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PREFACE 

With this book we try to reach several more-or-less unattainable goals, namely: 

• To comprise in a single book all the most important achievements of Monte Carlo 
calculations for solving neutron and photon transport problems; 

• To present a book which discusses the same topics in the three levels known from the 
literature; 

• To write a book which gives useful information for both beginners and experienced 
readers; 

• To list both the well-established old techniques and the newest findings; 
• To fulfill the functions of both a textbook and a handbook; and last but not least, 
• To formulate everything in a manner that is understandable (and, perhaps, sometimes 

even enjoyable) for the interested readers. 

These are the goals . . . The judgement whether we were at least partly successful in 
reaching them is for the readers. 

Ivan Lux 
Laszlo Koblinger 
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Chapter 1 

SCOPE AND STRUCTURE OF THE BOOK 

Monte Carlo methods are being efficiently used for solving widely varying types of 
physical problems. Although Monte Carlo is trivially a straightforward tool to stimulate 
random processes, it can also be used for solving problems that have no immediate prob-
abilistic interpretation. 

The first inventions of the method go back very far in history,' however, extensive 
applications came along with the construction and use of modern digital computers, i.e., 
from the late 1940s. 

Historically, the Monte Carlo method has first been successfully used to solve particle 
transport problems and this is still one of the areas of most extensive use.' 

The general method was originally developed by Fermi, Ulam, and von Neumann,' the 
first comprehensive review was published by Kahn,' and the high quality of this early 
contribution cannot be better evaluated than by stating that people interested in the use of 
Monte Carlo are well advised even nowadays to start with Kahn's report. 

The first book written exclusively for photon and neutron random walk simulations was 
published by Cashwell and Everett,' a newer review' — also from the Los Alamos group 
— appeared in 1975. 

Neutron transport is discussed with higher mathematical apparatus by Spanier and Gel-
bard.9  

There are many books describing the particle transport in general — in these books, 
Monte Carlo is studied as one of the tools, generally in a separate chapter.'"' On the other 
hand, many reviews dealing with diverse aspects of Monte Carlo contain chapters devoted 
to particle transport. 5 '7'8  

The novelty of this book — and therefore the justification of its edition — can be briefly 
summarized in two points. 

First, the latest textbook9  deals only with specific problems and since it was published 
more than 20 years ago, it obviously does not cover the developments of the last decade. 
The newest methods, the rigorous and unified theory of which is the product of the last 6 
or 7 years, can only be found in journal articles. In our judgment, these new methods 
(variance reducing techniques, efficiency analyses, combined scoring schemes, etc.) have 
now reached the point where they can be discussed in a precise and comprehensive way, 
in such a manner that is necessary for a textbook. 

Secondly, the present situation in the relevant literature is the following: There exist 
several introductory books or chapters'." which describe the simplest direct simulation 
procedures. Other reviews1".' already discuss several more advanced methods, however, 
such complicated though generally the most efficient techniques are only briefly mentioned, 
and not all of them at all. For the present users of Monte Carlo there might seem to be a 
gap between the level of the existing books and the much more refined description of the 
newest methods in the journal papers. 

This book aims to constitute a bridge over the gaps of the different levels. We do hope 
that this treatise in a single book at successively deeper levels, will satisfy an existing 
demand. 

The structure of the book is planned to coincide with the above-mentioned purpose. 
After an Introduction (Chapter 2) describing the basic sampling processes and precisely 

defining the later used quantities, Chapter 3 deals with the heuristically obvious methods: 
the one-to-one numerical simulation of the original physical processes and those modifi-
cations which are easily understood without rigorous and tiring mathematical derivations. 

In Chapter 4 the integral form of the Boltzmann Equation is the starting point. Here, 
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by a little bit more mathematics, the introduction of several more advanced techniques (such 
as the adjoint treatment) becomes possible. 

In Chapter 5 the whole treatment is based on the moment equations. The investigation 
of the equations that govern various moments of the Monte Carlo estimates are extremely 
helpful for increasing the efficiency of the methods. 

Special games (correlated, perturbation and differential Monte Carlo; criticality and flux 
at a point calculations) are discussed in Chapter 6 — based on the mathematical treatment 
introduced in the previous part. 

The last Chapter is devoted to optimization of the techniques (splitting, path stretching, 
Russian roulette, etc.) widely used in deep-penetration Monte Carlo calculations. 

Our intention was to compile the book in such a way that readers whose interest extends 
just to the depth of the first or to the second level, are provided with a concise and easily 
intelligible treatise of all the necessary tools for preparing Monte Carlo programs and solving 
problems. Though the real novelties are necessarily subjects of the later Chapters, we do 
hope that the reader can find new approaches, or descriptions of well-known techniques 
from a new, and hopefully interesting, point of view even in the first Chapters. 

We also hope that the understanding of the first level treatment will trigger out the 
curiosity of many readers to start to study the second and even further, the third level. 

Readers of the last three Chapters become familiar with the complete set of the most 
sophisticated weapons of the Monte Carlo arsenal. 

An essential feature of the book is that the same nomenclature and a unified notation 
is used throughout the different Chapters, wherever possible. 

Cross references between the various levels (particularly from higher levels to lower 
ones) make it obvious for the reader that the different approaches represent different pro-
jections of the very same physical phenomena. 

References are given at the end of each Chapter, therefore, several basic sources are 
listed more than once in the book. From our point of view, such repetitions are not unnec-
essary, but rather make the reader's orientation easier. 

It is clear for us that the inclusion of all the knowledge accumulated during 4 decades 
by a lot of scientists is impossible. Apart from the limitation mentioned already in the title 
of the book, i.e., that we deal only with transport of neutrons and photons, the most serious 
stipulation is that with very few exceptions, the whole treatment is restricted to time-
independent, or steady-state problems. There are also many minor points not treated, for 
example we do not discuss the construction and tests of the basic random number generators. 
In these cases the reader is directed to the literature. 

REFERENCES 

1. Carter, L. L. and Cashwell, E. D., Particle-Transport Simulation with the Monte Carlo Method. ERDA 
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4. Halton, J. H., A Retrospective and Prospective Survey of the Monte Carlo Method, SIAM Rev., 12, 1, 
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Chapter 2 

INTRODUCTION 

When we started to think about writing a book on Monte Carlo techniques for neutron 
and photon transport calculations it was clear that in the very first sentence a nice definition 
of the Monte Carlo method itself should be given. This task seemed to be very easy: just 
have a look on the earlier textbooks and copy the well-established definition! However, after 
reading more and more introductions it became more and more hopeless to find this sentence. 
Instead of exact definitions we have rather found illustrations and examples. 

In the book, which is the most sophisticated earlier description of the Monte Carlo 
applications on neutron transport," the authors, J. Spanier and E. M. Gelbard frankly confess 
that they found "it difficult to construct a definition which characterizes the Monte Carlo 
method accurately, completely and concisely". Their next sentence, however, already catches 
a basic feature of Monte Carlo, namely that "this method, in all its forms, involves some 
sort of random sampling process". And, really, random is the only word obligatorily 
contained in all definitions. 

Anyhow, after listing our excuses, we cannot avoid giving our definition, which may 
not be accurate, complete, and concise, but can help the reader begin to have a rough image 
about the method. 

In all applications of the Monte Carlo method a stochastic model is constructed in which 
the expected value of a certain random variable (or of a combination of several variables) 
is equivalent to the value of a physical quantity to be determined. This expected value is 
then estimated by the average of several independent samples representing the random 
variable introduced above. For the construction of the series of independent samples, random 
numbers following the distributions of the variable to be estimated are used. 

There are two requirements imbedded in this definition, viz.: 
First, a stochastic model adequate to the problem has to be constructed. Secondly, in 

the actual Monte Carlo calculations, the user has to be able to select random numbers with 
various distributions. 

There are basically two different ways to construct a stochastic model. In certain cases 
— as in particle transport, the topics of this book — the physical process is per se stochastic 
and thus the most straightforward Monte Carlo calculation is simply a numerical (or computer) 
simulation of the real physical events. Such direct simulations are called analog Monte Carlo 
games. When the computational process deviates more or less from the one-to-one simulation 
of the actual physical process, the game is called nonanalog. The distinction is not always 
clear. Several authors tolerate small deviations and still call simulations slightly differing 
from the straightforward one analog. (In our book at the beginning the strictness of this 
distinction has no importance, however, from Chapter 5 on, the term "analog" is used 
exclusively for the really analog simulations.) 

