., adding new rewards, introducing new investment 
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bundles, etc.) so that an asker/borrower’s funding goal can be 
better achieved fall into the engineering discipline.

Without exaggeration, computations are required almost everywhere 
in dealing with both science and engineering problems. 

1.1.1.1 Learning the Current State of the World
Suppose some state is characterized by different quantities (denoted by y), 
the essence of learning is thus to obtain these quantities’ numerical values.
	 •	 Measurable	 Situations: Sometimes, these values can be easily 

acquired by directly measuring y. For instance, when we plan to know 
the current state of a crowdfunding campaign, we can measure its 
many factors, e.g., fundraising goal, funding raised so far, project start 
and close date, the number of backers, etc. 

	 •	 Unmeasurable	Situations: However, there are numerous quantities 
that are of our interest but are difficult to measure or are simply 
unmeasurable, e.g., crowdfunding backers’ opinion, evaluation, 
attitude, emotion, and mood. Under this circumstance, a comprise can 
be done via the following steps (Kreinovich, 2008):

1) Step 1: Get some relative easier-to-measure quantities (denoted by 
x1,...,xn) measured; and then

2) Step 2: Get y estimated according to the measured values 
(represented by x~i) of these auxiliary quantities xi. 

	 •	 How	to	Compute?	In order to accomplish the above Step 2, i.e., using 
the approximation of xi to get an estimate of y, the relationship between 
y and x1,...,xn has to be identified. Here, some algorithm, indicated by 
f(x1,...,xn), is needed to fulfil such task of transforming the values of 
xi into an estimate for y. This process can be expressed using Eq. 1.1 
(Kreinovich, 2008):
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  The complexity of the algorithm f(x1,...,xn) varies from situation to 
situation. In any case, a certain amount of computations are needed to 
perform learning tasks.
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1.1.1.2 Predicting the Future State of the World
Since the current status of the environment is characterized by a set of 
quantities (denoted by y1,...,ym), as soon as the values of these quantities 
are obtained somehow, we can set out to predict their future values. In 
order to do so, we get to know how the future value z is determined by 
the current values y1,...,ym. Likewise, an algorithm, indicated by g(y1,...,ym), 
is further needed to transform the acquired values of yi into an estimate 
for z. This is, for example, how a socio-economic system (with no less 
than 100 million agents involved) is predicted: such simulations and 
predictions need a lot of computations, therefore, they have to be run on 
high performance computing equipment. 

If we examine the learning and prediction tasks through the lens of 
computation, some similarities can be identified as follows (Kreinovich, 
2008): 
	 •	 First, both problems begin their process by estimating x~1,...,x

~
n for the 

quantities of x1,...,xn; and
	 •	 Second, a specifically selected algorithm f(.) is always applied to these 

estimates. The resultant of this operation is an estimate y~ = f(x~1,...,x
~

n) 
for the desired quantity y. In practice, this process shared by both 
problem classes is often referred to as data processing.

1.1.1.3 Controlling the Desirable State of the World
When the current status is knowable to some extent, and the subsequent 
future possibilities are partially predictable, we intuitively encounter the 
third task that is figuring out a means to get guaranteed desirable results. 
Under this category, two subclasses can be further grouped (Kreinovich, 
2008):
	 •	 Constraint	 Satisfaction: Practical problems tend to have many 

constraints, and satisfying all those restrictions (maybe more than 
one possible design alternative) is often what we want. The goal of 
this sub-class is, thus, to find any one of these alternatives, and no 
preferences are imposed. 

	 •	 Function	 Optimization: For this sub-class there exists an evident 
preference between different alternative designs (denoted by x). 
This is why an objective function F(x) is often introduced in order 
to represent such preference: the larger the value of F(x), the more 
preferable are design alternatives x. Therefore, optimization means 
that we would like to find the largest objective function value so that 
the most preferable design alternative x can be pinpointed. 

Both sub-classes inevitably require a great amount of computations 
(Du and Ko, 2014).
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1.1.2 Computational Science and Engineering
Broadly speaking, the main duty of scientists and engineers is to 
comprehend, develop, or optimize all sorts of ‘systems’. Here, the term 
‘system’ represents the object of interest, either a living system (e.g., stem 
cell), or an artificial technological system (e.g., crowdfunding). Suppose 
we did not have complex systems like computer processors (Harris and 
Harris, 2013; Comer, 2017), wind turbines (Hau, 2013), supply chain 
(Xing et al., 2010b; Xing et al., 2010a; Xing and Gao, 2015c; Xing and Gao, 
2015a; Gao et al., 2013a), layout (Xing et al., 2010e), clustering (Xing et al., 
2010d), load dispatch (Xing, 2015d), smartphones (Woyke, 2014; Xing and 
Marwala, 2018f), operating systems (Holcombe and Holcombe, 2012; Xing 
and Marwala, 2018g), remanufacturing system (Xing and Gao, 2014a; Xing 
et al., 2010a; Xing and Gao, 2015b), reconfigurable manufacturing system 
(Xing et al., 2006a; Xing et al., 2009; Xing et al., 2006b), design automation 
system (Xing and Marwala, 2018e), and robots (Xing and Marwala, 
2018n; Xing and Marwala, 2018k; Xing and Marwala, 2018a; Marwala and 
Hurwitz, 2017; Xing, 2016e) in our life, then engineers/scientists would 
also not exist. 
	 •	 Model: The underlying reason for the existence of both scientists and 

engineers is the complexity associated with natural systems and man-
made systems. In general, to deal with such complexity, a common 
practice employed by engineers or scientists is simplification. This 
means, if something is complicated, it should be made simpler, but 
not too simple. To put it more formally, a viable simplified system 
description (i.e., model) is needed in order for engineers and scientists 
or anyone else to learn about complex systems. 

	 •	 Mathematical	Model: In the literature, there are many definitions of 
a mathematical model available. According to Velten (2009), a more 
general version can be given as follows: A mathematical model can be 
represented by a triplet (System, Question, Statement) where a system 
is denoted by System, a question related to the interested system is 
indicated by Question, and Statement stands for a set of mathematical 
statements given by Eq. 1.2 (Velten, 2009):

 { }1 2 nStatements , , ,= ∑ ∑ ∑ . 1.2

The process of this problem solving scheme can be seen in Fig. 1.1.

1) Real-world: Initially, we have a system (System) under consideration 
and a question (Question) related to this system.

2) Mathematical universe: This hemisphere consists of a set of 
mathematical statements (Statement) together with a possible 
problem solution (denoted by A*).
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3) Bridge: These two hemispheres are bridged by a mathematical 
model (System, Question, Statement) which can translate the real-
world problem into mathematical terms and interpret the obtained 
solutions in real-world language. 

	 •	 Computational	Model: In practice, there is a clear distinction between 
the following two tasks: (1) Formulating a mathematical model, and (2) 
Solving the resulting mathematical problem. The former can be done 
by non-mathematicians, while the latter is often tackled by someone 
with mathematical expertise (with the aid of advanced software in 
many cases). When the exact mathematical model of a problem is hard 
to obtain, an experimental way to find the appropriate solution is very 
time- and cost-consuming. In this regard, the complex mathematical 
models’ subtleties can be illuminated by computational modelling 
(Shiflet and Shiflet, 2014).

