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Introduction

This book targets the design of a renderer. A renderer is a very complex software
module that requires attention to a lot of details. The requirements and attention
also vary greatly on different hardware platforms. The chapters here cover various
aspects of engine design, such as quality and optimization, in addition to high-
level architecture.

The chapter “Multi-Fragment Effects on the GPU Using Bucket Sort” covers a
technique on how to render order-independent transparency by utilizing a bucket
sort system. Traditionally, pixels or fragments are processed in depth order rather
than rasterization order and modern GPUs are optimized to capture the nearest
and furthest fragment per pixel in each geometry pass. Depth peeling offers
a simple and robust solution by peeling off one layer per pass, but rasterizing
depth data multiple times leads to performance bottlenecks. Newer approaches
like the K-buffer approach capture fragments in a single pass but suffer from
read-modify-write (RMW hazards). This chapter presents a method that utilizes
a bucket array per pixel that is allocated using MRT as the storage. It is more
efficient than classical depth peeling while offering good visual results.

The next chapter, “Parallelized Light Pre-Pass Rendering with the Cell
Broadband Engine,” demonstrates the efficient implementation of a light pre-
pass / deferred lighting engine on the PS3 platform. Distributing the workload
of rendering many lights over the SPE and GPU requires some intricate knowledge
of the platform and software engineering skills that are covered in the chapter.

In Stephen Hill and Daniel Collin’s chapter “Practical, Dynamic Visibility
for Games,” the authors introduce methods for determining per-object visibility,
taking into account occlusion by other objects. The chapter provides invaluable
and inspiring experience from published AAA titles, showing excellent gains that
are otherwise lost without this system.

Next, Eric Penner presents “Shader Amortization Using Pixel Quad Message
Passing.” In this chapter, he analyzes one particular aspect of modern pro-
grammable hardware: the pixel derivative instructions and pixel quad rasteriza-
tion. The chapter identifies a new level at which optimizations can be performed,
and applies this method to achieve results such as 4×4 percentage closer filtering
(PCF) using only one texture fetch, and 2 × 2 bilateral up-sampling using only
one or two texture fetches.

xiii
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On the topic of crowd rendering, the chapter “A Rendering Pipeline for Real-
Time Crowds,” by Benjamı́n Hernández and Isaac Rudomin, describes a detailed
system for simulating and rendering large numbers of different characters on the
GPU, making use of optimizations such as culling and LOD-selection to improve
performance of the system.

Pascal Gautron, Jean-Eudes Marvie, and Gaël Sourimant present us with the
chapter, “Z3 Culling,” in which the authors suggest a novel method to optimize
depth testing over the Z-buffer algorithm. The new technique adds two “depth
buffers” to keep the early-Z culling optimization even on objects drawn with
states that prevent early-Z culling (such as alpha testing).

Next, Dzmitry Malyshau brings his experience of designing a quaternion-based
3D engine in his chapter, “Quaternion-Based Rendering Pipeline.” Malyshau
shows the benefits of using quaternions in place of transformation matrices in
various steps of the rendering pipeline based on his experience of a real-world
3D-engine implementation.

In the chapter, “Implementing a Directionally Adaptive Edge AA Filter Using
DirectX 11,” Matthew Johnson improves upon the box antialiasing filter using a
postprocessing technique that calculates a best fit gradient line along the direction
of candidate primitive edges to construct a filter that gives a better representation
of edge information in the scene, and thus higher quality antialiased edges.

Donald Revie describes the high-level architecture of a 3D engine in the chap-
ter “Designing a Data-Driven Renderer.” The design aims to bridge the gap
between the logical simulation at the core of most game engines and the strictly
ordered stream of commands required to render a frame through a graphics API.
The solution focuses on providing a flexible data-driven foundation on which to
build a rendering pipeline, making minimal assumptions about the exact render-
ing style used.

Next, Donald Revie brings his experience of engine design in his chapter “An
Aspect-Based Engine Architecture.” Aspect-based engines apply the principles
of component design and object-oriented programming (OOP) on an engine level
by constructing the engine using modules. Such architecture is well suited to
small or distributed teams who cannot afford to establish a dedicated structure
to design and manage all the elements of their engine but would still like to
take advantage of the benefits that developing their own technology provides.
The highly modular nature allows for changes in development direction or the
accommodation of multiple projects with widely varying requirements.

In the chapter “Kinect Programming with Direct3D 11,” Jason Zink provides
a walkthrough into this emerging technology by explaining the hardware and
software aspects of the Kinect device. The chapter seeks to provide the theoretical
underpinnings needed to use the visual and skeletal data streams of the Kinect,
and it also provides practical methods for processing and using this data with the
Direct3D 11 API. In addition, it explores how this data can be used in real-time
rendering scenarios to provide novel interaction systems.
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Homam Bahnassi and Wessam Bahnassi present a description of a full pipeline
for implementing structural damage to characters and other environmental ob-
jects in the chapter “A Pipeline for Authored Structural Damage.” The chapter
covers details for a full pipeline from mesh authoring to displaying pixels on the
screen, with qualities including artist-friendliness, efficiency, and flexibility.

Next, Peter Sikachev, Vladimir Egorov, and Sergey Makeev share their expe-
rience using quaternions in an MMORPG game engine. Their chapter, “Quater-
nions Revisited,” illustrates the use of quaternions for multiple purposes in or-
der to replace bulky 3 × 3 rotation and tangent space matrices throughout the
entire engine, most notably affecting aspects such as normal mapping, generic
transforms, instancing, skinning, and morph targets. The chapter shows the
performance and memory savings attributable to the authors’ findings.