The other extreme case is when the stochastic model is constructed artificially, just for 
solving deterministic equations by Monte Carlo. 

In the simulation of a physically stochastic process, two expected values: that of the 
physical quantity and that of the average of random samples, must equal one another. Both 
expected values have their own variances, which may have no direct relationship. In the 
correct solution of a deterministic problem, the expected value of the random sample average 
equals the real value of the quantity in question which is not accompanied by any statistical 
uncertainty. 

Though the distinction between the two cases described above is clear, in transport 
calculations one can seldom — or rather never — find algorithms or computer codes based 
purely on one-to-one simulation of the physical processes, and — on the other hand — in 
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the procedures derived for solving the deterministic equations of the expected values (gen-
erally collision densities), one can still find many resemblances to a particle's random walk. 
Here we have again attained one of the aims of this book: we should like to illustrate with 
as many examples as possible that heuristically introduced plausible modifications of the 
simple simulations lead to techniques, the validity of which can be mathematically correctly 
proved by analysis of the deterministic transport equations. The opposite statement is not 
always true, there are special procedures which are hardly understandable heuristically. 

An immediate question arises: why are refined nonanalog methods worked out, if we 
know that an accurate, analog simulation of the real physical process does not necessarily 
serve us with correct results? The answer is very simple: to save computer time. In the 
physical experiments millions of particles are usually emitted from the source and only a 
small fraction of them is observed by a receptor (the word receptor is used hereafter in a 
most general sense, it may be, e.g., a physical detector, a cell in a reactor core, an organ 
in a human body). In the computation — even on the fastest machine — the simulations of 
all the interreactions of so many particles is impossible within reasonable running times. 
The use of less source particles may result in a very small number (none, in the extreme) 
of them reaching the receptor, thus causing very poor statistics, i.e., nonconfident results. 
This answer directly involves a precondition against the nonanalog techniques: they are worth 
application only if they decrease the computer time as compared to that of the analog 
simulation, assuming that the statistical uncertainties are the same in the two cases. Needless 
to say the first precondition is that the result, the expected value of the physical quantity to 
be determined in any accepted nonanalog technique, must be the same as in the physical 
reality or in the direct simulation of the process. 

The second requirement for building Monte Carlo games is the ability to select the 
proper random numbers. 

This is the topic of the next sections. 

I. SAMPLING PROBABILITY DISTRIBUTIONS 

In most practical cases, sampling of any probability distribution is based on sampling 
one or more random number(s) uniformly distributed (or equidistributed) over the interval 
(0,1) (hereafter: random number) and on a transformation of it (them). 

The probability density function (PDF) of the random numbers is: 

the expected value is: 

P(t) = o': 
if 0 	< 1 
otherwise 

MO =  p(0 d = 

and the variance is: 

D(t) = {M( 2) 	[M( )l2}1/2  

Since 

Iwo  l = fo t2p(odt = 



D(0 = 12 
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thus, 

As it is proved° — and is so plausible that we do not think it necessary to repeat this 
derivation — an n digit binary random number is constructed by just lining up n 0 or 1 
digits after the binary point. Since in any realization n is finite, these random numbers do 
not fill in continuously the (0,1) interval, the mathematically correct term for their distribution 
is "quasi-uniformly" distributed. 

There are two essentially different ways how one can obtain a random series of 0's and 
l's. 

The first way is the use of physical random number generators where the inherently 
random nature of a physical phenomenon is utilized. The generally used random processes 
are the radioactive decay and the electronic noise. Though there are several physical generators' 
constructed for use in Monte Carlo calculations, their application is disadvantageous for two 
reasons. Partly because they need continuous hardware maintenance, partly because due to 
the really random and therefore never repeated series they generate, the user cannot repeat 
a former run and thus the debugging of a program is cumbersome. 

Instead, the use of computational algorithms is practically unanimously preferred. These 
algorithms supply series of numbers which are determined by the generation formula, how-
ever, if a sequence of the so generated numbers passes the same randomness tests as the 
real, physical random numbers, one can use them in the same way; (in some works these 
artificially constructed random numbers are called pseudorandom numbers.) 

Many papers in the literature deal with the description of random number 
generators19,29,34,11,26,10,35 and with tests suggested to check the randomness.16,11,4,11,2,5,12 

Here, we do not go into detail, partly because the selection of the generator is strongly 
influenced by the type of computer, but assume that there is a carefully designed and tested 
generator at the user's disposal. 

Sampling from an arbitrary distribution can be realized by transformation of one or more 
random numbers uniformly distributed on (0,1). In the next subsections the most frequently 
used transformation methods are overviewed. 

Many special techniques are listed in the very early report of Kahn,15  in the Monte Carlo 
samplers of Everett and Cashwel1,7•8•9  or in the report of McGrath et al.27  

Procedures used exclusively in photon and neutron transport (e.g., for selecting energies 
of particles after collisions) are described in the appendices of Chapter 3. 

Before turning to the summary of the most common continuous selection procedures, 
let us start with the special case of sampling from a discrete distribution. The procedure is 
also heuristically obvious and is often met in conjunction with more sophisticated selection 
methods. 

Theorem 2.1 — Let p„ p2, . . . ,p„ be probabilities of the e„ e2.....; mutually 
exclusive events and assume that: 

E Pi = 1  
= 

For the selection of one of the discrete events let us first select a random number p equi-
distributed on (0,1). Then the event e, is selected if the inequality 

R-1 	P < 
	

(2.1) 

is fulfilled. 
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Proof. The proof of the selection rule is quite straightforward since the probability that the 
value of p is between 

E p, = 
and 13; 

J=1 

is just pi . 

For selecting a value of a continuous random variable, a number of techniques are 
described in the following section. We assume that the random variable has a probability 
density function so that 

13(0 0 	and 	flp(04 = 1 

A. THE INVERSE DISTRIBUTION METHOD 
Theorem 2.2 — If p(x) is the PDF of a variable x, a < x < b, then an x value determined 

by the relations 

p = P(x) =p(x) dx 
a 

X = 13- '(p) 
(2.2) 

falls with a frequency p(x)dx between x and x + dx, i.e. if p, (i = 1, 2, . . ,n) are 
independent random numbers then the x, = P- '(p) values are independent realizations of 
the x random variable. Shortly, we can say that xi's are selected from p(x).* 
Proof. Let us denote the probability that a selected x is less than xo  by P'(x < xo). Then 
from Equation (2.2) 

P'(x < xo) = P'(p < P(x0)) 

Now since p is equidistributed over (0,1): 

P'(x < xo) = P'(p < P(x0)) = P(xo) 

i.e., P(x) is really a cumulative distribution function (CDF) of x. 

fl 

If the exact solution of Equation (2.2) is complicated or even impossible (due to the 
complexity of the PDF) approximation of the PDF or iterative solution of Equation (2.2) 
can be used or, rather, another selection method is suggested. 

There are cases, when there is no difficulty in selecting x by Equation (2.2), but other 
techniques are faster. Examples will be given in Sections I.D. and I.E. 

* In a rigorous mathematical treatment, different symbols for the argument in the PDF and CDF and the actual 
values selected from them should be used, however, we hope, that the use of the same symbol hereafter does 
not lead to confusion, but rather simplifies the notation. 
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B. THE PROBABILITY MIXING METHOD 
Theorem 2.3 — If the PDF p(x) can be broken up to the sum of n non-negative functions: 

p(x) = E ivx), 	p;(x) 	0, 	a x 	b 

then sampling can be realized by a two-step procedure. First, the i-th term is selected with 
a probability 

p;  = 	p;(x) dx 
	

(2.3) 
a 

according to Equation (2.1): 

—1 

E 13; P. < E 
J=1 

then — by the use of a second random number — x, the actual realization is selected from 
the PDF of p,: 

	

P2 = P,(x) = —1 	1-5,() 
P. 

Proof. The probability that a selected x lies between x and x + dx is a sum of conditional 
probabilities: 

n 	i —1 

E P(E < P. < E pi) • P(x < p2  < x + dx) = 
= 	= 	 Jr= 

‘--,n 	

pi 

1 
L p;  • — p;(x)dx = E 0,(x) dx = p(x)dx 

This technique is easily extendable for cases where the p(x) PDF is expanded into an 
infinite series of terms. 