1.1.3 Key Concepts
In the realm of modern computing, one often talks about computer science, 
mathematics, logic, and statistics (Paule, 2013). These foundational 
views can be given a clear technological meaning in the context of smart 
computing that has an aim of writing algorithms (i.e., mathematical and 
statistical notions as a base) and using computers for long calculations 
and verifications. For the rest of this section, we will describe various key 
concepts for bridging different research endeavours.

Figure	1.1: Problem solving process.
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1.1.3.1 Sets 
Generally speaking, a set refers to a collection of objects (or elements) 
that share the same properties or satisfy certain equations (Garnier and 
Taylor, 2002; O’Regan, 2013). In practice, it is a fundamental building 
block that gives a place to all needed domains in modern societies. For 
example, in the design of intelligent systems, objects (concrete or abstract) 
appear naturally (i.e., either definitely in or definitely out of the set) 
when considering constraints, uncertainties, and design specifications. 
Furthermore, due to fact that the object of a set need not be real, sets are 
the most appropriate language to specify several system performances 
(Veazie, 2017). For instance, we can define a set in asserting an imaginary 
domain (e.g., the domain of attraction), a conceptual domain (e.g., the 
domain of credit prediction), or even a specific domain (e.g., the error 
domain of a proposed algorithm). Accordingly, sets do not only serve as 
the terms of formulation, but also play a key role in constructing problem 
solutions (Blanchini and Miani, 2015).

In general, there are four types of sets (Pedrycz, 2013), namely crisp 
sets (e.g., yes/no, dichotomies), fuzzy sets (e.g., partial memberships), 
rough sets (e.g., lower and upper boundary), and shadowed sets (e.g., 
uncertainty regions). A comparative view of these sets is illustrated in  
Fig. 1.2. 

Figure	1.2: A comparative view of sets.
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	 •	 Classical	 (Crisp)	 Sets: Classical, two-valued logic (e.g., qualified & 
unqualified, or true & false) is a basis of traditional mathematics and, 
in particular, of the crisp set theory. In other words, crisp set theory 
enables all the objects under consideration to be deterministically 
classified into two disjoint classes: belonging to a set, or not (Bělohlávek 
et al., 2017). Its membership function can be defined using Eq. 1.3  
(Klir and Yuan, 1995):

 ( )
1
0A

x A
X x

x A

if 
if 

∈
=  ∉

. 1.3

  However, although every crisp set is defined by a “sharp” predicate, 
not every predicate is good enough and thus there is no a perfect 
classification of a crisp set to which it refers to (Pykacz, 2015; Trillas 
and Eciolaza, 2015). For example, in many real applications of data 
mining and image/natural language processing, datasets often 
contain a large number of features. In these cases, obtaining higher 
classification accuracy is neither possible nor necessary. Therefore, 
this practical need leads to the introduction of fuzzy set notions. 

	 •	 Fuzzy	 Sets:	 The first publication in fuzzy set theory, written by 
Zadeh (1965), is over 50 years old. As its name implies, fuzzy set 
theory refers to a theory of graded concepts, in which an element x of 
given fuzzy set A

~
 has various levels of membership, ranging from 0 

(full non-membership) to 1 (full membership) (Zimmermann, 1992). 
Essentially, this idea intends to imitate the process of human brain 
solving complex problems by using mathematics (Zadeh, 1965). In 
general, fuzzy sets can be written in the form of Eq. 1.4 (Zimmermann, 
1992):

 ( ) [ ]0 1
A A

x x: ,µ µ ∈
 

 . 1.4

  where μA
~(x)

 
is called membership function or grade of membership. 

  It aims to provide a natural way to deal with problems in which 
imprecise or fuzzy predictions, relations, criteria and phenomena 
exist. Applications of this theory can be found in areas such as 
manufacturing (Azadegan et al., 2011; Xing et al., 2010c; Xing and Gao, 
2014ii; Xing and Gao, 2014mm), decision policies (Xing, 2016c; Salles et 
al., 2016; Bosma et al., 2011), and data analysis (Petry and Zhao, 2009; 
Petkovic, 2014). More information can be found in (Zimmermann, 
2001). 

  In the literature, fuzzy sets also have three extended versions, namely 
interval-valued fuzzy sets (IVFSs) (Gozalczany, 1987; Turksen, 1996; 
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Wang and Li, 1998), intuitionistic fuzzy sets (IFSs) (Atanassov, 1986), 
and a hybrid of IVFSs and IFSs which is called interval-valued 
intuitionistic fuzzy sets (IVIFSs) (Atanassov and Gargov, 1989). 

1) Interval-valued fuzzy sets (IVFSs): According to Zhang et al. (2009), in 
many cases, an objective procedure is unfortunately not available 
in terms of identifying the crisp membership degrees for elements 
in a fuzzy set. The IVFSs emerged based on these observations. 
For instance, due to the inherent uncertainties associated with an 
expert’s knowledge, describing the degree of belief (or termed as 
a membership function’s values) in the form of a crisp number 
(e.g., ranging from 0 to 10) tends to be very hard. More often than 
not, only a very raw estimation (say between 4 and 6) is obtainable 
which in turn gives us the values of a membership function falling 
within an interval of [0.4, 0.6]. More formally, IVFSs belong to 
type-2 fuzzy sets, in which a fuzzy set A is over a referential set 
U, i.e., A :U → FS ([0, 1]). More details can be found in (Celik et al., 
2015; Mendel, 2017).

2) Intuitionistic fuzzy sets (IFSs): In IFSs, a membership function 
(denoted by μ) and a non-membership function (indicated by ν) 
are jointly introduced, in which μ + ν ≤ 1. This formulation relaxes 
the originally enforced condition ν = 1 – μ found in classical fuzzy 
set theory (Zhang et al., 2009). The basic definition of an IFS in a 
universe of discourse can be given by Eq. 1.5 (Atanassov, 1986):

 ( ) ( ){ }A AA x x x x Xµ ν= ∈, , . 1.5

 where X = {x1, x2, x3, ..., xn}; and μA(x) : X → [0, 1] and νA(x) : X → [0, 
1] refer to membership degree and non-membership degree, 
respectively, under the condition of 0 ≤ μA(x) + νA(x) ≤ 1. Meanwhile, 
an intuitionistic index of x to A, termed as the hesitancy degree of 
the element πA(x), can be defined by Eq. 1.6 (Atanassov, 1986):

 ( ) ( ) ( )1A A Ax x xπ µ ν= − − . 1.6

 where πA(x) ∈ [0, 1], ∀x ∈ X. In practice, thanks to non-membership 
function, IFSs can be used to address the hesitancy that is often 
caused by information impression (Song et al., 2015). Further 
discussions in this regard can be found in (Li, 2014). 

3) Interval-valued intuitionistic fuzzy sets (IVIFSs): Finally, the IVIFSs 
act as a further generalization of IFSs in which unit intervals [μ1, μ2] 
are employed for membership and non-membership values rather 
than exact numerical values (Atanassov and Gargov, 1989). 
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  Nowadays, these variations have been widely used in various 
domains, such as social networking (Chen et al., in press), group 
decision making (Zhang and Xu, 2015; Chen, 2015b), and technology 
evaluation (Dereli and Altun, 2013). 