Fabrice Robinet, Rémi Arnaud, Tony Parisi, and Patrick Cozzi present the
chapter “glTF: Designing an Open-Standard Runtime Asset Format.” This chap-
ter introduces work by the COLLADA Working Group in the Khronos Group to
provide a bridge between interchange asset formats and the OpenGL-based run-
time graphics APIs (e.g., WebGL and OpenGL ES). The design of the glTF
open-standard transmission-format is described, along with open-source content
pipeline tools involved in converting COLLADA to glTF and REST-based cloud
services.

Bartosz Chodorowski and Wojciech Sterna present the chapter “Managing
Transformations in Hierarchy,” which provides a study on this basic 3D engine
component. In addition to presenting the theory, it describes and addresses some
of the issues found in common implementations of the transformation hierarchy
system. It also describes how to achieve some useful operations within this system
such as re-parenting nodes and global positioning.

Holger Gruen examines the benefits of a block-wise linear memory layout for
binary 3D grids in the chapter “Block-Wise Linear Binary Grids for Fast Ray-
Casting Operations.” This memory layout allows mapping a number of volumet-
ric intersection algorithms to binary AND operations. Bulk-testing a subportion of
the voxel grid against a volumetric stencil becomes possible. The chapter presents
various use cases for this memory layout optimization.

Michael Delva, Julien Hamaide, and Ramses Ladlani present the chapter
“Semantic-Based Shader Generation Using Shader Shaker.” This chapter of-
fers one solution for developing and efficiently maintaining shader permutations
across multiple target platforms. The proposed technique produces shaders auto-
matically from a set of handwritten code fragments, each responsible for a single
feature. This particular version of the proven divide-and-conquer methodology
differs in the way the fragments are being linked together by using a path-finding
algorithm to compute a complete data flow through shader fragments from the
initial vertex attributes to the final pixel shader output.

Shannon Woods, Nicolas Capens, Jamie Madill, and Geoff Lang present the
chapter “ANGLE: Bringing OpenGL ES to the Desktop.” ANGLE is a portable,
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open-source, hardware-accelerated implementation of OpenGL ES 2.0 used by
software like Google Chrome. The chapter provides a close insight on the Di-
rect3D 11 backend implementation of ANGLE along with how certain challenges
were handled, in addition to recommended practices for application developers
using ANGLE.

Homam and Wessam Bahnassi describe a new real-time particle simulation
method that works by capturing simulation results from DCC tools and then
replaying them in real time on the GPU at a low cost while maintaining the
flexibility of adding interactive elements to those simulations. Their technique
“Interactive Cinematic Particles” has been applied successfully in the game Hyper
Void, which runs at 60 fps even on the Playstation 3 console.

Krzysztof Narkowicz presents the chapter “Real-Time BC6H Compression on
GPU.” The chapter describes a simple real-time BC6H compression algorithm,
one which can be implemented on GPU entirely with practical performance fig-
ures. Such a technique can be very useful for optimizing rendering of dynamic
HDR textures such as environment cubemaps.

The next chapter by Gustavo Bastos Nunes is “A 3D Visualization Tool Used
for Test Automation in the Forza Series.” The tool introduced automatically
analyzes a mesh for bad holes and normal data and gives the manual tester an
easy semantic view of what are likely to be bugs and what are by-design data.
The tool was used during the entire production cycle of Forza Motorsport 5 and
Forza: Horizon 2 by Turn 10 Studios and Playground Games, saving several
hundred hours of manual testing and increasing trust in shipping the game with
collision meshes in a perfect state.

Finally, Takahiro Harada presents the chapter “Semi-Static Load Balancing
for Low-Latency Ray Tracing on Heterogeneous Multiple GPUs,” which describes
a low-latency ray tracing system for multiple GPUs with nonuniform compute
powers. To realize the goal, a semi-static load balancing method is proposed that
uses rendering statistics of the previous frame to compute work distribution for
the next frame. The proposed method does not assume uniform sampling density
on the framebuffer, thus it is applicable for a problem with an irregular sampling
pattern. The method is not only applicable for a multi-GPU environment, but it
can be used to distribute compute workload on GPUs and a CPU as well.
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Example programs and source code to accompany some of the chapters are avail-
able on the CRC Press website: go to https://www.crcpress.com/9780815390756
and click on the “Downloads” tab.

The directory structure follows the book structure by using the chapter num-
bers as the name of the subdirectory.

General System Requirements

The material presented in this book was originally published between 2010 and
2016, and the most recent developments have the following system requirements:

• The DirectX June 2010 SDK (the latest SDK is installed with Visual Studio
2012).

• DirectX 11 or DirectX 12 capable GPUs are required to run the examples.
The chapter will mention the exact requirement.

• The OS should be Microsoft Windows 10, following the requirement of
DirectX 11 or 12 capable GPUs.

• Visual Studio C++ 2012 (some examples might require older versions).

• 2GB RAM or more.

• The latest GPU driver.

xvii
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Multi-Fragment Effects on the
GPU Using Bucket Sort

Meng-Cheng Huang, Fang Liu, Xue-Hui Liu,
and En-Hua Wu

1.1 Introduction

Efficient rendering of multi-fragment effects has long been a great challenge in

computer graphics, which always require to process fragments in depth order

rather than rasterization order. The major problem is that modern GPUs are

optimized only to capture the nearest or furthest fragment per pixel each ge-

ometry pass. The classical depth peeling algorithm [Mammen 89, Everitt 01]

provides a simple but robust solution by peeling off one layer per pass, but multi-

rasterizations will lead to performance bottleneck for large-scale scene with high

complexity. The k-buffer [Bavoil et al. 07, Liu et al. 06] captures k fragments in

a single pass but suffers from serious read-modify-write(RMW) hazards.