C. THE REJECTION TECHNIQUES 
Rejection techniques, proposed by Neumann' are widely used for producing inde- 

pendent samples when the solution of Equation (2.2) is extremely complicated. 
Theorem 2.4 — In the simplest form of the rejection technique we assume that p(x) is 

again a PDF of the variable x, a 	x 	b, and there is a positive finite number M, for 
which p(x) 	M (see Figure 2.1). 

Let a point he chosen randomly from the rectangle with a base of b-a and height of M. 
If the point selected falls below the graph of p (k) accept the abscissa as a sample, if not, 
reject it and try again. Thus, if p, and p2  are two independent random numbers, then 

x = a + p,(b — a) 

is accepted if and only if 

p2M p(x) 	 (2.4) 



M 

M1  

a b x 

Thus, 

if a < x < b 

0, 	elsewhere 

1 

b — a' 
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FIGURE 2.1. Illustration of the rejection technique. 

Proof. (Before we present the proof, it is worth noting that the correctness of the procedure 
is plausible from the graphical explanation in Figure 2.1.) 

The probability density function of x is the conditional density of x given that 

P2< p(x) 

The joint density of x and p, is 

, 	p(x)) 	P'(x < xo  < x + dx) 
P(x < xo  < x + dxip, < 	= 

P(P2 < Fc)) 

1 	f 
dx  

b 	.[P(")'" 
dP2 	

1/M = p(x) 

	

b— a a 	o 

Cl 

Two consequences are obvious: 

• the generation of at least two independent random numbers is necessary for obtaining 
one sample value, 

• the ratio of the successful first trials to all selections, i.e., the efficiency (E) of the 
procedure, is just the ratio of the area below the graph to that of the rectangle: 

f
abP(Odk 

E= 
(b — a)M (b — a)M 

1 	poo/m 

b — a Jo 	
dp, 	

p(x)/M 

1 
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It is easy to prove' by summing up the probabilities of accepting the sample after 
n = 1, 2 . . . trials that the average number of trials, 11 is 

1 
n 

E 

There are many different ways to improve the efficiency of the rejection procedure. 
Theorem 2.5 — More generally,' if one can write p(x) in the form 

p(x) = Cg(x)f(x) 
	

(2.5) 

where f(x) is also a PDF and C is chosen such that the 

0 g(x) 1 

inequality holds for a 	x 	b (i.e. Cg(x) is a majorant of p(x), see Figure 2.1), then the 
following procedure can be applied: 

• select an x value from f(x) 
• select a random number p 
• accept x if and only if 

p g(x) 

Proof. The conditional density (q) of x, given that p < g(x), is 

goo 
f(x) o  dp 

f(x)g(x)  
< g(x)] = 	  = Cf(x) g(x) 

dx f(x) f 

	

goo dp 
	f bd x f( x ) g(x) 

a 	 a 

In most practical cases the formulation (2.5) is reasonable if f(x) is a quite simple 
function, and for the selection of x from f(x) the inverse distribution method can be applied 
(using only one random number). 

The efficiency of the method is trivially' 

1 
E = —C  

For widely varying functions very often a step function is used for Cq(x) (the broken 
line in Figure 2.1), leading to the application of the different subintervals of the abscissa. 

Another efficiency-improving method is the combination of the rejection with other 
techniques. If the PDF is broken into terms as in Section I.B., rejection can be applied in 
sampling from any term. In the simplest case if 

p(x) % M, 	a x b 

P(x) = Pi(x) + 02(x) 
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equally probable 
intervals (x„x,..1) 

x midpoints (Ri) 

FIGURE 2.2. A sketch of the table lookup method. 

where 

131(x) ""=-= M1 

02(x) = p(x) — M1  

sampling from M, is straightforward and the efficiency of the rejection is increased to 

E — 
1 

(b — a)(M — 

Furthermore, the lower limit M, can also be set differently to different subintervals, 
thus further improving the efficiency. 

The actual measure, how far we can proceed in taking out simple parts of a complicated 
PDF depends partly on the computer time balance (how much time we gain by improving 
the rejection efficiency and how much we lose by setting more and more criteria). Moreover, 
there may be some programs where even the shape of the actual distribution changes during 
the computation and thus only very loose criteria can be set in advance. 

A generalization for the rejection technique for PDFs that can be expanded into McLaurin 
series is given by Lux,2° where an "iterative rejection" method is proposed in which —
roughly speaking — the g(x) and f(x) functions of Equation (2.5) are changed after each 
unsuccessful trial. 

D. THE TABLE LOOKUP METHOD 
One of the fastest, though trivially approximate, selection methods applicable for ar-

bitrary distribution is the table lookup method, where midpoints of equally probable intervals 
of the variable to be selected are picked up randomly from a table (Figure 2.2). 

The table here contains the x coordinates of the finite number midpoints from which an 
actual value is selected with equal probabilities. 

The accuracy of this method is improved by increasing the number of intervals (n), 
which in turn increases both the core requirement and the selection time. Another easy way 
for improvement is applied if the midpoints are not just the middle of the intervals: 

xi  = —
2 (xi+ 1  — xi) 
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but the most probable values: 

1  
— 	 p(x) dx 

xi±  — x;  

In case of complicated density functions the determination of the limits of the equal 
probability intervals themselves may be complicated and time consuming, however, one has 
to bear in mind that this task is to be solved only once for a given PDF. 

Another restriction is that the method cannot be applied directly to the distribution 
functions defined over an infinite domain since the tail of the distribution has to be truncated 
if a table of finite dimensions is used. There are several cases when this disadvantage can 
be overcome by tricky methods. A nice example was proposed by Frank-Kamenietzky 
(described in Reference 22) for the exponential distribution. 

Here, the PDF is 

p(x) = 

and samples can very easily be obtained by solution of the inverse distribution Equation 
(2.2),* 

x = P'(p) = 	 (2.6) 

however, the execution of logarithm is very time consuming. 
Instead, let us write the realization of x in the form 

x = k • ln2 — z 	 (2 . 7) 

where k > 0 and 0 < z 1n2. Let us select a random number p and determine a value k 
such that 

2 --k 	p 	2-(k -1- 1) 

It can be seen' that choosing k in this way the cumulative distribution function of z in 
Equation (2.7) reads 

P(z) = e' — 1 	0 < z < 1n2 

Since the random variable z is defined over a finite interval it can be selected by table 
lookup and the z value so selected along with the integer k value above determines the 
exponentially distributed random variable x according to Equation (2.7). 

An actual realization of the above procedure is detailed in Reference 22. 

E. SELECTION FROM POWER FUNCTIONS 

Let p(x) = (n + 1)x" 	0 	x < 1 	 (2.8) 

* Here, the term (l-p) derived from Equation 2.2 is replaced by p since both are equidistributed on (0,1). 
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thus the CDF is 

P(x) = f tp(x)dx = x"± 1  

i.e., the direct inverse distribution method can be applied, a random sample x is obtainable 
by Equation (2.2): 

p = x"' 
	x  = p l/(n+l) 

	
(2.9) 

This method is not fast enough in most computers since the execution of the ab operation 
is quite slow if b is not an integer. Therefore, if n is an integer, the following method can 
replace the execution of Equation (2.9). 

Theorem 2.6 — Let x (the sample) be the maximum of n+ 1 random numbers, then 
the x is a representative sample from Equation (2.8). 
Proof: The probability, that a random number p, is equal or less than xo  (0 	x1, 	1) is 
just xo. The probability that all random numbers from a set of n+ 1 independent element is 
less than xo  is 

P(Pi xo, P2 	x.,•••,Pn±i x0) = 
n+1 

H (pi 	xo) 
i = 
n+ 1 
fl 
11 xo  = xon+' 
i=i 

In the method proposed here, a set of n + 1 random numbers has to be generated. In 
most computers the generation of the elementary random numbers is much faster than the 
execution of Equation (2.7), however, especially for large values of n, it might be advised 
to check the actual computer times before the selection of one of the two procedures. 

If x is equidistributed on (a,b) then the transformation z = (x — a)/(b — a) should first 
be applied. 