	 •	 Rough	Sets: Rough set theory, proposed by Pawlak (1982), serves as 
a novel mathematical tool for dealing with inconsistency problems 
(Zhang et al., 2016). A powerful principle underpinning the rough 
set theory is that hidden patterns in data cannot always be disclosed 
by precise measurements (Anderson et al., 2000). Accordingly, rough 
set theory is often regarded as a fundamental concept for artificial 
intelligence (AI) and cognitive sciences, such as image processing 
(Sen and Pal, 2009), machine learning (Henry, 2006), data mining (Bae 
et al., 2010; Fan and Zhong, 2012; Nelwamondo and Marwala, 2007), 
and knowledge discovery (Ali et al., 2015; Hassan and Tazaki, 2003; 
Marwala and Lagazio, 2011b).

  In a rough set, the set X is typically approximated via information 
extracted from B and then constructing the following terms, namely, 
lower approximation set, upper approximation set, and boundary 
region by using Eq. 1.7 (Pawlak, 2002):
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 . 1.7

  where the lower and the upper approximations are denoted by B–X 
and B–X, respectively, and BNB(x) represents the B – boundary region 
of rough set X.

  When a target set involves uncertainty or imprecision, one can use 
rough set to define such a set approximately via some definable sets 
(Pawlak and Skowron, 2007b). More specifically, any pair of precise 
sets can be divided into two parts: (1) The first part is called the lower 
approximating sub-set including all surely belonged objects, and (2) 
The second part is called the upper approximating sub-set containing 
all objects that possibly belong to the set. For those objects that cannot 
be classified into either upper- or lower sub-set, one can deposit them 
in the boundary region of a rough set (Pawlak, 2002). More in-depth 
discussions can be found in (Pawlak and Skowron, 2007a; Polkowski, 
2002; Peters and Skowron, 2014; Peters and Skowron, 2016; Peters et 
al., 2014).

  When compared with fuzzy set theory, we can have the following 
observations: On the one hand, although extracting rules from data 
is made possible by rough set theory, a smooth extrapolation across 
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cases is still not allowed. On the other hand, fuzzy set outperforms 
rough set in terms of smooth extrapolation, but it needs a set of rules 
to get its process started (Anderson et al., 2000). Based on this, two 
new models of fuzzy-rough hybridization, i.e., rough fuzzy sets and 
fuzzy rough sets, are becoming increasingly popular. More theoretical 
backgrounds can be found in (Hinde and Yang, 2009; Cock et al., 
2007; Dubois and Prade, 1990; Morsi and Yakout, 1998; Nanda and 
Majumdar, 1992; Radzikowska and Kerre, 2002; Nguyen et al., 2014; Lu 
et al., 2016; Yang and Hinde, 2010) and the corresponding applications 
can be found in decision making (Anderson et al., 2000), feature 
selection (Kuncheva, 1992), data mining (Nilavu and Sivakumar, 2015; 
Srinivasan et al., 2001), to name just a few. 

	 •	 Shadowed	Sets: According to Pedrycz (1998), the concept of shadowed 
sets was proposed to close the gap between fuzzy sets and rough sets. 
In general, a shadowed set (denoted by S) in a universe of discourse 
(represented by U) stands for a set-valued mapping S : U → {0,[0, 1],1} 
and thus has following properties given by Eq. 1.8 (Pedrycz, 1998): 
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  where a shadowed set’s core is denoted by Core(S), in which all objects 
are fully definable; Sh(S) represents the shadow which incorporates 
uncertainty and imprecision, and a shadowed set’s support is indicated 
by Supp(S), in which all elements are incompatible with the rules 
defined by S.

  In general, one can view shadowed sets as an expression of fuzzy 
sets in a three-way approximation, i.e., {0,1,[0,1]} (Yao et al., 2017), 
though conceptually, shadowed sets and rough sets are more close to 
each other, even though their theoretical foundations are indeed very 
different (Zhou et al., 2011). More specifically, the rough set theory’s 
key concepts (i.e., negative region, lower bound, and boundary 
region) are associated with shadowed sets’ three-logical values (i.e., 
0, 1, and [0,1] which correspond to excluded, included, and uncertain 
characteristics, respectively) (Pedrycz, 2009; Zhou et al., 2011). 
Further discussions on this matter can be found in (Pedrycz, 1998; 
Grzegorzewski, 2013; Pedrycz, 2005). 

1.1.3.2 Logic
Logic is about reasoning, going from the knowledge assimilation 
(i.e., premises) to making deductions based on this knowledge (i.e., a 
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conclusion) (Gensler, 2010). In computer science, most theories operate 
in accordance with a logic system, typically Boolean logic. Typically, a 
Boolean logic is a set, which consists of at least two distinct special elements 
0 and 1, respectively. In its simplest form, any outcome is governed and 
calculated by following two main laws: (1) The law of contradiction, the 
possibility that p and –p can co-exist at the same time is zero, hence one 
side of a contradiction has to be invalid (or false); and (2) The law of the 
excluded third, nothing can be found between to be and not to be (Moller 
and Struth, 2013).

Fuzzy logic provides another foundational view for reasoning based 
on uncertain statements. Generally speaking, this concept was inspired 
by two notable human abilities: (1) The ability of reasoning and decision-
making under the situations like imprecision, information incompleteness, 
uncertainty, and partiality of truth; (2) The ability to accomplish various 
perception-based physical/mental tasks with no accurate measurements 
and computations involved (Pedrycz et al., 2008). In essence, fuzzy logic 
acts as a novel theory of inference by introducing linguistic IF-THEN 
rules (Zadeh, 1975a; Zadeh, 1975b; Zadeh, 1975c). The main application 
domains of fuzzy logic include decision making (Lin and Chen, 2004; 
Patel and Marwala, 2006), control (Raber, 1994), healthcare (Barro and 
Marín, 2002; Massad et al., 2008), and image processing (Caponetti and 
Castellano, 2017). 

1.1.3.3 Probability Theory
Probability can be loosely defined as “the frequency of occurrence” of 
an outcome. Typically, the probability is between 0 (i.e., the event cannot 
occur) and 1 (i.e., the event is guaranteed to occur). In other words, 
probability theory is about the study of chance. To put probability on 
firm mathematical ground, we need to first introduce the concept of 
randomness, which is the central issue in this domain. 
	 •	 Randomness: In general, one can view randomness as a kind of 

objective uncertainty associated with random variables (Ross, 2014; 
Schinazi, 2012). Broadly speaking, randomness can be categorized 
into two classes, namely classical and chaotic randomness (Plotnitsky, 
2016; Clegg, 2013). 

1) Classical randomness: A classical randomness can be defined as a 
meaningfully compressed category (i.e., obeying rules) which 
includes the overall information of a collection of random objects 
(Clegg, 2013). In other words, the classical randomness depends 
not on an individual event that carries discernible information but 
instead on a probability distribution (e.g., cumulative distribution 
functions) in which we can designate a special pattern or objective 
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from the whole population (Denker and Woyczyriski, 1998). For 
example, to measure the randomness in a gambling game, we 
must not care too much about any particular individual event, but 
should focus on how often an event comes up (i.e., how different 
outcomes are distributed). Other examples containing classical 
randomness also include lottery and stock market. 