This chapter presents a fast approximation method for efficient rendering of

multi-fragment effects via bucket sort on GPU. In particular, a bucket array of

size K is allocated per pixel location using MRT as storage, and the depth range

of each pixel is consequently divided into K subintervals. During rasterization,

fragments within the kth (k = 0, 1, · · · ,K − 1) subinterval will be routed to the

kth bucket by a bucket sort. Collisions will happen when multiple fragments are

routed to the same bucket, which can be alleviated by multi-pass approach or an

adaptive scheme. Our algorithm shows great speedup to the classical depth peel-

ing with visually faithful results, especially for large scenes with high complexity.

1
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1.2 Design of Bucket Array

The bucket array can be constructed as a fixed size buffer per pixel location

in GPU memory, thus the MRT buffers turn out to be a natural candidate.

Since modern GPUs can afford at most eight MRTs with internal pixel format of

GL RGBA32F ARB, the size of our bucket array can reach up to 32, which is often

enough for most common applications.

The default REPLACE blending of the MRTs will introduce two problems. First,

when multiple fragments are trying to update the bucket array on the same pixel

location concurrently, the number of the operations on that location and the

order in which they occur is undefined, and only one of them is guaranteed to

succeed. Thus they will produce unpredictable results under concurrent writes.

Second, modern GPUs have not yet supported independent update of arbitrary

channels of MRT buffers. The update of a specific channel of the MRT buffers

will result in all the remaining channels being overwritten by the default value

zero simultaneously. As a result, the whole bucket array will hold at most one

depth value at any time.

Fortunately, these problems can be solved via the 32-bit floating-point MAX/

MIN blending operation, which is available on recent commodity NVIDIA GeForce

8 or its ATI equivalents. Take the MAX blending operation as an example, which

performs a comparison between the source and the destination values of each

channel of MRTs, and keeps the greater one of each pair. This atomic operation

guarantees all the read, modify, write operations to the same pixel location will be

serialized and performed without interference from each other, thus completely

avoiding the first problem of RMW hazards.

The second problem can be solved by initializing each bucket of the

bucket array to zero. When updating a certain bucket, if the original value in the

bucket is zero, the update will always succeed since the normalized depth values

are always greater than or equal to zero; otherwise, the greater one will survive

the comparison. As for other buckets, we implicitly update them simultaneously

by the default value zero so that their original values are always greater and can

be kept unchanged. When multiple fragments are routed to the same bucket,

i.e., a collision happens, the MAX blending operation assures that the maximum

depth value will win all the tests and finally stay in the bucket. MIN blending

is performed in a similar way except initializing each bucket and explicitly up-

dating the other buckets by one. The MAX/MIN blending operation enables us

to update a specific bucket independently, and guarantees correct results free of

RMW hazards. Since the default update value for each channel of the MRT is

zero, we prefer to utilize MAX blending in our implementation for simplicity.
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1.3 The Algorithm

The depth value of each fragment is normalized into a range [0,1], but for most

pixels, the geometry only occupies a small subrange. Thus a bounding box

or a coarse visual hull can be first rendered to approximate the depth range

[zNear, zFar] per pixel in the same way as dual depth peeling [Bavoil and My-

ers 08]. During rasterization, the consecutive buckets per pixel are bind into 16

pairs and the depth range are divided into 16 corresponding subintervals uni-

formly. We then perform the dual depth peeling within each subinterval concur-

rently. For a fragment with depth value df , the corresponding bucket pair index

k can be computed as follows:

k = floor

(
16 × (df − zNear)

zFar − zNear

)
.

Then the kth pair of buckets will be updated by (1−df , df ) and the rest pairs by

(0, 0). When the first geometry pass is over, the minimum and maximum depth

values within the kth subinterval can be obtained from the kth pair of buckets,

i.e.,

dmin1
k = 1 − max

df∈[dk,dk+1)
(1 − df ), dmax1

k = max
df∈[dk,dk+1)

(df ).

It is obvious that these fragments in the consecutive depth intervals are in correct

depth ordering:

dmin1
0 ≤ dmax1

0 ≤ dmin1
1 ≤ dmax1

1 ≤ · · · ≤ dmin1
15 ≤ dmax1

15.

If there is no fragment within the kth subinterval, both dmax1
k and dmin1

k will

remain the initial value 0 and can be omitted. While if there is only one frag-

ment within the kth subinterval, dmax1
k and dmin1

k will be equal and one of

them can be eliminated. In a following fullscreen pass, the bucket array will be

sequentially accessed as eight input textures to retrieve the sorted fragments for

post-processing.

For applications that need other fragment attributes, taking order indepen-

dent transparency as an example, we can pack the RGBA8 color into a 32-bit

positive floating-point using the Cg function pack 4ubyte. The alpha channel will

be halved and mapped to the highest byte to ensure the positivity of the packed

floating-point. We then divide the depth range into 32 subintervals correspond-

ing to the 32 buckets and capture the packed colors instead of the depth values

in a similar way. In post-processing, we can unpack the floating-point colors to

RGBA8 and double the alpha channel for blending.