F. SAMPLING FROM THE NORMAL DISTRIBUTION 
From the positive half of the Gaussian distribution, 

p(x) = 	; exp( — x2/2) 
	

(2.9) 

a simple rejection method is given in Reference 15: 

let: x' = — logy, 

y = — logp, 

accept x' if, and only if 

—
1 
(x' — 1)2 	y 

2 
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and give a random sign (by the use of a third random number) to x': 

x = s • x' 

+1, 	if p3 ,0.5 
s = 

— 1, 	if p, < 0.5 

The efficiency of this procedure is fairly high: 

E = 	I — 
Tr 

exp(— 1/2) = 0.76 

Approximate Gaussian PDF sampling can be realized by the use of the central limit 
theorem: according to which the sum of a large number of independent and identically 
distributed random variables (with finite variance) is asymptotically normally distributed. If 
the x, variables are uniformly distributed on (0,1), then their expected value is 

1 
a = —

2 

with a variance of 

1 
s = 	— 

V12 

then x = 	x, is asymptotically (n —> co) normally distributed with a residual expected 
value of 

a„ = an = —
2 

and a variance of 

sn  = Vn • s = 	
1 

Therefore, if samples from a normal distribution with a = 0, s = 1 (Equation 2.9) have 
to be generated then the 

/ P. — —2 

rule is to be applied, with n —> 00. In practice n = 4 . . . 8 is enough. 
Sobo132  proposes a fast method where five random numbers in Equation (2.10) are used 

and a squared term is added for decreasing the truncation error: the sample x is generated 
by 

x= 0.01 n(97 + n2) 

x = (2.10) 
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where 

[ P;-
2J ,=1 

The fastest procedure" which is completely accurate and does not need considerable 
storage was recommended by Marsaglia et a1.24  It works basically with the probability mixing 
method (see Section LB., of this Chapter). The normal distribution is composed of three 
terms where the first two have the major contributions and are very simple and easy to 
sample. Actually, in about 86% of the selections three, in a further 11% two random numbers 
have to be summed as in Equation (2.10) and only in less than 3% is a rather complicated 
algorithm used. 

The flow chart of this procedure is given in Figure 2.3. 
Many procedures for generating normally distributed random numbers are collected and 

compared in the paper of Ahrens and Dieter' and Kinderman and Ramage." 

G. EFFICIENT SELECTIONS FROM THE EXPONENTIAL DISTRIBUTION 
The simplest method for selecting random variables from the exponential distribution 

is to use the inverse solution, as given by Equation (2.6). A faster method was already 
described in Section I.D. Other rapid but generally large storage-requiring methods based 
also on the use of tables prepared in advance are elaborated by Marsaglia"'" and Ahrens 
and Dieter.' 

Von Neumann" suggested a simple rejection technique, the scheme of which is given 
in Figure 2.4. 

The efficiencies of the different selection methods are compared in Reference 1. 

H. THE USE OF THE FIRST DERIVATIVE OF THE PDF 
Lux' presented a special method that uses the first derivative of the density function 

to be sampled. The procedures suggested in his paper originate from two theorems, viz.: 
Theorem 2.7 — Let p(x) be a continuous PDF on (0,A) and let 

(i) p(x) = 0 	if x 	0 	or x> A 

(ii) 
dp(
dxx) - p

, 
 (x) be continuous on (0,A) 

(iii) 	g(y) = 1 - [ap(y) + p'(y)1{1 - exp[a(y - A)] 	0, 	if 0 < y < a (2.11) 

where ct is an arbitrary real number. Thus, g(y) is again a PDF and if q  is a sample from 
g(y) then 

= 	 - (e-a„  - e')p] 
	

(2.12) 

12 
n = 

is a sample from p(x). 
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where 

{--- x -.- A e —"/(e - " - e —A) 	if y, 
P(x) = 

0, 	 elsewhere 
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= 0  E  

V 
Select p, 

z = p, 

v 
Select p, 

= + I 

no 

yes 

!no 

x = 	+i 

end 

FIGURE 2.4. Flow chart for selecting x from the exponential distribution." 

Proof. 

10A 	

0 A a 
g(y)dy = 	— [ap(y) + p'(y)1{1 — exp[a — (y — A)11 dy 

A 

	

= 1 + 1 
	

1 

p(A) — J [p(y)ele'dy = 1 

	

a 	a
0  

i.e., g(y) is really a PDF. To get the density function p(x) of one has to use that 

f A 

Pc(x) = 	Pt(xly)pc(y)dy 

and 

py(y) = g(y) 
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After substitution and integration one gets 

pc(x) = p(x) 

o 

Theorem 2.8 — Let p(x) again be a PDF continuous for x > 0 and continuous from 
the right at x = 0 and let: 

(i) P(x) = 0, if x < 0 

(ii) p'(x) continuous, if x > 0 

(iii) g(y) =—
a 

[ap(y) + p1 (y)1(1 — ec`Y) % 0, if y %-0 

(iv) lira p(y)e" = 0 

where a is again an arbitrary real number. The g(y) defined in this way is again a PDF and 
if 1 is a sample from g(y) then 

1 
= -- ln[l — (1 — e-ern)p] 

a 

is a sample from p(x). 
The proof is analogous to that of Theorem 2.7. and is thus not detailed here. 
Several illustrative applications of the above theorems are given in the original paper 

of Lux,' here we call the attention of the reader to one only which fits to our special field: 
If in Theorem 2.7 a is set to unity and A tends to infinity, then from Equation (2.11) 

g(Y) = P(Y) + Po'(Y) 

and if g(y) is non-negative then according to Equation (2.12) 

= —1np + 1 

This selection procedure was first recommended by Mikhailov28  for sampling of the 
fission neutron spectrum and the Maxwell energy distribution. 

I. SELECTING RANDOM VECTORS 
Very often, a random vector of an n dimensional phase space (that is n coordinates of 

a random point) has to be selected. In the simplest cases the multidimensional probability 
distribution can be factorized into a product of one dimensional PDFs of mutually independent 
random variables. 

A simple example of it for n = 2 is the selection of points in a square: 
Here both and 1 are equidistributed on (0,1) and their representative values x and y 

can be set by the use of two successive random numbers: 

x = p, 

Y = P2 
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'2 4  

0 
	

1 

FIGURE 2.5. A random point in a square. 

FIGURE 2.6. Selection of a random unit vector in two dimensions. 

If the PDFs cannot be separated for the variables (i.e., the borders of the domain are 
complicated) generally only the rejection technique works. 

Let the n-dimensional domain — from which the samples are to be taken — be defined 
by the relation 

F( t ,kz,... fl) 0 

and a; 	b;  for i = 1, 2 . . . ,n then select x;'s with 

x;  = a;  + (b;  — ai)p;  

and accept the point (a l , a2, . . . a.) if and only if 

F(x„x2,...,xn) 	0 

J. SELECTING TWO- AND THREE-DIMENSIONAL RANDOM 
ORIENTATIONS 
There are practically no transport codes where there is no need for the generation of 

randomly oriented two- and/or three-dimensional unit vectors. 
In two dimensions, according to the notation in Figure 2.6, the connection between the 

Cartesian coordinates and the angle cp is 

= cosy 

1 
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and 

= sinp 

and pp is equidistributed in (0,27r). 
Thus, for the random selection of the two coordinates a quite straightforward method 

is given by: 

--= 27rp 

and 

y =-- cosp 

x = situp 	 (2.13) 

An alternate method was first suggested by von Neumann' where the circle is covered 
by a square. The procedure is as follows: 

2p, — 1 

P2 = 2P2 - 1 

except if 

+ 15; 	1 
	

(2.14) 

i.e., the (042) point lies within the circle. A simple normalization will give: 

x( = cos(p) = 
v + ij; 

y(= sing)) — P2 

The square roots in the denominators can be eliminated by the use of the double-angle 
formulae of trigonometry and the final procedure is: 

= 2P1 — 1  

P2 = 2p2  - 1 

except if: 

02  = Pi + Pig 1  

then 

x = —  

P, 
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and 

2P102 
02 (2.15) 

The efficiency is trivially the ratio of the circle to the square areas, i.e., 

7r 
E = 	0.785 

4 

Though the straightforward procedure (2.13) seems to be much simpler than (2.15), in 
most computers both the generation of random numbers and the execution of the other 
elementary operations of (2.12) are less time consuming than the evaluation of the sine and 
cosine of an angle. 