2) Chaotic randomness: On the other hand, when the effect of 
randomness arises in dynamic systems with only deterministic 
and well-controlled ingredients, we call this phenomenon chaotic 
randomness (Denker and Woyczyriski, 1998). Examples in this 
category include the ball’s trajectory on the pinball table, the 
Brazilian butterfly effect, and the iterations of quadratic maps.

	 •	 Probability	 Models: Based on our understanding of randomness, 
we can now turn to a formal mathematical setting for analysing 
probability models. In general, any probabilistic model must include 
the following components: (1) A sample space (denoted by Ω) for 
an experiment which refers to the set of all possible outcomes of a 
random process; (2) An event (indicated by B) which represents a sub-
set of the sample space; and (3) A probability function, represented 
by Pr(B), which satisfies three properties defined by Eq. 1.9 (Johnson, 
2018): 
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	 •	 Probability	Rules: Bayes’ theorem is one of probability theory that 
defines a relation between certain conditional probabilities (Morin, 
2016). 
1) Simple form: Typically, the ‘simple form’ of Bayes’ theorem is 

defined by Eq. 1.10 (Morin, 2016): 
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2) Explicit form: While the ‘explicit form’ can be given by Eq. 1.11 
(Morin, 2016):
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 where the first part of denominator, i.e., Pr(Z |A).Pr(A), refers to 
the combination of the accuracy of the test and the historical data of 
the problem; while the second part of denominator, i.e., Pr(Z |not 
A).Pr(not A), is still related to the accuracy of the test, denoted 
by Pr(Z |not A), together with new information, represented by 
Pr(not A). 

3) General form: And the ‘general form’ of Bayes theorem is given by 
Eq. 1.12 (Morin, 2016): 

 ( ) ( ) ( )
( ) ( )

Pr Pr
Pr

Pr Pr
k k

k
i ii

Z A A
A Z

Z A A

⋅
=

⋅∑
. 1.12

 where Ai stands for a complete and mutually exclusive set of 
events; Pr(Ai) denotes the prior probabilities; Pr(Z |Ai) represents 
the conditional probability, and Pr(Ak|Z) indicates the posterior 
probability. 

  In practice, Bayes’ rule finds application in a wide variety of domains, 
such as pattern recognition (Marwala, 2007a), militarized interstate 
dispute (Marwala and Lagazio, 2011a), and finite element model 
updating (Marwala et al., 2017). 

1.1.3.4 Possibility Theory
Through the above discussion, we learn that probability theory provides 
an acceptable concept of quantitative chance. While in the literature, there 
is another method called possibility theory which focuses more on the 
analysis of different types of uncertainty other than chance (Nguyen and 
Walker, 2006). More specifically, possibility theory is used to deal with 
problems that have a non-probabilistic character. One example in this 
regard is to combine possibility theory with linguistic variable concept 
(found in fuzzy set theory) for the purpose of offering a unified formal 
framework. Under such framework, a formal management of information 
with inherent imprecision, vagueness, ambiguity, and uncertainty 
(Kraft and Colvin, 2017). A crude comparison among possibility theory, 
probability theory and Boolean algebra was performed by Zimmermann 
(1992) from different aspects and the results are illustrated in Fig. 1.3.

In practice, applied researchers have learned possibility theory 
through the lens of measure theory, since it can provide a relatively easy 
translation between mathematical theory and real-world problems. From a 
historical perspective, possibility theory is based on two semi-continuous 
generalized measure theories, i.e., possibility measures and necessity 
measures (Bělohlávek et al., 2017). The former estimates the feasibility 
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Figure	1.3: Mathematical differences among three areas: Boolean algebra, probabilities, and 
possibilities.
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degrees of alternative options, while the latter indicates priorities (Dubois 
et al., 1996). 

Suppose we have a universe of discourse (denoted by U), then a 
possibility measure (represented by Pos) is a set function Pos: P(X) → 
[0,1] that meets the properties given by Eq. 1.13 (Zimmermann, 1992; 
Bělohlávek et al., 2017): 
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Given a Pos, the necessity measure (denoted by Nec) can be defined 
by Eq. 1.14 (Zimmermann, 1992; Bělohlávek et al., 2017): 

 ( ) ( )1Nec PosA A= − . 1.14

If A
~
 is a fuzzy set in the universe U and πx denotes a possibility 

distribution (associated with a variable X that takes value from set U), 
then the possibility measure can be defined by Eq. 1.15 (Zimmermann, 
1992; Bělohlávek et al., 2017):
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In a similar vein, the necessity measure can also be given by Eq. 1.16 
(Bělohlávek et al., 2017):

 ( ) ( )1Nec PosF FA A= − . 1.16

where F represents a fuzzy set defined on U. 

1.1.3.5 Interval Analysis
In general, an interval can be denoted as real numbers with brackets or 
parentheses, based on whether the end points are included or not. For 
instance, if a > b, then [b, a], [b, a), (b, a], and (b, a) are sets of numbers x that 
satisfy the conditions given by Eq. 1.17 (Hausdorff, 1962): 
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The purpose of interval analysis is to address numerical errors 
emerging from computation (Moore et al., 2009). In other words, this 
technique is designed to automatically provide rigorous bounds on all 
potential errors and uncertainties (Hansen and Walster, 2004). Interested 
readers should refer to Chakraverty (2014) for more information.

A fuzzy interval typically represents a fuzzy set of real numbers in 
which the membership function is characterized by unimodal and upper-
semi continuous features (Kacprzyk and Pedrycz, 2015). Accordingly, the 
calculus of fuzzy intervals is an extended version of interval arithmetic 
built on a possibilistic counterpart of a random variable’s computation. For 
instance, in order to obtain the addition of two fuzzy intervals (denoted by 
A and B, respectively), one must calculate the membership function of A 
⊕ B as the possibility degree via the possibility distribution, i.e., min(μA(x), 
μB(y)), as given by Eq. 1.18 (Kacprzyk and Pedrycz, 2015):

 ( ) ( ){ }( ), :A B z x y x y zµ ⊕ = Π + = . 1.18

Further discussions about the fuzzy interval can be found in (Dubois 
et al., 2000; Nguyen et al., 2012). 

1.1.3.6 Category Theory
Briefly, a category stands for a labelled directed graph, in which the nodes 
are termed as objects and the labelled directed edges are called morphisms 
(Barendregt, 2013). From a conceptual point of view, category theory is a 
mathematical structure that can be used to formalize high-level concepts 
(e.g., sets, rings and groups). More in-depth explanations can be found in 
(Roman, 2017; Awodey, 2006).

1.2 The Unavoidability of Uncertainty in Reality: A  
Quick Retrospection

The kind of information that we get every day is likely to be as follows: Join 
us for dinner and the meeting at 7.00 tomorrow. Of course, the uncertainty 
of such information might lead us into trouble: (1) The first part of the 
statement is vague with respect to what time the common dinner will be 
held; and (2) The second part of the statement is ambiguous regarding 
whether the meeting time is in A.M. or P.M.