4 1. Multi-Fragment Effects on the GPU Using Bucket Sort

1.4 Multi-Pass Approach

The algorithm turns out to be a good approximation for uniformly distributed

scenes with few collisions. But for non-uniform ones, collisions will happen more

frequently especially on the silhouette or details of the model with noticeable

artifacts. The algorithm can be extended to a multi-pass approach for better

results. In the second geometry pass, we allocate a new bucket array for each

pixel and the bucket array captured in the first pass will be taken as eight input

textures. For a fragment within the kth subinterval, if its depth value df satisfies

condition df ≥ dmax1
k or df ≤ dmin1

k, it must have been captured in the previous

pass, thus can be simply discarded. When the second pass is over, the second

minimal and maximum depth values dmin2
k and dmax2

k in the kth subinterval can

be retrieved from the kth pair of buckets similarly. The depth values captured in

these two passes are naturally in correct ordering:

dmin1
0 ≤ dmin2

0 ≤ dmax2
0 ≤ dmax1

0 ≤ dmin1
1 ≤ dmin2

1 ≤ dmax2
1,

≤ dmax1
1 ≤ · · · ≤ dmin1

15 ≤ dmin2
15 ≤ dmax2

15 ≤ dmax1
15.

During post-processing, both bucket arrays can be passed to the pixel shader as

input textures and accessed for rendering of multi-fragment effects.

Theoretically, we can obtain accurate results by enabling the occlusion query

and looping in the same way until all the fragments have been captured. However,

the sparse layout of depth values in the bucket arrays will lead to memory ex-

haustion especially for non-uniform scenes and high screen resolutions. Artifacts

may also arise due to the inconsistency between the packed attribute ordering and

the correct depth ordering. We instead propose a more robust scheme to allevi-

ate these problems at the cost of an additional geometry pass, namely adaptive

bucket depth peeling. The details will be described as follows.

1.5 The Adaptive Scheme

The uniform division of the depth range may result in some buckets overloaded

while the rest idle for non-uniform scenes. Ideally, we prefer to adapt the division

of subintervals to the distribution of the fragments per pixel, so that there is

only one fragment falling into each subinterval. The one-to-one correspondence

between fragments and subintervals will assure only one fragment for each bucket,

thus can avoid the collisions.

Inspired by the image histogram equalization, we define a depth histogram

as an auxiliary array with each entry indicating the number of fragments falling

into the corresponding depth subinterval, thus is a probability distribution of the

geometry. We allocate eight MRT buffers with pixel format GL RGBA32UI EXT
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as our depth histogram. Considering each channel of the MRT as a vector of

32 bits, the depth histogram can be cast to a bit array of size 4*8*32=1024,

with each bit as a binary counter for fragments. Meanwhile, the depth range is

divided into 1024 corresponding subintervals: [dk, dk+1), dk = zNear+ k
1024 (zFar−

zNear), k = 0, 1, · · · , 1023. The depth range is always on a magnitude of 10−1, so

the subintervals will be on a magnitude of 10−4, which are often small enough to

distinguish almost any two close layers. As a result, there is at most one fragment

within each subinterval on most occasions, thus a binary counter for each entry

of the depth histogram will be sufficient most of the time.

Similarly, we begin by approximating the depth range per pixel by render-

ing the bounding box of the scene in an initial pass. In the first geometry

pass, an incoming fragment within the kth subinterval will set the kth bit of

the depth histogram to one using the OpenGL’s 32-bit logic operation GR OR.

After the first pass, each bit of the histogram will indicate the presence of frag-

ments in that subinterval or not. A simplified example with depth complexity

N = 8 (the maximum number of layers of the scene at all viewing angles) is

Figure 1.1. An example of adaptive bucket depth peeling. The red arrows indicate the
operations in the first geometry pass and the blue arrows indicate the operations in the
second geometry pass.
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void main( float4 wpos : WPOS ,

uniform samplerRECT depthRange ,

// Output histogram as eight MRTs.

out unsigned int4 color0 : COLOR0 ,

out unsigned int4 color1 : COLOR1 ,

......

out unsigned int4 color7 : COLOR7 )

{

float z = wpos.z;

float4 range = texRECT(depthRange , wpos.xy);

float zNear = 1 - range.x;

float zFar = range.y;

int k = floor( 1024 * ( z-zNear )/(zFar -zNear) );

int i = k >> 5;

int j = k & 0x1F;

unsigned int SetBit = 0x80000000 >> j;

if(i==0) color0 = unsigned int4(SetBit ,0,0,0);

else if(i==1) color0 = unsigned int4(0,SetBit ,0 ,0);

else if(i==2) color0 = unsigned int4(0,0,SetBit ,0);

......

else if(i==30) color7 = unsigned int4(0,0,SetBit ,0);

else color7 = unsigned int4(0,0,0,SetBit );

}

Listing 1.1. The pixel shader in the first geometry pass.

shown in Figure 1.1. Suppose at a certain pixel location, the eye ray intersects

the scene generating four fragments f0 − f3 within four different subintervals

[d2, d3], [d8, d9], [d9, d10], [d1022, d1023]. They will set the 3rd, 9th, 10th, and the

1023rd bit of the depth histogram to 1 in the first geometry pass. The code

snippet Listing 1.1 shows the pixel shader in the first geometry pass.