If not a unit vector, but rather a point from the circle area has to be selected then Equation 
(2.13) should be supplemented by 

r = max(p„p2) 

(since: p(r) = 2r dr) and x and y should be multiplied by r. 
In the rejection method Equation (2.14) gives directly the necessary coordinates (there 

is no need for normalization), thus its preference to the direct method in Equation (2.12) is 
even more obvious. 

In three dimension the coordinates of a random unit vector are31  

z = o.) 

x = V1 — co2  cosy 

y = V1 — co2  sing) 

where w is equidistributed on ( — 1,1) and cosy and sirup can be generated by one of the 
methods listed above. 

A point from inside of a sphere can again be selected by the rejection method, where 
the sphere is boxed in a cube. The efficiency here is the ratio of the sphere to the cube 
volumes: 

E = 
7r 
—6  0.523 

II. BASIC PHYSICAL QUANTITIES 

The reader is assumed to be familiar with the basic physical quantities that are char-
acteristic to particle transport that will be used in the following Chapters of this book. There 
are, however, several quantities which are named differently in different papers (e.g., 
fluence, flux, flux density . . . ), or which have equivalent physical interpretations but 
different names in different contexts (macroscopic cross-section and linear attenuation coef-
ficient). Even a larger variety is found in the use of symbols for a number of terms. 

Considering all the above arguments it seems appropriate to give a systematic review 
of the basic quantities, their notations, definitions, and symbols as well as the derivation of 
the basic relations between several quantities. 

The main source of the definitions given in the following sections is the most recent 
booklet of the International Commission on Radiation Units and Measurements (ICRU),13 
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though many quantities not listed there are taken from other sources and several notations 
are specifically introduced for later use in this book. 

The survey of the definitions is arranged in sections collecting quantities describing 
similar phases of the radiation transport. 

A. THE PHASE SPACE 
A migrating particle (neutron or photon) is represented by a set of coordinates that 

uniquely determine the state of the particle. The notations of the relevant coordinates are 
given below. 

The three spatial Cartesian coordinates x, y and z of the particle are often denoted by 
the single vectorial symbol r. 

The three-dimensional unit direction vector is denoted by w and, if necessary, its 
components parallel to the x, y, and z coordinates are denoted by cox, co, and cow, respectively. 

The symbol E represents the energy of a particle. 
Since in many cases the energy and the direction of a particle change simultaneously, 

sometimes the coordinates (w, E) are simply denoted by a single vector E. (If somebody 
does not like to see the "energy" described by a "vector", we would like to remind them 
that — at least for neutrons — the direction vector + the energy coordinates might have 
been replaced by the velocity of the particle, i.e., by a real vector quantity.) 

Further simplifying the notation, a set of the spatial, direction, and energy coordinates 
are united and described by a point in the six-dimensional phase-space: P. 

In the integrations fff . . . dx dy dz may be replaced by f . . dr, similarly ff . . . dw 
dE is often reduced to f . . . dE and the shortest way to denote an integration over the 
whole phase-space is f . . . dP. 

B. THE PARTICLE SOURCES 
The intensity of a neutron or photon source is denoted by Q and Q(P) means the number 

of particles emitted with coordinates in dP about P. 
Generally, for the Monte Carlo calculations the equations are established for one starting 

particle, i.e., 

IQ(P)dP = 1 

and hence Q is called the source density. 
For radioactive sources the term activity is used which is the "quotient of dN by dt, 

where dN is the number of spontaneous nuclear transformations which occur . . . in the 
time interval dt". This quantity of the ICRU differs from our intensity in two respects: 

1. Since we deal with stationary processes in most of this book, the differentiation with 
respect to time is not necessary for us, we shall consider all quantities (e.g., collision 
densities, reaction rates) as integrated over an arbitrary time interval (e.g., unity); 

2. there are many isotopes where e.g., beta decay is the elementary "nuclear transfor-
mation" and gammas are emitted only in a fraction of decays thus the number of transfor-
mations (activity) is higher than the number of photons emitted (intensity). 

Neutron sources are often characterized by the yield which is the number of neutrons 
leaving the source. Thus in case of extended sources, the yield is decreased by self-absorption. 

In many cases, the sources are isotropic, monoenergetic, or point-like. In such cases 
the argument is simplified from (P) 	(r,w,E) to (r) or (r,E) or in any other way but the 
symbol Q is preserved even in these cases. Therefore, equations like 

Q(r) = fQ(r,E)dE 	 (2.15a) 
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are written, and here the difference in the argument indicates the difference in the quantities 
and necessarily in their units. 

C. FLUX-TYPE QUANTITIES 
This is the point where perhaps the most loose use of words can be found in the literature. 

By the ICRU definition "the fluence, (I), of particles is the quotient of dN by da, where dN 
is the number of particles which enter a sphere of cross-sectional area da". The argument 
r is naturally joinable to the symbol 1 since it specifies the point around which the sphere 
is placed. 

The time derivative of the fluence (q) = F) is called by the ICRU as flux density or 
fluence rate, however, in most of the books and papers both fluence and flux density are 
simply called flux, and this word is used throughout our book too. 

Flux also can be considered as differential by energy and/or direction of flight, then it 
is denoted as 

(p(r ,E) 	or 	(p(r ,o3) 	or 	p(P) 

In reactor physics, many times an alternative definition of flux is preferred. In such 
cases the particle density (n) is first introduced: n(P) is the number of particles per unit 
phase-space volume. Then the flux density is defined as 

cp(P) = vn(P) 

where v is the particle's speed (\/2E/m for neutrons and it equals to c, the speed of light, 
for photons). 

The speed of an individual particle is its track-length per unit time. Hence, the total 
flux can be conceived as the sum of track-lengths traced out by the particles per unit volume. 

A similar final result can be derived from the ICRU definition, if we take into account 
that for a convex body the mean length of randomly oriented chords (d) is": 

d = 4V/A 	 (2.16) 

where V is the volume and A is the surface area. 
In the ICRU fluence definition 

dN 	dN • El 
= — = 

da 	dV 
(2.17) 

since for spheres A = 4a, dA = 4da. 
The numerator in the R.H.S of Equation (2.17) is just the total chord length of the dN 

particles crossing the infinitesimal sphere. 
Flux is characteristic to the number of particles crossing an infinitesimal sphere —

regardless of their orientation. If one is interested in the direction of the flow the current 
vector (J) can be introduced as 

J(P) = wt(P) 

Obviously, if a unit area normal to the unit direction vector n is placed into the phase space 
at about r, then the number of particles crossing it (.1„) is: 

Jn  = J(r)n 
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D. ELEMENTARY INTERACTIONS OF PARTICLES WITH MATTER 
Neutrons and photons interact with matters in many ways. Interactions or collisions can 

lead to: 

• Absorption, when the original particle entering the collision is absorbed and no particle 
of the same type is emitted, or 

• Scattering, if the incoming particle continues its flight after the collision but possibly 
with altered direction and energy, or 

• Multiplicative effects, where after certain nuclear transformations more than one of 
the same type particles leave the collision than that entered. 

There are interactions when the type of the outcoming particle(s) is different from that 
of the colliding particle, e.g., reactions (n,y) or (n,ny). The outputs of these events give 
additional source terms in the joint neutron-photon transport calculations. 

The probabilities of these interactions both for neutrons and photons, depend on the 
colliding particle's energy and on the knocked element. 

The interaction probabilities are described by the cross-sections. 
The total microscopic cross-section is defined as the probability of an interaction in a 

mass element divided by the product of the number of nuclei and the fluence. Its unit is 
therefore cm2, and the generally used symbol is cr, however, we shall denote it by cr*. 

In the formulae of the transport processes another quantity is much more frequently 
used: 

0- = pNA  —ffm* 	 (2.18) 

where p is the density of the material, NA  is the Avogadro constant, and M is the molar 
mass of the target element. The quantity defined by Equation (2.18) has the unit of 1/cm 
and in neutron physics it is called the macroscopic cross-section and denoted by /„ whereas 
in photon interactions the term linear attenuation coefficient and the symbolµ are preferred. 

Since in this book we deal with the transport of both particles the symbol if and the 
simple name cross-section is used for the quantity of Equation (2.18) and if the microscopic 
cross-section is referred, we distinguish it with the obligate attribute "microscopic" and the 
superscript asterisk. 