In the literature, uncertainty is defined as a measure of the users’ 
understanding of the difference between the information carried by the 
proposition corresponding to certain phenomena (Galbraith, 1973). Some 
scholars pointed out that uncertainty is unavoidable and, thus, worth 
the scrutiny. For example, Faber (2012) examined engineering decision 
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problems that are subject to uncertainty. Kraft and Colvin (2017) treated 
information retrieval as an uncertain problem and used fuzzy logic to deal 
with it. Other examples also include learning with uncertainty (Wang and 
Zhai, 2017), artificial intelligence with uncertainty (Li and Du, 2017), and 
economic models under uncertainty (Aliyev, 2014). 

Traditionally, measures of uncertainty were only related to classical 
set theory and probability theory (Wierman, 1999; Friedlob and Schleifer, 
1999). However, this unique connection is now challenged by many. 
Among them, several researchers proposed that uncertainty is a multi-
dimensional concept (Zadeh, 1965; Pawlak, 1982; Zimmermann, 2001). As 
a result, a unified perspective on the recent studies regarding uncertainty 
calls for other theories which can discover different properties of those 
incomplete and imprecise data, such as fuzziness, roughness, and 
indefiniteness (Wang and Zhai, 2017; Friedlob and Schleifer, 1999). For 
the rest of this section, we will briefly discuss some of these properties 
together with the corresponding mathematical foundations.

1.2.1 Fuzziness
Fuzziness is a kind of mathematical way to represent cognitive uncertainty, 
such as ambiguity and vagueness, in measurements and natural language 
expressions, imperfectly in experts’ thoughts and knowledge, and absence 
of concepts’ boundaries (Colubi and Gonzalez-Rodriguez, 2015; Coppi et 
al., 2006; Seising, 2008; Zhang, 1998; Klir, 1987). In practice, those imprecise 
informations are modelled by fuzzy sets based on their associated degrees 
of membership (Zadeh, 1965; Nguyen and Walker, 2006). Some useful 
definitions are discussed as follows:
	 •	 Fuzzy	 Sets: Suppose we have a non-empty set denoted by X = 

{x1, x2, x3, ..., xn}. A fuzzy set (represented by A
~
) in X stands for a set of 

ordered pairs given by Eq. 1.19 (Zimmermann, 1992):

 ( )( ){ },
A

A x x x Xµ= ∈


 . 1.19

  where the membership degree of x in A
~
 is denoted by μA

~ (x), and each 
element x in X maps to a real number belonging to the interval of [0,1].

1) A support of a fuzzy set A
~
, denoted by S(A

~
), stands for the crisp set 

of all x ∈ X that satisfy μA
~ > 0.

2) In classical (crisp) set theory, α-cut means that the degree for 
elements that belong to a fuzzy set is at least α as given by Eq. 1.20 
(Zimmermann, 1992):

 ( ){ }A
A x X xα µ α= ∈ ≥



. 1.20
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3) A fuzzy set is convex, if for all elements x1, x2 ∈ X and λ ∈ [0,1], the 
relationship defined by Eq. 1.21 (Zimmermann, 1992) hold:

 ( )( ) ( ) ( )( )1 2 1 21 min ,
A A A

x x x xµ λ λ µ µ+ − ≥
  

. 1.21

4) For fuzzy sets, the basic set-theoretic operations are defined by Eq. 
1.22 (Zimmermann, 1992): 
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	 •	 Fuzzy	Numbers: A fuzzy number is a fuzzy quantity that stands for a 
generalization of a real number (Nguyen and Walker, 2006). Typically, 
there are two types of fuzzy numbers: (1) Triangular fuzzy numbers, 
and (2) Trapezoidal fuzzy numbers. In practice, triangular fuzzy 
numbers are the most employed type, in which the fuzzy numbers are 
characterized by a triangular shape. The general formulation of fuzzy 
numbers can be given by Eq. 1.23 (Novák et al., 2016): 
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where a < b < c.

1.2.2 Roughness
In rough set theory, roughness stands for the uncertainty associated with 
a target concept that results from its boundary region (Pawlak, 1991). 
In other words, the uncertainty of rough sets is expressed by means of 
approximations. Some useful concepts are reviewed as follows:
	 •	 Information	System	Framework: The starting point of any rough set 

is a dataset that is called an information table or information system. 
Suppose , , ,S U A V f=  is introduced to represent an information 
system, we can have the following (Zhang et al., 2016; Pawlak, 1982):
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1) U and A are finite non-empty sets;
2) The former stands for the universe of objects;
3) While the latter indicates the attribute set; 
4) V = Ua∈AVa, where Va denotes the set of values of attribute a; and

5) f : A → V denotes a description function. 
	 •	 Indiscernible	 Relation: Given ∀B ⊆ A, there is an associated 

indiscernibility (or equivalence) relation based on U as defined by  
Eq. 1.24 (Zhang et al., 2016; Pawlak, 1982): 

 ( ) ( ) ( ) ( )( )}{ 2, , a BInd B x y U a x a y∈= ∈ ∀ = . 1.24

  Accordingly, the equivalence class of an object (x ∈ U) is denoted 
by [x]Ind(B) or simply [x], and the pair (U, [x]Ind(B)) is termed as the 
approximation space. 

	 •	 Lower-	 and	 Upper-Approximation	 Sets: For a sub-set X ⊆ U, its 
lower- and upper-approximation sets are given by Eqs. 1.25 and 1.26 
(Zhang et al., 2016; Pawlak, 1982):

 ( ) [ ]{ }lowerAppr X x U x X= ∈ ⊆ . 1.25

 ( ) [ ]{ }upperAppr X x U x X= ∈ ≠ ∅ . 1.26

  where Apprlower(X) stands for an object (x ∈ U) certainly belonging to  
X ⊆ U, while Apprupper(X) denotes an object x ∈ U possibly belonging 
to X ⊆ U. Furthermore, the set BND(X) = Apprupper(X) – Apprlower(X)
represents the boundary region of X.
1) Rough sets: If and only if Apprupper(X) ≠ Apprlower(X), X can be regarded 

as a rough set (Zhang et al., 2016; Pawlak, 1982). 
2) Roughness of rough sets: The roughness of set X is defined by  

Eq. 1.27 (Zhang et al., 2016; Pawlak, 1982): 

 ( )
( )
( )

( ) ( )
( )

1 upper lowerlower

upper upper

Appr X Appr XAppr X
Roughness X

Appr X Appr X

−
= − = . 1.27

1.2.3  Indefiniteness
Indefiniteness is a specific concept for the uncertainty of meaning between 
two or more unclear objects, situations, and/or problems (Wang and Zhai, 
2017). Typically, it is associated with a possibility distribution that was 
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proposed by Zadeh (1978). In general, such possibility distribution π can 
be defined by Eq. 1.28 (Wang and Zhai, 2017; Zimmermann, 1992): 

 π(A) = supx∈A f(x). 1.28

where A ⊂ X, and X represents a classical set, i.e., X = {x1, x2, x3, ..., xn}. If 
and only if maxx∈X π(x) = 1, the possibility distribution π can be treated as 
a normalized possibility distribution. 