The depth histogram is equalized in a following fullscreen pass. For scenes

with depth complexity N less than 32, the histogram is passed into the pixel

shader as eight input textures, and new floating-point MRT buffers with N chan-

nels will be allocated as an equalized histogram for output. We can consecutively

obtain the jth bit of the ith (i, j = 0, 1, 2, · · · , 31) channel of the input depth

histogram. If the bit is zero, it means that there is no fragment falling into the

kth (k = i∗32+j) depth subinterval, thus can be simply skipped over; otherwise,

there is at least one fragment within that subinterval, so we store the correspond-

ing upper bound dk+1 consecutively into the equalized histogram for output. As

for the example in Figure 1.1, two MRT buffers with eight channels will be al-
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located as the equalized histogram, and the upper bounds d3, d9, d10, and d1023
will be stored into it in the equalization pass. The code snippet Listing 1.2 shows

the pixel shader in the histogram equalization pass.

void main( float4 wpos : WPOS ,

uniform samplerRECT depthRange ,

// Input histogram as eight textures.

usamplerRECT fbcolor0 ,

usamplerRECT fbcolor1 ,

......

usamplerRECT fbcolor7 ,

// Output equalized histogram as eight MRTs.

out float4 color0 : COLOR0 ,

out float4 color1 : COLOR1 ,

......

out float4 color7 : COLOR7 )

{

float4 range = texRECT(depthRange , wpos.xy);

float zFar = range.y; if( zFar == 0 ) discard;

float zNear = 1 - range.x;

unsigned int4 fb0 = texRECT(fbcolor0 , wpos.xy);

unsigned int4 fb1 = texRECT(fbcolor0 , wpos.xy);

......

unsigned int4 fb7 = texRECT(fbcolor7 , wpos.xy);

// Discard pixels that are not rendered.

if( any( fb0|fb1|fb2|fb3|fb4|fb5|fb6|fb7 ) == 0 ) discard;

unsigned int Histogram [32];

Histogram [0]= fb0.x; Histogram [1]= fb0.y;

Histogram [2]= fb0.z; Histogram [3]= fb0.w;

......

Histogram [30]= fb7.z; Histogram [31]= fb7.w;

float EquHis [32]; // Equalized histogram

float coeff = (zFar - zNear) / 1024.0;

int HisIndex = 1, EquHisIndex= 0;

for(int i = 0; i < 32; i++, HisIndex += 32)

{

unsigned int remainded = Histogram[i];

// End the inner loop when the remained bits are all zero.

for(int k = HisIndex; remainded != 0; k++, remainded <<= 1)

{

if(remainded >= 0x80000000)

{

// The $k$th bit of the histogram has been set to one ,

// so store the upper bound of the $k$th subinterval.

EquHis[EquHisIndex ++] = k * coeff + zNear;

}

}
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}

color0 = float4(EquHis [0], EquHis [1], EquHis [2], EquHis [3]);

color1 = float4(EquHis [4], EquHis [5], EquHis [6], EquHis [7]);

......

color7 = float4(EquHis [28], EquHis [29], EquHis [30], EquHis [31]);

}

Listing 1.2. The pixel shader of the histogram equalization pass.

We perform the bucket sort in the second geometry pass. The equalized his-

togram is passed to the pixel shader as input textures and a new bucket array of

the same size N is allocated as output for each pixel. The upper bounds in the in-

put equalized histogram will redivide the depth range into non-uniform subinter-

vals with almost one-to-one correspondence between fragments and subintervals.

As a result, there will be only one fragment falling into each bucket on most oc-

casions; thus collisions can be reduced substantially. During rasterization, each

incoming fragment with a depth value df will search the input equalized his-

togram (denoted as EquHis for short). If it belongs to the kth subinterval, i.e.,

it satisfies conditions df ≥ EquHis[k − 1] and df < EquHis[k], it will be routed

to the kth bucket. In the end, the fragments are consecutively stored in the out-

put bucket array, so our adaptive scheme will be memory efficient. The bucket

array will then be passed to the fragment shader of a fullscreen deferred shading

pass as textures for post-processing. As for our example in Figure 1.1, the upper

bounds in the equalized histogram redivide the depth range into 4 subintervals:

[0, d3), [d3, d9), [d9, d10), [d10, d1023]. Fragment f0 is within the first subinterval

[0, d3), so it is routed to the first bucket. Fragment f1 is within the second subin-

terval [d3, d9), and is routed to the second bucket, and so on. After the second

geometry pass, all of the four fragments are stored in the bucket array for further

applications.

This adaptive scheme can reduce the collisions substantially, but collisions

might still happen when two close layers of the model generate two fragments

with a distance less than 10−4, especially on the silhouette or details of the model.

These fragments are routed to the same bucket and merged into one layer, thus

resulting in artifacts. In practice, we can further reduce collisions by binding

the buckets into pairs and performing dual depth peeling within each non-empty

subinterval. Theoretically, the multi-pass approach can be resorted to for better

results.

For applications that need multiple fragment attributes, the one-to-one cor-

respondence between fragments and subintervals can assure the attributes con-

sistency, so we can bind consecutive buckets into groups and update each group

by the attributes simultaneously.
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For scenes with more than 32 layers, we can handle the remaining layers by

scanning over the remaining part of the histogram in a new fullscreen pass to

get another batch of 32 nonzero bits. We then equalize it and pass the equalized

histogram to the next geometry pass to route the fragments between layer 32

and 64 into corresponding buckets in the same way, and so on, until all the

fragments have been captured.

1.6 Applications

Many multi-fragment effects can benefit from our algorithm and gain high per-

formance in comparison to the previous methods. To demonstrate the results,

we took several typical ones as examples. Frame rates are measured at 512× 512

resolution on an NVIDIA 8800 GTX graphics card with driver 175.16 and Intel

Duo Core 2.4G Hz with 3GB memory.

Figure 1.2. Transparent effect on Stanford Dragon (871K triangles). The left top is
rendered by BDP (256fps); the right top is by BDP2 (128fps); the left bottom is by
ADP (106fps); and the right bottom is the ground truth generated by DP (24fps).
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1.6.1 Transparent Effect

Figure 1.2 shows the order independent transparent effect on Stanford Dragon

rendered by our bucket depth peeling with a single pass (BDP) and its two-pass

extension (BDP2) and the adaptive bucket depth peeling (ADP) in comparison

to the classical depth peeling (DP). The differences between the results of our

algorithm and the ground truth genertated by DP are visually unnoticeable, so

one pass would be a good approximation when performance is more crucial.