If the matter investigated is a compound of n elements then the resultant cross-section 
is the weighted sum of the elementary microscopic cross sections 

Cr i  
= pNA  w; — 

=i 

where w, is the weight fraction, o-1` is the microscopic cross-section, and M, is the molar 
mass of the i-th component. 

In most cases different types of interactions may occur at a certain collision and thus 
the total cross section can be expressed as the sum of partial cross-sections. If crti  denotes 
the partial microscopic cross-section of the j-th type of interaction on the i-th element, then 
the total cross-section is: 

Q = pNA 	o- 
M;;=1 

(2.20) 

where we assumed that altogether m types of interactions can occur in the case investigated. 

(2.19) 



26 	Monte Carlo Particle Transport Methods: Neutron and Photon Calculations 

By introducing the partial macroscopic cross-sections as 

w, 
= pNA  1 + ‘4  o- 

Equation (2.20) reduces to 

n m 

cr = 	0-„ 
1= 1  

(2.21) 

The cross-section is a function of the incident particle's energy and in inhomogeneous 
media it also varies from site to site, thus generally has two arguments: 

cr(r,E) 

In non-absorption events, differential cross-sections can be introduced where 

cr(r,o3,E—>co',E')dco' dE' 

is proportional to the probability that the particle entering a collision of type j with direction 
w and energy E leaves it with new direction and energy coordinates in dw' about w' and 
between E' and E' + dE', respectively. 

Again only the argument will indicate whether differential or integrated quantities are 
mentioned, i.e., similarly to Equation (2.15a), formulae like 

	

crj(r,E) = f 	 dE' 

can occur. 
Another quantity important for the study of scattering events is the expected number of 

the outcoming particles. One can assign such an expected number (v) to every type of 
interactions. This number will be trivially 0, for an absorption, 1, for simple scattering 
events, 2, for (n,2n) reactions, etc. 

For fission interactions of neutrons v is usually not an integer which indicates that 
different numbers of neutrons can be emitted even if the same type of nuclei are split by 
neutrons of the same incident energy. 

If a complete set of vu-s are assigned to possible interactions with Q j  cross-sections, 
then the expected number of the outcoming particles <ri> is 

EE v„ 0-, 

	

<n> — 	 
o- 

which may be either less or larger than one. 
The probability of the occurrence of a certain reaction (type j) with a partial cross- 

section a-, is 

Q 

and this quantity, from its definition could easily be called reaction rate (or more definitely 
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absorption, scattering, etc. rate if the type of reaction is definitely denominated). However, 
the term reaction rate shall be used in a much more general sense, as defined in Section G. 
of this Chapter. 

E. FREE-PATHS, DISTANCES 
In a homogeneous medium the mean free path between two collisions is 

since the PDF of the path length (R) is 

p(R) = o-e —"R 	 (2.22) 

and thus 

X = <R> = 	
1 

fR = —0. 

Actual selected paths will also be denoted by R. 
In inhomogeneous media, where the cross-section changes during the flight between 

two collisions the PDF of Equation (2.19) is changed to: 

p(R) = o(R) exp( — foxo(R')dR') 

The quantity 

T(R) = exp( — o-(Ri)dRi) 
	

(2.23) 

is called the optical distance from the starting point to the next collision site at a geometrical 
distance of R. 

In most of the practical cases, the material does not change continuously, but there are 
different, clearly separated regions filled with different media and thus the integral in Equation 
(2.23) is replaced by a sum (see Figure 2.7): 

T(R) = E 
=1 

F. COLLISION DENSITIES 
In Section D. the elementary probabilities of interactions were described. The expected 

number of collisions occurring in a phase-space element dP about P are characterized by 
two functions, two collision densities. 

X(P)dP 

is the number of particles leaving a collision with coordinates lying in dP about P and is 
sometimes briefly called the outgoing density, whereas 

ti,(P)dP 
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FIGURE 2.7. A particle flight crossing boundaries of zones of different materials. 

denotes the number of particles entering a collision with coordinates dP about P and its 
name is incoming density, or simply collision density. 

From the above definitions it is clear that none of these functions is a "density function" 
since generally the normalization conditions 

fx(P)dP = 1 

and 

ILIJ(P)dP = 1 

are not satisfied. 
The incoming density is closely related to the flux. Let us recall the definition of the 

flux (fluence, by the rigorous ICRU terminology): 

of,(r,E) dadE 

is the number of particles entering an infinitesimal sphere of radius dr, cross-sectional area 
of da = rr (dr)2  with direction and energy dE about E. The expected path length <df> of 
these particles is (see Equation 2.14) 

4 
<df> = —

3 
dp 

Thus the expected number of particles entering collisions in the infinitesimal sphere 
(i.e. the collision density) is 

tKr,E) dr dE = o-(r,E) < cif > 4(r,E)dadE 

= o-(r,E) 4(r,E)drdE 
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therefore: 

	

tp(P) = cr(r„E) 4(P) 	 (2.24) 

The inverse relation 

1  

	

(RP) = 
cr(r„E) 

tif(P) 
	

(2.25) 

is valid only if cr 0 0, which condition clearly reflects the very simple physical fact that in 
vacuum the flux is still a reasonable quantity whereas no collisions can happen if no material 
is present. 

G. QUANTITIES TO BE DETERMINED: REACTION RATES, RESPONSES, 
SCORES 
Generally, the aim of a Monte Carlo calculation is the estimation of the value of a 

physical quantity or values of several quantities. For the sake of simplicity we restrict our 
discussion to the determination of a single quantity. Extension of the considerations to 
parallel examination of several quantities is straightforward. 

These quantities can represent a great number of physically interpretable data varying 
from the number of collisions in a space element to leakage probabilities, detector responses 
or doses absorbed in certain regions of the core of a reactor or even in organs of an 
anthropomorphic phantom. Just to preserve generality of the discussion all these quantities 
will be called either as receptor responses or reaction rates. 

A common feature of these responses is that they can be formulated as weighted integrals 
(or functionals) of one of the collision densities. 

Thus a response (or reaction rate) is most generally formulated as: 

	

R = Ifx(P)x(P)dP 	 (2.26) 

or 

R = 1f4,(P)14P) dP 

The fx  and fq, weight function are derived from the physical connection between the 
collision density and the quantity to be determined. The integrations are extended to the 
region of interest, or, by other words the f weight functions have to vanish outside the range 
of interest. Since the subscript of f is trivial from the type of collision density used in the 
integrals of (2.26) it is generally omitted. 

Naturally if R is calculated not for a finite range but only for a point, e.g., for re,, then 
the weight function contains a Dirac-delta component: 

f(P) = fi(E)6(r — ro) 

Simply, if the number of collisions are to be computed for a phase space domain Po, 
then 

f(P) = 
 

	

11, 	if P E Po  

	

0, 	otherwise 
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Another simple example can be derived from Equation (2.25), the formula for the flux 
integral in a phase-space domain Po  is 

= 	f cr `(r,E)1.15(P) dP 

f+(P) = cr `(r,E) 	here. 

A Monte Carlo estimate of the reaction rate is called the (actual) score, and every 
simulated event has a — many times zero — contribution to the score. A reaction rate is 
usually estimated by several independent Monte Carlo histories and the final estimate will 
be the average of the individual scores. 

H. OTHER QUANTITIES 
There are many other quantities — which may or may not have direct physical meaning 

— introduced in the next chapters. They are, however, used only in connection with certain 
special examples or techniques and will be defined at the appropriate places. 

A general rule of our notation is that if a quantity is denoted by x in the analog simulation 
(in the numerical "copy" of the real physical process) then its counterpart used in the 
nonanalog simulations (e.g. , simulations deviating from the physical process) will be denoted 
by z. 

The statistical weights necessarily introduced for nonanalog simulations are denoted by 
W and the factors modifying it at a single step by w. 
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Chapter 3 

DIRECT SIMULATION OF THE PHYSICAL PROCESSES 

"Life" of a neutron or photon, from its birth to its death is governed by nature via 
many random processes. Just at the very beginning: there is only a certain probability that 
a particle is "born" at all in the source in a given short time interval. The initial direction 
of flight of a particle is also a random variable and such is its energy (if the source is not 
mono-energetic) and its location (if the source is not so small in spatial extension that can 
be represented by a point). 