Based on these definitions, the measure of indefiniteness can be given 
by Eq. 1.29 (Wang and Zhai, 2017): 

 ( ) ( )11
ln

n

i ii
g iπ π π∗ ∗

+=
= −∑ . 1.29

where π = {π(x)| x ∈ X} denotes a normalized possibility distribution, π* 

represents the possibility distribution’s permutation that satisfies π*
i ≥ π*

i+1, 
for i = 1,2, ...,n. Since possibility theory focuses more on imprecision and 
vagueness of linguistic meanings, in order to elicit knowledge from those 
words or sentences, fuzzy judgements rather than probabilistic values are 
required.

Suppose we have a fuzzy set (F
~
) of universe U and the associated 

membership function, denoted by μF
~ (u), the assignment of the values of 

variable u to X can be given by Eq. 1.30 (Zimmermann, 1992): 

 X = u : μF
~ (u). 1.30

Accordingly, the fuzzy membership function of possibility distribution 
π~ can be given by Eq. 1.31 (Zimmermann, 1992): 

 π~ x = μF
~. 1.31

Given i = 2, the measure of fuzzy indefiniteness is obtainable by using 
Eq. 1.32 (Wang and Zhai, 2017): 
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1.2.4 Relations Underlying the Uncertainties
Since the types of uncertainties vary a lot, different methodologies offer us 
varied alternatives, listed below. 
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	 •	 Option	 1: Based on probability theory, randomness measures the 
uncertainty that the target objects have definite boundaries; 

	 •	 Option	2: Built on fuzzy set theory, fuzziness measures the uncertainty 
emerging from vagueness; 

	 •	 Option	 3: According to rough set concept, roughness measures the 
uncertainty with respect to imprecise and incomplete information; 
and 

	 •	 Option	4: With the aid of possibility theory, indefiniteness measures 
the uncertainty associated with non-specificity of information. 
In addition, by combining these fundamental methods with other 

technologies (Zhang et al., 2016), a large number of new toolkits have 
become available, such as probabilistic fuzzy sets (Jiang et al., 2017; 
Kentel and Aral, 2004; Fialho et al., 2016), fuzzy/rough sets with neural 
networks (Boutalis et al., 2014; Raveendranathan, 2014; Ding et al., 
2014), neighbourhood rough sets (Pal et al., 2012), rough/fuzzy sets with 
clustering algorithms (Zhou et al., 2011; Baraldi and Blonda, 1999a; Baraldi 
and Blonda, 1999b), fuzzy sets with game theory (Li, 2014; Jiménez-Losada, 
2017), rough/fuzzy sets with soft sets (Sun and Ma, 2014; Feng et al., 2010; 
Das et al., 2017), and fuzzy/rough sets with different smart computing 
techniques (Xing and Gao, 2014b; Kolokotsa, 2007; Mardani et al., 2015; 
Mitra and Hayashi, 2000; Kubler et al., 2016; Castillo and Melin, 2015). 

1.2.5 Measure Theory
In the domain of uncertainty, the introduction of suitable measures, for 
comparing different information contents carried by distinct uncertainties 
(e.g., randomness, fuzziness, roughness, and indefiniteness), is ranked 
as the most attractive topic. Indeed, measure theory stays at the center 
of addressing uncertainty. In the literature, various types of measures 
(bearing distinct properties) have been proposed, such as distance, 
correlation, divergence, entropy and similarity. Amongst them, entropy 
and similarity are the most frequently used methods for studying the 
uncertainty/certainty information carried by fuzzy sets. According to 
Liu (1992), these two measures represent the complementary information 
towards each other, i.e., certainty (similarity) and uncertainty with respect 
to the corresponding crisp set.

1.2.5.1 Entropy Measurement for Uncertainty—Shannon’s Entropy  
for Classical System

Typically, the measure used for quantifying the uncertainty associated 
with random variables is called entropy (Wang and Zhai, 2017; Cover 
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and Thomas, 1991; Mitzenmacher and Upfal, 2017). Although this term 
originated from thermodynamics and was initially used to measure 
the disorder in a system, it is now widely used in information and 
communication systems to measure the uncertainty regarding the 
information content of the system (Zadeh, 1965; De Luca and Termini, 
1972), i.e., determining the variation degree of the probability distribution.

Basically, Shannon’s entropy emphasizes the measurement of the 
average uncertainty in bits corresponding to the prediction of a random 
experiment’s outcomes, that is, entropy allows us to learn the distribution 
function’s shape. From the recipient viewpoint, the amount of missed 
information is known. 
	 •	 Discrete	 Entropy: In general, entropy relies on a probabilistic 

description of an event. Suppose we have a discrete random variable 
(denoted by X) which consists of n instances, represented by {Xi , for  
i = 1,2,...,n}, the probability mass function of X can thus be given by 
Eq. 1.33 (Wang and Zhai, 2017):

 p(Xi ) = Pr(X = Xi ). 1.33

  Based on this formulation, the entropy in bits of a discrete random 
variable X can then be defined by Eq. 1.34 (Cover and Thomas, 1991; 
Li and Du, 2017; Wang and Zhai, 2017):

 ( ) ( ) ( )2
1

log
n

i i
i

H X p X p X
=

= −∑ . 1.34

  If we have two random systems (denoted by X and Y), then the joint 
entropy of these two systems can be defined by Eq. 1.35 (Wang and 
Zhai, 2017):
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1 1
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i i i i
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= =

= −∑∑ . 1.35

  Similarly, we can also compute the conditional entropy H(X |Y) by 
using Eq. 1.36 (Wang and Zhai, 2017):
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  where H(X |Y) is, in general, not equal to H(Y|X); while H(X) – H(X |Y) 
is always equal to H(Y) – H(Y|X).

  Since the mutual information can quantify the closeness degree of two 
random variables, suppose X and Y are discrete random variables, 
when it comes to measure the relevance of X and Y, we can further 
define the mutual information by using Eqs. 1.37–1.39 (Wang and 
Zhai, 2017; Michalowicz et al., 2014):

 I(X;Y) = H(X) – H(X |Y). 1.37

 I(X;Y) = H(Y) – H(Y|X). 1.38

 I(X;Y) = H(X) + H(Y) – H(XY). 1.39

 •	 Differential	 Entropy: The concept of entropy for continuous 
distribution is called differential entropy. Suppose X represents 
a continuous random variable with probability density function, 
denoted by pX(x), the differential entropy can be defined by Eq. 1.40 
(Michalowicz et al., 2014): 

 ( ) ( )( )2logX X X
S

h p x p x dx= −∫ . 1.40

  where S = {x|px(x) > 0} denotes the support set of X. While the value of 
discrete entropy is always non-negative, differential entropy may take 
any value between ∞ and –∞. 

  For continuous random variables X and Y, their joint differential 
entropy, conditional differential entropy, and the mutual information 
can be further defined by Eqs. 1.41–1.43, respectively (Michalowicz et 
al., 2014): 
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	 •	 Maximum	 Entropy	 Estimation	 Method: Assume that the density 
function pX(x) is unknown, but we know a number of related 
constraints, such as mean and variance. The maximum entropy 
estimate of the unknown probability density function is the one that 
can maximize the entropy, subject to given constraints (Theodoridis 
and Koutroumbas, 2009). 