1.6.2 Translucent Effect

The translucent effect can be rendered accounting only for absorption and ig-

noring reflection [NVIDIA 05]. The ambient term Ia can be computed using

Figure 1.3. Translucent effect on the Buddha model (1,087K triangles). The first
column is rendered by BDP (212fps); the second and third are by BDP2 and ADP
(106fps); the third is by the k-buffer of 16 layers without modifications (183fps); and
the last one is the ground truth generated by DP (20fps).
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Beer-Lambert’s law: Ia = exp(−σtl), where σ is the absorption coefficient and l

is the accumulated distance that light travels through the material, which can be

approximated by accumulating the thickness between every two successive layers

of the model per pixel. As a result, the translucent effect is quite sensitive to

errors. Figure 1.3 shows the translucent effect on the Buddha model using differ-

ent methods. Experimental results show that for k-buffer the RMW hazards are

more severe on the side views with more layers, while in contrast, the single pass

BDP provides a good approximation and the two-pass approach or the adaptive

scheme is preferred for better visual quality.

1.6.3 Fresnel’s Effect

Taking into account the attenuation of rays, Schlick’s approximation can be used

for fast calculation of Fresnel’s transmittance of each fragment: Ft = 1 − (1 −
cos(θ))5. Figure 1.4 shows the results of Fresnel’s effect rendered by ADP. In

the second geometry pass, we transform the normal into eye space and pack it

into a positive floating-point using the Cg function pack 4byte. The buckets

are bind into pairs and each pair will be updated by the packed normal and the

depth value simultaneously. In the deferred shading pass, the ambient term of

each pixel can be obtained using Beer-Lambert’s law. For a certain pixel, the eye

direction can be restored by transforming the fragment position from the screen

space back to the the eye space. We then unpack the normal of each fragment and

perform a dot product with the eye direction to get the incident angle θ on that

Figure 1.4. Fresnel’s effect on the Buddha model (1,087K triangles) rendered by ADP.



12 1. Multi-Fragment Effects on the GPU Using Bucket Sort

surface. In the end, Fresnel’s transmittance of each fragment can be computed

and multiplied together as the final attenuating factor to the ambient term on

that pixel location. The code snippet Listing 1.3 shows the pixel shader for the

deferred shading of the Fresnel’s effect.

More applications such as constructive solid geometry (CSG), depth of field,

shadow maps, refraction, and volume rendering will also benefit from our algo-

rithms greatly in a similar way.

// Restore the eye -space position of the fragment from the depth

// value.

float3 TexToEye(float2 pixelCoord , float eye_z ,float2 focusLen)

{

pixelCoord.xy -= float2 (0.5, 0.5);

pixelCoord.xy /= float2 (0.5, 0.5);

float2 eye_xy = (pixelCoord.xy / focusLen) * eye_z;

return float3(eye_xy , eye_z );

}

void main( float4 pixleCoordinate : TEXCOORD0 ,

float4 wpos : WPOS ,

uniform float2 focusLength ,// Focus length of camera

// Input bucket array as eight textures.

uniform samplerRECT fbcolor0 ,

uniform samplerRECT fbcolor1 ,

......

uniform samplerRECT fbcolor7 ,

out float4 color : COLOR)

{

float4 fb0 = texRECT(fbcolor0 , wpos.xy);

float4 fb1 = texRECT(fbcolor1 , wpos.xy);

......

float4 fb7 = texRECT(fbcolor7 , wpos.xy);

unsigned int DepthNormal [32]; // Depth value and packed normal

DepthNormal [0]= fb0.x; DepthNormal [1]= fb0.y;

DepthNormal [2]= fb0.z; DepthNormal [3]= fb0.w;

......

DepthNormal [30]= fb7.z; DepthNormal [31]= fb7.w;

float thickness = 0;

float x = -1;

float coeff = 1.0; //The final attenuating factor

for(int i=0;i<32;i+=2)

{

if( DepthNormal[i] > 0 )

{

float z = DepthNormal[i];

thickness += x*z; // Accumulating the thickness

x = -x;

// Unpack eye -space normal N.
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float3 N = normalize(unpack_4byte(DepthNormal[i+1]). xyz);

// Compute eye -space position P and incident direction I.

float3 P = TexToEye(pixleCoordinate.xy,z,focusLength );

float3 I = normalize(P);

float cosTheta = abs(dot(I,N)); // Incident angle

coeff *= (1-pow(1.0- cosTheta ,5)); // Fresnel ’s transmittance

}

}

if( thickness == 0 ) discard;

float4 jade = float4 (0.14 ,0.8 ,0.11 ,1.0) * 8;

color = exp(-30* thickness) * jade * coeff;

}

Listing 1.3. The pixel shader for rendering of Fresnel’s effect.

1.7 Conclusions

This chapter presents a novel framework of bucket depth peeling, the first linear

algorithm for rendering multi-fragment effects via bucket sort on GPU. Experi-

ment results show great speedup to classical depth peeling with faithful results,

especially for large-scale scenes with high depth complexity.
The main disadvantages are the approximate nature of the algorithm and the

large memory overhead. In the future, we are interested in forming more efficient
schemes to reduce collisions further more. In addition, the memory problem
might be alleviated by composing the fragments within each bucket per pass,
and finally composing all the buckets after done.
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L. D. Comba, and Cláudio T. Silva. “Multi-Fragment Effects on the GPU
Using the k-Buffer.” In Proceedings of the 2007 Symposium on Interactive
3D Graphics and Games, pp. 97–104, 2007.