In addition, randomness remains with the particle throughout its further history. Neither 
the distance traversed up to its next collision site nor the type of the subsequent interaction 
can be determined in advance for an individual particle. Instead, probability distributions 
of them are known. Similarly, random variables are the energy and the direction of the 
scattered particles and even the number of the secondaries created in a multiplicative inter-
action. 

The same uncertainty characterizes the detection: only a certain fraction of the particles 
crossing the receptor region will interact in that volume. Again, only the interaction prob-
abilities and not the reactions of any individual particles can be predicted even if all the 
physical parameters of both the particle and the receptor are known. 

As a consequence of these inherent stochastic processes all observed results will be 
accompanied by smaller or larger fluctuations, this is why, e.g. measured count rates are 
generally given together with their standard deviations. In measurements carried out under 
time-independent (steady-state) conditions, the easiest way to decrease the statistical un-
certainties is the increase of the observation time. The alternative — but seldom realizable 
in practice — way is the increase of the source intensity. Anyhow, in most experiments the 
product of the source intensity and the observation time can be set to as large as 106  particles, 
or even higher by several orders of magnitude. 

If the reader compares the definition of Monte Carlo methods we gave at the beginning 
of Chapter 2 and the random nature of the neutron and photon migration outlined in the 
previous paragraphs, one cannot but wonder that many people got the idea to connect the 
two phenomena: to try to simulate the particles' random walk on computers. The word 
simulation here means the as accurate as possible realization of the coordinates of the particles 
— in a computer. 

At first sight one might think that the accuracy of the computer simulation depends on 
the answers to two questions: 

1. How precisely do we know the probability distributions governing the physical pro-
cesses, and 

2. How correctly can we select random samples from these distributions? 

And really, lack of satisfactory knowledge of the distributions or application of incor-
rectly selected procedures may draw systematic errors into the computations. By using a 
terminology more familiar in Monte Carlo: the results will be biased. 

There is, however, another source of error. It is the statistical uncertainty which is —
at least in the one-to-one simulation — completely analog — or even equivalent — to the 
random fluctuation observed at measurements. The origin of this uncertainty is theoretically 
the same for the physical processes and their computer simulations. Nevertheless, in practice 
they differ — unfavorably for the Monte Carlo technique — in their extent. The random 
walk simulations are very time-consuming and therefore an increase of the simulation number 
(the computational counterpart of the product of the source intensity and the measuring time) 
over about 105  is seldom realizable. 
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Thus, in most Monte Carlo programs, special techniques are introduced to decrease the 
statistical uncertainties. The introduction of such techniques leads to deviations from the 
one-to-one simulations, to so-called nonanalog games. Appropriate selection of the nonanalog 
procedures is of major importance and will be discussed many times, in different levels 
throughout this book. 

Now, however — in spite of all its disadvantages — let us turn back and investigate in 
detail the analog simulation, from which the idea of Monte Carlo application for particle 
transport originated in the 1940s. Still now, a deep understanding of the simplest analog 
procedures is the basis for understanding the more advanced techniques. 

In the same way as the life of a physical particle starts by its emission from some sort 
of source, in an analog Monte Carlo game first the initial coordinates have to be selected. 
The next step is the free flight of the neutron or photon up to its next collision, consequently, 
in the simulation, a path length has to be selected. From the starting point coordinates and 
the direction of flight, the site of the subsequent interaction is to be determined. 

At the collision site, a large variety of interactions with the different atoms constituting 
the material at that point can take place. Accordingly, in the numerical simulation, first the 
types of both the collided atom and the interaction have to be selected. If the actual collision 
does not lead to absorption the particle goes on its way with a new energy and direction —
both of them are to be selected. In multiplicative events, or e.g. (n,),) reactions, new particles 
are also created, the parameters of which are generally immediately selected but temporarily 
stored and handled as coordinates of particles from secondary sources. The histories of these 
"secondaries" are followed after the termination of the "primary" particle. (For correctness 
it must be noted here that in, e.g. an (n,2n) reaction there is no physically correct distinction 
between the two outcoming neutrons as to which one is the primary and which is the 
secondary. The decision is arbitrary from the point of physics and is governed by practical 
consideration. ) 

After the simulation of a scattering event, the process is followed by a next path selection. 
The repetition of this two step (transition + collision) cycle is terminated by one of the 
following three events: 

• An absorption takes place 
• The particle leaves the system investigated in such a way that there is no possibility 

to return 
• The energy of the particle falls out of the range of interest 

If the event, whose frequency is just studied, occurs, the actual contribution is calculated 
either in the transition or in the collision phase. The sum of the contributions collected 
during the simulation of the history of a single primary source particle is called the score. 
And the average of an appropriately large number of scores is the Monte Carlo estimate of 
the physical quantity investigated. 

In the consecutive sections of this Chapter, the basic procedures used during these steps 
(source selection, transition and collision simulations, and scoring) are discussed, several 
specific procedures, frequently used in neutron and photon transport processes, are collected 
in the Appendices of this Chapter. 

I. ANALOG SIMULATION OF THE RANDOM WALK 

A. SELECTION OF SOURCE PARAMETERS 
There are six fundamental parameters of a particle emitted from a source, viz: 

• The three spatial coordinates: r = (x,y,z), in a Cartesian system 
• Two coordinates of the direction of flight: w = (cox,o)y,wz), Ital = 1 and 
• The energy (E) of the particle 
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The list presented above is not the only possible specification, one can use, e.g., spherical 
coordinates instead of Cartesian, or replace the energy of the photons by the wavelength, 
or prefer to describe the state of a neutron by the velocity vector instead of the energy and 
the unit length direction vector. 

However, in any representation, the number of the mutually independent parameters is 
six and simple transformation rules can help to change from one representation to another, 
if needed. 

Any set of the six parameters can be considered as the coordinates of a point in a six-
dimensional phase-space. 

In nearly all practical cases the source density Q (r,to,E) can be factorized as: 

Q(r,w,E) = WO • Wu)) • QE(E) 

reflecting the physical fact that the spatial, directional, and energy distributions are mutually 
independent from each other. 

From the point of view of Monte Carlo selection, it means that one can select separately 
the r, w, and E coordinates. 

To simplify the description of the selection procedures, we assume — for this Section 
— that the source is normalized to unity, i.e.,: 

JQ(P)dP = 1 

moreover: 

fQr(r) dr = 1 

fQ,,,(w)do) = 1 

and 

'WE) dE = 1 

If these conditions are not fulfilled and 

IQ(P)dP = Q. 1 

then the only correction that has to be made is the multiplication of all results by Q. since 
the transport processes are linear with respect to the absolute source intensity. 

1. Space Coordinates Sampling 
For point-like sources, the random selection is replaced by an assignment: 

r, 	r0 	for 	i = 1,2, ..., n 

i.e., all the n simulations start from the source point ro. 
If the source is uniformly distributed along a straight line (or rod of negligible radius) 
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FIGURE 3.1. Selection of a random point from a line source. 

then let us put this line into the coordinate system as given in Figure 3.1, and define the 
axis t along the source line. Then 

Q(t) dt = p(t) dt = T dt 

if t = 0 at R, and R, = R, + T(R2  — RI ). 
Now the i-th source point is selected as: 

r1  = R, + p,T(R2  — R,) 

More complicated, one-dimensional sources (or more precisely sources that can be 
approximated by one-dimensional curves) seldom occur in practice. But if they do occur, 
the best approach is to describe the curve in a parametric form, then select the parameter t 
from p(t) and determine the Cartesian coordinates by transformation. 

After, the zero- and one-dimensional forms let us continue with sources that can be 
described by surfaces. 

If the surface is a region of a plane, let us fix a (,-q) coordinate system to the plane. 
Points from sources that have simple boundaries can be easily selected. Recipes to pick-up 
points from a square (or from a rectangle, after linear transformations) and a circle are given 
in Sections 2.1.1 and 2.I.J, respectively. For other surfaces with complicated boundaries, 
the application of the rejection technique is recommended — if the user cannot find a special, 
efficient tricky method for his problem. In the application of the rejection method the source 
region is to be covered by a rectangle (Figure 3.2.a) from which tentative coordinates are 
selected. The points lying out of the region of interest are to be rejected. 