1.2.5.2 Entropy Measurement for Uncertainty—Fuzzy Entropy 
A fuzzy set’s entropy is to calculate the degree of fuzziness on such fuzzy 
set (Zadeh, 1968). Among different measures, one measure considered 
by Zadeh (1968) can be expressed by using Eq. 1.44 (Zimmermann, 1992; 
Wang and Zhai, 2017):

 ( ) ( ) 2
1

log
n

i i iA
i

H A x p pµ
=

= −∑ 

 . 1.44

In addition, another fuzzy entropy considered by De Luca and Termini 
(1972) can be defined by using Eq. 1.45 (Zimmermann, 1992; Wang and 
Zhai, 2017; De Luca and Termini, 1972):

 ( ) ( ) ( ) ( )( ) ( )( )2 2
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log 1 log 1
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i i i iA A A A
i

H A K x x x xµ µ µ µ
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 = − + − − ∑    

 . 1.45

where K represents a positive constant. 
Fuzzy entropy is quite different from the classical Shannon’s 

entropy (Jumarie, 1992). The former handles vagueness and ambiguity 
uncertainties, while the latter deals with randomness uncertainty (i.e., 
probabilistic). Typically, there are three types of fuzzy entropy, i.e., 
interval-valued fuzzy entropy, intuitionistic fuzzy entropy, and interval-
valued intuitionistic fuzzy entropy (Bustince and Burillo, 1996; Wei et al., 
2011; Zhang et al., 2014). Nowadays, those entropy measures have been 
utilized in dealing with fuzzy systems, such as image processing (Naidu 
et al., in press), fuzzy decision-making systems (Shi and Yuan, 2015), and 
fuzzy software testing (Kumar et al., 2012). 

1.2.5.3 Entropy Measurement for Uncertainty—Rough Entropy 
In order to get the a set’s knowledge incompleteness quantified, rough 
entropy was introduced by Beaubouef et al. (1998). In general, it can 
be formulated according to the uncertainty in granulation and the set’s 
definability (Sen and Pal, 2009). For an information system, denoted by  
S = (U, A) where X ⊆ U, rough entropy of X can be described by using  
Eq. 1.46 (Liang, 2011): 
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where pA(X) represents the rough degree of X. In a similar vein, rough 
entropy of A can be given by Eq. 1.47 (Liang, 2011). 
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The relationship between rough entropy and Shannon’s entropy can, 
thus, be defined by Eq. 1.48 (Liang, 2011):

 ( ) ( ) 2logrE A H A U+ = . 1.48

1.2.5.4 Similarity Measurement for Uncertainty—General Similarity 
Measure

The entropy measures are introduced in order to address how much 
uncertainty is associated with non-deterministic phenomena. Yet, what is 
the data certainty with respect to the deterministic data? In addition, some 
of the non-deterministic phenomena are expressed in natural language, 
e.g., pretty large, about 100 km, and quite close. Furthermore, human 
perception also has inherent uncertainty, which is different from other 
uncertainties, e.g., the degree of membership value, and group/interval 
number. In light of this observation, similarity measure was proposed 
as an alternative (Song et al., 2015; van Eck and Waltman, 2009; Candan 
and Li, 2001; Khorshidi and Nikfalazar, 2017). Its prominent application 
domains include pattern recognition (Chen and Chang, 2015; Papacostas 
et al., 2013; Zeng et al., 2016; Chen et al., 2016; Nguyen, 2016) and decision 
making (Ye, 2014; Li et al., 2015; Chen, 2015c; Luukka, 2011).

In fact, the study of similarity is an established domain in various 
research branches of mathematics, such as topology and approximation 
theory. Typically, a distance function is used in order to identify the 
similarity between two instances (e.g., patterns, images, and reasoning) 
quantified. 

1.2.5.5 Similarity Measurement for Uncertainty—Fuzzy Similarity 
Measure 

Literally, fuzzy similarity measure refers to the calculation of the similarity 
(or proximity) relationships between fuzzy sets. Zadeh (1971) offered a 
more formal definition, in which fuzzy similarity measure is considered as 
the classical equivalence notion’s multivalued generalization. 
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Typically, the methods of fuzzy similarity measures can be broadly 
categorised into three groups: Set-theoretic, proximity-based and logic-
based (Cross and Sudkamp, 2002). Like the fuzzy entropy, fuzzy similarity 
measure also includes the following three variants: 
	 •	 Similarity	 measure	 for	 interval-valued	 fuzzy	 sets	 (Chen	 and	 Chen,	

2009; Ye and Du, in press; Chen, 2015c), 
	 •	 Similarity	measure	for	 intuitionistic	 fuzzy	sets	(Li	and	Cheng,	2002;	

Liang and Shi, 2003; Farhadinia, 2014; Baccour et al., 2013), and 
	 •	 Similarity	 measure	 for	 interval-valued	 intuitionistic	 fuzzy	 sets	 (Xu,	

2007). 

Interested readers should refer to (Pappis and Karacapilidis, 1993; 
Xing, 2017b; Wang, 1997; Zwick et al., 1987) for further discussions. In 
fact, fuzzy similarity measure can be regarded as the dual concept of fuzzy 
entropy. Accordingly, the relationships between similarity measures and 
entropy measures have been intensively investigated in the literature (Li 
et al., 2012; Zhang et al., 2014; Zeng and Li, 2006; Deng et al., 2015; Zeng 
and Guo, 2008).

1.3 Smart Computing

Recently, the First International Conference on Smart Computing and 
Informatics was successfully held on 3–4 March 2017 with the aim of 
offering a unified platform that can incorporate multi-disciplinary and 
the state-of-the-art research in terms of designing smart computing and 
information systems. According to (Satapathy et al., 2018), the theme of 
the conference was to focus on a diverse variety of innovation schemes 
in system science, artificial intelligence, and sustainable development 
that can be applied to offer solutions to various problems encountered in 
society, environment and industries. The scope of smart computing and 
informatics also consists of the deployment of emerging computational 
and knowledge transfer methodologies, as well as optimization techniques 
in distinct disciplines across science, technology, and engineering. 

With the engineered system (e.g., financial system) becoming more and 
more advanced and sophisticated, the associated analysis and synthesis 
tasks are ever-increasingly demanding. This book borrows the ‘smart 
computing’ concept from the literature for the purpose of addressing 
these issues. Essentially, smart computing comprises different tools 
developed in other disciplines such as system theory, optimization theory, 
and computational intelligence. In principle, the process of analysing and 
synthesizing complex systems via smart computing concept includes: 
(1) Obtaining each possible action or feasible solution through analysis, 
(2) Evaluating the obtained outcomes against a certain scale of value or 
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desirability, and (3) Determining the most desired action or optimum 
solution according to the selected criterion of a system’s decision-based 
goals. This process can be illustrated in Fig. 1.4.

Figure	1.4: Process of smart computing for optimal decision-making.

The development of smart computing has experienced several stages, 
ranging from the static optimization approaches that are unfortunately 
incapable of handling or guaranteeing global solutions, through the recent 
multiple objective optimization methodologies (e.g., particle swarm 
optimization and ant colony optimization), to the emerging adaptive 
dynamic stochastic techniques. The evolutionary footprint of smart 
computing is depicted in Fig. 1.5.