[Everitt 01] Cass Everitt. “Interactive Order-Independent Transparency.” Tech-
nical report, NVIDIA Corporation, 2001. Available at http://developer.
nvidia.com/object/Interactive Order Transparency.html.

[Liu et al. 06] Bao-Quan Liu, Li-Yi Wei, and Ying-Qing Xu. “Multi-Layer Depth
Peeling via Fragment Sort.” Technical report, Microsoft Research Asia, 2006.

http://developer.nvidia.com/object/Interactive Order Transparency.html
http://developer.nvidia.com/object/Interactive Order Transparency.html


14 1. Multi-Fragment Effects on the GPU Using Bucket Sort

[Mammen 89] Abraham Mammen. “Transparency and Antialiasing Algorithms
Implemented with the Virtual Pixel Maps Technique.” IEEE Computer
Graphics and Applications 9:4 (1989), 43–55.

[NVIDIA 05] NVIDIA. “GPU Programming Exposed: the Naked Truth Behind
NVIDIA’s Demos.” Technical report, NVIDIA Corporation, 2005.



2

Parallelized Light Pre-Pass
Rendering with the Cell

Broadband Engine
Steven Tovey and Stephen McAuley

The light pre-pass renderer [Engel 08, Engel 09, Engel 09a] is becoming an ever

more popular choice of rendering architecture for modern real-time applications

that have extensive dynamic lighting requirements. In this chapter we introduce

and describe techniques that can be used to accelerate the real-time lighting

of an arbitrary three-dimensional scene on the Cell Broadband Engine without

adding any additional frames of latency to the target application. The techniques

described in this chapter were developed for the forthcoming PLAYSTATION3

version of Blur (see Figure 2.1), slated for release in 2010.1

2.1 Introduction

As GPUs have become more powerful, people have sought to use them for pur-

poses other than graphics. This has opened an area of research called GPGPU

(General Purpose GPU), which even major graphics card manufacturers are em-

bracing. For example, all NVIDIA GeForce GPUs now support PhysX technology,

which enables physics calculations to be performed on the GPU.

However, much less has been made of the opposite phenomenon—with the in-

crease in speed and number of CPUs in a system, it is becoming feasible on some

architectures to move certain graphics calculations from the GPU back onto the

1“PlayStation,” “PLAYSTATION,” and the “PS” family logo are registered trademarks,
and “Cell Broadband Engine” is a trademark of Sony Computer Entertainment Inc. The “Blu-
ray Disc” and “Blu-ray Disc” logos are trademarks. Screenshots of Blur appear courtesy of
Activision Blizzard Inc. and Bizarre Creations Ltd.
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CPU. Forthcoming hardware such as Intel’s Larrabee even combines both compo-

nents [Seiler 08], which will certainly lead to CPU-based approaches to previously

GPU-only problems becoming more popular. Today, one such architecture is the

PLAYSTATION3 where the powerful Cell Broadband Engine was designed from

the outset to support the GPU in its processing activities [Shippy 09].

This paper expands upon the work of Swoboda in [Swoboda 09] and explains

how the Cell Broadband Engine can be used to calculate lighting within the

context of a light pre-pass rendering engine.

2.2 Light Pre-Pass Rendering

A recent problem in computer graphics has been how to construct a renderer that

can handle many dynamic lights in a scene. Traditional forward rendering does

not perform well with multiple lights. For example, if a pixel shader is written

for up to four point lights, then only four point lights can be drawn (and no

spotlights). We could either increase the number of pixel shader combinations to

handle as many cases as possible, or we could render the geometry multiple times,

once more for each additional light. Neither of these solutions is desirable as they

increase the number of state changes and draw calls to uncontrollable levels.

A popular solution to this problem is to use a deferred renderer, which uses

an idea first introduced in [Deering 88]. Instead of writing out fully lit pixels

from the pixel shader, we instead write out information about the surface into

a G-Buffer, which would include depth, normal, and material information. An

example G-buffer format is shown in Figure 2.2.

Figure 2.1. A screenshot from the forthcoming Blur.
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Figure 2.2. An example G-Buffer format from a deferred rendering engine (after [Va-
lient 07]).

We then additively blend the lights into the scene, using the information

provided in the G-Buffer. Thus many lights can be rendered, without additional

geometry cost or shader permutations. In addition, by rendering closed volumes

for each light, we can ensure that only calculations for pixels directly affected

by a light are carried out. However, with deferred rendering, all materials must

use the same lighting equation, and can only vary by the properties stored in

the G-Buffer. There are also huge memory bandwidth costs to rendering to (and

reading from) so many buffers, which increases with MSAA.

In order to solve these problems, Engel suggested the light pre-pass renderer,

first online in [Engel 08] and then later published in [Engel 09], although a sim-

ilar idea had been recently used in games such as Uncharted: Drake’s Fortune

[Balestra 08]. Instead of rendering out the entire G-Buffer, the light pre-pass ren-

derer stores depth and normals in one or two render targets. The lighting phase

is then performed, with the properties of all lights accumulated into a lighting

buffer. The scene is then rendered for a second time, sampling the lighting buffer

to determine the lighting on that pixel.

Using a Blinn-Phong lighting model means that the red, green, and blue chan-

nels of the lighting buffer store the diffuse calculation, while we can fit a specular

term in the alpha channel, the details of which are described in [Engel 09]. This

means that unlike a deferred renderer, different materials can handle the light-

ing values differently. This increased flexibility, combined with reduced memory

bandwidth costs, has seen the light pre-pass renderer quickly increase in popular-

ity and is now in use in many recent games on a variety of hardware platforms.