If the area of the covering rectangle is much larger than that of the source, it is expedient 
to cover the source region by several smaller rectangles (Figure 3.2.b). In this case, first 
one of the rectangles is to be selected. The i-th one is chosen with a probability of 

t, 
= T 
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a 

FIGURE 3.2. Covering plane sources with rectangles — for sampling by the rejection method. 

if t, is its area and 

T = E t, 
= 

then the coordinates are selected from the i-th rectangle — by the rejection method. 
The covering surface is not necessarily a rectangle. (The reader should remember that 

in the general description of the rejection technique in Section 2.I.0 we have also started 
with a majorant constant and subsequently proceeded to majorant functions.) Any geometrical 
figure which is easy to sample can be used. For example, in Figure 3.2.B the first covering 
rectangle should, generally, be replaced by a parallelogram, if the t,/t,* efficiency gain 
overcompensates for the time increase brought in by the more complicated sampling pro-
cedure needed. 

Surfaces extended into three dimensions seldom occur in practice. If the source is 
uniformly distributed on the surface of a sphere then the method given in Section 2.I.J for 
the selection of three dimensional unit vectors can be applied — with two additional trans-
formations: first all the three Cartesian coordinates have to be multiplied by the actual radius, 
then the points have to be shifted by the coordinates of the actual center of the source. 

Most sources are extended into three dimensions. (Physically there are only three-
dimensional sources, the representations of them by points, curves, or surfaces are only 
approximations.) 

The ideas of random sampling in three dimensions are the same as in two dimensions. 
For simple regions (rectangular blocks, circular cylinders, spheres, etc.) direct procedures 
can be developed by establishing the appropriate PDFs and using the inverse distribution 
method (Section 2.I.A). Points from source zones limited by complex boundary surfaces 
can be selected by the rejection technique: now the zones (or separate parts of it) are to be 
imbedded in rectangular boxes — or sometimes into other volumes still easy to handle. 

2. Sampling of Initial Directions 
In the great majority of problems the particles are emitted by isotropic distribution, in 

which case, the method for selecting the direction cosines of random vectors described in 
Section 2.I.J may be used. 

Sometimes a parallel beam of particles enters the system of interest. In such a case, 
the random sampling of the direction cosines is replaced by assignments of the actual values. 

A cosine distribution is achieved if a plane is placed into an isotropic field (i.e., into 
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the infinite space where isotropic sources are distributed uniformly). Let us fix the coordinate 
system's [x, y] plane parallel to the plane of interest. Then the outer normal to the plane 
has the following direction cosines: 

and 

The cosine distribution has the PDF:6  

P((oz) = 2(0z, 	coz 	0 

Thus, according to Equation 2.2 

p = f ao,thoz  

and the 

sampling rule can be used. (The reader should remember Theorem 2.6 and replace the 
execution of a square root by selecting the maximum of two random numbers.) Since the 
azimuth is uniformly distributed over (0,27r), in the formulae 

cox  = V1 — (...q • cost 

and 

wy  = V1 — (1) • since 

cost and sing) can be selected either directly (c = p,27r), or by the Neumann method given 
in Section 2.I.J, Equation (2.15). 

3. Selection of the Initial Energies 
The simplest — and not too rare — case is if one has a monoenergetic source and can, 

therefore, replace the energy selection by an assignment. There are many gamma sources 
that emit photons of different discrete energies with different intensities (probabilities). The 
sampling from such line spectra can be carried out as described in Theorem 2.1. 

More skillful techniques are needed to pick-up energies from continuous spectra. A 
relatively easy, though not exact, method is to approximate the spectrum with either a step 
function or by a broken line. In both cases the inverse distribution method (Section 2.I.A) 
is applicable. If the continuous spectrum is described by an analytical formula, the task is 
to find the best of the methods discussed in Section 2.1, but the rejection technique is the 
only one that always works. 

Two source types have special importance in neutron transport calculations. Methods 
for selecting neutron energies from the Watt-fission spectrum and from the Maxwellian 
distribution describing the energy distribution of the thermal neutrons are given in Appendices 
3B and 3C, respectively. 
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B. PATH LENGTH SELECTION 
As has been introduced in Section 2.11.E the path (R) traversed between two collisions 

has a PDF of: 

p(R) = o-(R)exp[ — j cr(10dR] 	 (3.1) 

If the medium is homogeneous: 

o(R') ---E cro  

then 

p(R) 

and an actual path length can easily be selected by the inverse distribution method (see 
Equation (2.2) and Equation (2.6) with the transformation x = cro  R): 

R= — fnp 
o-o  

Naturally, the fast methods listed in Section 2.I.G can replace the execution of the 
logarithm in Equation (3.2). 

The selection is more complicated if the medium is inhomogeneous. In practical prob-
lems, the cross-sections (or the compositions of the materials) are generally constant within 
extended zones.* 

Let us consider n regions with cross-sections 431 , r2,  • • • Crn• If the particle crosses the 
distances RI , R2, . . . R0  in these regions (see Figure 2.7) then the PDF (3.1) becomes: 

J- 	 J-1 
p(R) = crjexp[ — (E criR) — cri (R — > R;)] , 

i = 
J- 

if 	E Ri  R 	R, 
=1 	i=1 

Thus, the path length selection can be carried out by determining j from the inequalities 

- 

E o-iRi  < --enp 	E cr,R, 	 (3.3) 
i = 1 	 I 

and then, calculating: 

- I 1 
R = E R, + — (—fnp — E 

i = 
(3.4) 

The difficulty in solving Equations (3.3) and (3.4) lies not in the summations but in the 

* 	Though it is beyond the scope of this book it should be noted here that in the transport of charged particles 
the cross-section changes quasi-continuously even within a homogeneous medium, since the energy of the 
particle changes (decreases) quasi-continuously. 

(3.2) 
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determination of the R, distances, i.e., in the determination of the coordinates, where the 
particle trajectories cross the boundaries separating the different homogeneous zones. This 
procedure may be extremely complicated in complex geometries thus another technique" 
is suggested instead of the "straightforward" method described above. 

The method is the following: 

1. Define a majorant cross-section: r % cr(r), for all r-s along the path; 
2. Select a distance R by Equation (3.2) and determine the tentative next collision site 

(r„'): 

rk = 	, + Rco„ 

if rk _ , is the starting point and 6h_, is the direction of flight; 

3. Play a rejection game: 

• with a probability of cr(r,')/o-  accept this point as a real collision site (r, = r,'); 

• with a probability of I — cr(r,')/o-0  do not accept r,' as a real collision site but select 
a new path starting from r,' with the unchanged direction wk _„ again taking the total 
cross section to cro  (i.e. set rk _ = r,' and return to step 2). 

A mathematically correct proof of this procedure (even for continuously varying cross-
sections) is given in Reference 10, but there is a very easy-to-follow method to understand 
its validity: 

Let us introduce an imaginary scattering event which changes neither the energy nor 
the direction of the particle. This definition implies that such imaginary scatterings are not 
physically observable, i.e. they can be introduced with any cross-section at any point. Now 
if we assume that the majorant cross-section (cro) is a sum of the real (cr) and imaginary (o-,) 
cross-sections, then in the procedure outlined above there is no acceptance and rejection, 
but in a fraction of: 

1 	
cr(rk) 	o-,(11,) 

Qo 	cro  

the collisions an imaginary interaction is simulated. * 
The advantage of the method is clear: only the locations of the tentative collision sites 

have to be determined independently from the boundary crossings up to those points. 
The majorant cross-section method is trivially applicable for paths going through cavities 

(regions filled with vacuum). Tentative collision sites lying in vacuum are, per se, never 
accepted. (Those who like curious statements can say that there are solely imaginary scattering 
events in regions filled with no material.) 

The selection of the path length leads to termination of the simulation if the particle 
leaves the system and has no chance to return. Such situations never exist in physical reality. 
However, if the system investigated is surrounded by a low density material (most probably 
air) and even the nearest reflectors (e.g., walls of the room) are so far that the contribution 
of backscattering is negligible then placing the volume of interest into an infinite vacuum 
space is a reasonable approximation. 

* The imaginary or hypothetical collisions are called "delta-scatterings".' Delta scattering will be examined 
more closely in Chapter 51V. A proof of the unbiasedness of the selection procedure above will also be given 
there. 