Figure	1.5: Smart computing evolution paradigm.
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Regarding the exemplary examples under each category, interested 
readers should refer to (Suri, 2017; Hageback, 2017; Fister and Fister Jr, 
2015; Indiveri, 2015; Polkowski and Artiemjew, 2015; Xing and Gao, 2014b; 
Chen et al., 2007; McGeoch, 2014; Yu, 2017; Hager and Wellein, 2011; 
Jeannot and Žilinskas, 2014; Xing, 2017a; Hurwitz et al., 2015; Marinescu, 
2013; Xing et al., 2013b; Xing and Gao, 2014m; Xing and Gao, 2014x; Xing 
and Gao, 2014q; Xing and Marwala, 2018l; Xing, 2015c; Xing, 2014; Xing 
and Gao, 2014aa; Xing and Gao, 2014bb; Xing and Gao, 2014c; Xing and 
Gao, 2014cc; Xing and Gao, 2014d; Xing and Gao, 2014dd; Xing and Gao, 
2014e; Xing and Gao, 2014f; Xing and Gao, 2014g; Xing and Gao, 2014h; 
Xing and Gao, 2014i; Xing and Gao, 2014j; Xing and Gao, 2014k; Xing and 
Gao, 2014l; Xing and Gao, 2014n; Xing and Gao, 2014o; Xing and Gao, 
2014p; Xing and Gao, 2014r; Xing and Gao, 2014s; Xing and Gao, 2014t; 
Xing and Gao, 2014u; Xing and Gao, 2014v; Xing and Gao, 2014w; Xing 
and Gao, 2014y; Xing and Gao, 2014z; Xing and Gao, 2014ff; Marwala, 
2007b; Marwala, 2013a; Marwala and Lagazio, 2011a; Marwala, 2010a; 
Marwala, 2012a; Marwala, 2014a).

1.4 Data Analytics

Imagine you stroll through any neighbourhood today, when you approach 
a building, the front door can slide open automatically. When you enter 
an empty room, a light can flick on by itself. When you jump up and 
down, a thermostat can trigger the air conditioner that compensates for 
the gradually warming air around you. When you roam at will, various 
motion-sensing surveillance cameras can slowly turn to keep you tracked. 
All these automated electromechanical gadgets work tedious (or even 
dangerous) jobs that were once performed by human beings. 

At the heart of this story is the emergence of data and the corresponding 
analytics as the means to facilitate our lives. In fact, today’s data is being 
produced so fast that the whole volume tends to be very large. According 
to one estimation, by the end of 2020 the total amount of data in the world 
annually will exceed 44 trillion gigabytes (IBM, 2014). Undoubtedly, data 
brings many benefits to us. However, in the meantime, there are many 
challenges associated with handling and making the sense of those data 
(Marwala, 2009; Marwala, 2015). 

The basic idea behind data analytics is to collect raw data and convert 
them into meaningful information that is essential for making decisions. 
Unfortunately, extracting valuable information from the raw data is 
not as easy as it may sound. It is difficult to know where to start with 
the handling of data. To address these challenges, individuals and/or 
companies must resort to the process of data analytics, which typically 
includes three phases: Pre-processing, analytics, and post-processing 
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(Myatt and Johnson, 2014; Verbeke et al., 2018; EMC Education Services, 
2015). A detailed overview of this process is depicted in Fig. 1.6.

Figure	1.6: General data analytics scheme.

1.4.1  Define Critical Problem and Generate Working Plan 
In the first step, a clear definition of the critical problem being addressed 
needs to be obtained, together with the generation of a feasible working 
plan. To achieve this, one has to take the following factors into account 
(Myatt and Johnson, 2014): (1) Outline possible deliverables, (2) Identify 
success causes, (3) Understand useful resources and their constraints, 
(4) Assemble a suitable team, (5) Come up with a working plan, and (6) 
Perform an analysis regarding costs and benefits.

1.4.2 Identify Data Sources 
After defining the problem, we need to identify the data sources in order 
to support the project. In reality, there are numerous sources with various 
representations and formats (related to the core problem) that must be 
figured out. The golden rule here is that the more data there is available, 
the better the results. 

1.4.3 Select and Explore the Data 
Before a formal data analysis is conducted, a preliminary selection and 
exploration process towards the collected datasets should be considered. 
The objective of this step is to help the data analytics teams familiarize 
themselves with the interested data, i.e., how many cases are covered in 
the data table, what variables are included and what general hypotheses 
the data are likely to support. 
	 •	 Structured	Data	Selection	and	Exploration: It is commonly agreed 

that the selection and exploration of structured data can be performed 
in a relatively controlled manner, e.g., accessing and combining 
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data tables, and summarizing the data by using some descriptive/
inferential statistics. The main objective is to improve the reliability of 
data, thereby ensuring that no substantial different values should be 
obtained from the repetition of measurement.
1) First: The starting point is normally a data table (or called dataset), 

which consists of the measured or collected data values expressed 
in the form of numbers or texts. One of the most common ways to 
deal with de-normalized source data tables is to merge them into a 
spreadsheet, where the raw data is outlined as rows and columns, 
denoting observations and variables, respectively. Based on scale, 
we can classify variables into four classes: Nominal-, ordinal-, 
interval-, and ratio-scale. Meanwhile, according to the roles 
they play in the mathematical models, variables can be broadly 
categorized into two categories, i.e., independent variables and 
response variables (Myatt and Johnson, 2014).

2) Second: Next, in order to get some initial insights with respect to 
a specific characteristic, we need to summarize the data. Among 
others, the most commonly reported characteristics for a particular 
variable include central tendencies, frequency distribution 
patterns, and something about the real-world estimations 
deduced from sub-sets of data (e.g., initial hypotheses to test the 
data) (Myatt and Johnson, 2014). To this end, several descriptive 
and/or inferential statistical approaches are needed, such as 
mode, median, mean, variances, standard deviations, confidence 
intervals, and hypothesis tests. Further discussions on the topic 
can be found in (Rumsey, 2010; Weiss, 2017; Ott and Longnecker, 
2016). In addition, to make data better visualized (e.g., showing 
trends, outliers, and relationships among data variables), several 
graphical methods (e.g., bar charts, scatter plots, and box plots) 
can be employed (Myatt and Johnson, 2014). 

	 •	 Unstructured	 Data	 Selection	 and	 Exploration: According to IBM’s 
estimation (IBM, 2014), there are about 2.5 quintillion bytes of data 
being generated every day and among them, 90% are contributed by 
new technologies (e.g., smart phones and Internet of things) which are 
characterized by features such as semi-structured, quasi-structured 
and unstructured (Dobre and Xhafa, 2014; Sivarajah et al., 2017; 
Wessler, 2013). In general, the structured data format enjoys good 
predictability, high machine readability and may often be utilized as 
input to many other applications; while for semi-structured, quasi-
structured and/or unstructured type of data, no data tables are ready 
to be used (Zhai and Massung, 2016; EMC Education Services, 2015), 
thus the operation involving computationally generated different 
attributes relevant to the target problem needs to be performed 