Yet the deferred renderer and light pre-pass renderer share the fact that light-

ing is performed in image space, and as such requires little to no rasterization.

This makes the lighting pass an ideal candidate to move from the GPU back onto

the CPU. Swoboda first demonstrated this method with a deferred renderer on

the PLAYSTATION3 and Cell Broadband Engine in [Swoboda 09], and now we

expand upon his work and apply similar techniques to the light pre-pass renderer.
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Figure 2.3. The PLAYSTATION3 architecture. (Illustration after [Möller 08,
Perthuis 06]).

2.3 The PLAYSTATION3 and the CBE

Sony Computer Entertainment released the PLAYSTATION3 in 2006. It contains

the Cell Broadband Engine, which was developed jointly by Sony Computer En-

tertainment, Toshiba Inc., and IBM Corp. [Shippy 09, Möller 08, IBM 08]. The

cell is the central processing unit (CPU) of the PLAYSTATION3. In addition

to the cell chip, the PLAYSTATION3 also has a GPU, the reality synthesizer

(RSX). The RSX was developed by NVIDIA Corporation and is essentially a

modified GeForce7800 [Möller 08]. A high-level view of the architecture can be

found in Figure 2.3.

Inside the Cell chip one can find two distinctly different types of processor.

There is the PowerPC Processing Element (PPE) and eight2 pure SIMD proces-

sors [Möller 08] known as Synergistic Processing Elements (SPEs) all of which

are connected by a high speed, token-ring bus known as the element interconnect

bus (EIB; see Figure 2.4). The techniques introduced and described in this paper

are chiefly concerned with the usage of the SPEs and as such further discussion

of the PPE has been omitted.

One interesting quirk of the SPE is that it does not directly have access to

the main address space, and instead has its own internal memory known as the

local store. The local store on current implementations of the CBE is 256KB in

size. The memory is unified, untranslatable, and unprotected [Bader 07, IBM 08]

and must contain the SPE’s program code, call stack, and any data that it may

happen to be processing. To load or store data from or to the main address

space a programmer must explicitly use the memory flow controller (MFC). Each

SPE has its own MFC which is capable of queuing up to sixteen Direct Memory

Accesses (DMAs) [IBM 08].

2One of the eight SPEs is locked out to increase chip yield and another is reserved by the
Sony’s Cell OS. Applications running on the PLAYSTATION3 actually have six SPEs to take
advantage of.
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Figure 2.4. The Cell Broadband Engine (after [IBM 08]).

As the SPU ISA operates primarily on SIMD vector operands, both fixed-point

and floating-point [IBM 09], it is very well equipped to process large quantities of

vectorised data. It has a very large register file (4KB) which is helpful to hide the

latencies of pipelined and unrolled loops, and while the local store is relatively

small in capacity, it is usually sufficient to allow a programmer is able to hide the

large latency of main memory accesses3 through effective multi-buffering. Code

that is to efficiently execute on the SPE should be written to play to the SPE’s

strengths.

A more in-depth discussion of the PLAYSTATION3 and the Cell Broadband

Engine is out of the scope of this paper, interested readers can refer to IBM’s

website for more in depth details about the Cell chip [IBM 09], and Möller, Haines

and Hoffman describe some of the PLAYSTATION3 architecture in [Möller 08].

2.4 GPU/SPE Synchronization

As the number of processors in our target platforms becomes ever greater, the

need to automate the scheduling of work being carried out by these processing

elements also becomes greater. This has continued to the point where game

development teams now build their games and technology around the concept of

the job scheduler [Capcom 06]. Our engine is no exception to this trend and the

solution we propose for GPU/SPE interprocessor communication relies on close

integration with such technology. It is for this reason we believe our solution to

be a robust and viable solution to the problem of RSX/SPE communication that

many others can easily foster into their existing scheduling frameworks.

3As one might expect, linear access patterns fair significantly better than random access.
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Figure 2.5. The RSX and SPE communication. The RSX writes a 128 byte value when
the normal/depth buffer is available for processing. The SPEs poll the same location
to know when to begin their work.

In order to perform fragment shading on the SPE without introducing un-

wanted latency into the rendering pipeline there needs to be a certain amount

of interprocessor communication between the GPU and SPEs. This section dis-

cusses the approach we used in achieving this synchronization.

Each SPE has several memory mapped I/O (MMIO) registers it can use for

interprocessor communication with other SPEs or the PPU. However, these are

unfortunately not trivially writable from the RSX. An alternative approach is

required in order to have the RSX signal the SPEs that the rendering of the

normal/depth buffer is complete and that they can now begin their work, without

having the desired SPE programs spinning on all six of the available SPEs wasting

valuable processing time.

When adding a job to our job scheduler it is optionally given an address in

RSX-mapped memory upon which the job is dependent. When the scheduler is

pulling the next job from the job queue it polls this address to ensure that it is

written to a known value by the RSX. If this is not the case, the job is skipped

and the next one fetched from the queue and processed, if the location in memory

is written however, then our job is free to run. This dependency is visualized in

Figure 2.5.

The problem of ensuring that the GPU waits for the light buffer to be available

from the SPEs is solved by a technique that is well-known to PLAYSTATION3

developers, but unfortunately we cannot disclose it here; interested developers

can consult Sony’s official development support website.

It is desirable for the RSX to continue doing useful work in parallel with

the SPEs performing the lighting calculations. In Blur we are fortunate in that

we have a number of additional views that are rendered which do not rely on

the lighting buffer, for example, planar reflections and a rear-view mirror (in


