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Preface

WHAT IS IN THE BOOK?

This book presents graphical methods for analyzing data. Some
methods are new and some are old, some methods require a computer
and others only paper and pencil; but they are all powerful data
analysis tools. In many situations a set of data - even a large set - can
be adequately analyzed through graphical methods alone. In most other
situations, a few well-chosen graphical displays can significantly
enhance numerical statistical analyses.

There are several possible objectives for a graphical display. The
purpose may be to record and store data compactly, it may be to
communicate information to other people, or it may be to analyze a set
of data to learn more about its structure. The methodology in this book
is oriented toward the last of these objectives. Thus there is little
discussion of communication graphics, such as pie charts and
pictograms, which are seen frequently in the mass media, government
publications, and business reports. However, it is often true that a
graph designed for the analysis of data will also be useful to
communicate the results of the analysis, at least to a technical audience.

The viewpoints in the book have been shaped by our own
experiences in data analysis, and we have chosen methods that have
proven useful in our work. These methods have been arranged
according to data analysis tasks into six groups, and are presented in
Chapters 2 to 7. More detail about the six groups is given in Chapter 1
which is an introduction. Chapter 8, the final one, discusses general
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principles and techniques that apply to all of the six groups. To see if
the book is for you, finish reading the preface, table of contents, and
Chapter I, and glance at some of the plots in the rest of the book.

FOR WHOM IS THIS BOOK WRITTEN?

This book is written for anyone who either analyzes data or
expects to do so in the future, including students, statisticians, scientists,
engineers, managers, doctors, and teachers. We have attempted not to
slant the techniques, writing, and examples to anyone subject matter
area. Thus the material is relevant for applications in physics,
chemistry, business, economics, psychology, sociology, medicine,
biology, quality control, engineering, education, or Virtually any field
where there are data to be analyzed. As with most of statistics, the
methods have wide applicability largely because certain basic forms of
data turn up in many different fields.

The book will accommodate the person who wants to study
seriously the field of graphical data analysis and is willing to read from
beginning to end; the book is wide in scope and will provide a good
introduction to the field. It also can be used by the person who wants
to learn about graphical methods for some specific task such as
regression or comparing the distributions of two sets of data. Except for
Chapters 2 and 3, which are closely related, and Chapter 8, which has
many references to earlier material, the chapters can be read fairly
independently of each other.

The book can be used in the classroom either as a supplement to a
course in applied statistics, or as the text for a course devoted solely to
graphical data analysis. Exercises are prOVided for classroom use. An
elementary course can omit Chapters 7 and 8, starred sections in other
chapters, and starred exercises; a more advanced course can include all
of the material. Starred sections contain material that is either more
difficult or more specialized than other sections, and starred exercises
tend to be more difficult than others.

WHAT IS THE PREREQUISITE KNOWLEDGE NEEDED TO
UNDERSTAND THE MATERIAL IN THIS BOOK?

Chapters 1 to 5, except for some of the exercises, assume a
knowledge of elementary statistics, although no probability is needed.
The material can be understood by almost anyone who wants to learn it
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and who has some experience with quantitative thinking. Chapter 6 is
about probability plots (or quantile-quantile plots) and requires some
knowledge of probability distributions; an elementary course in statistics
should suffice. Chapter 7 requires more statistical background. It deals
with graphical methods for regression and assumes that the reader is
already familiar with the basics of regression methodology. Chapter 8
requires an understanding of some or most of the previous chapters.
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Introduction

1.1 WHY GRAPHICS?

There is no single statistical tool that is as powerful as a well-chosen
graph. Our eye-brain system is the most sophisticated information
processor ever developed, and through graphical displays we can put
this system to good use to obtain deep insight into the structure of data.
An enormous amount of quantitative information can be conveyed by
graphs; our eye-brain system can summarize vast information qUickly
and extract salient features, but it is also capable of focusing on detail.
Even for small sets of data, there are many patterns and relationships
that are considerably easier to discern in graphical displays than by any
other data analytic method. For example, the curvature in the pattern
formed by the set of points in Figure 1.1 is readily appreciated in the
plot, as are the two unusual points, but it is not nearly as easy to make
such a judgment from an equivalent table of the data. (This figure is
more fully discussed in Chapter 5.)

The graphical methods in this book enable the data analyst to
explore data thoroughly, to look for patterns and relationships, to
confirm or disprove the expected, and to discover new phenomena. The
methods also can be used to enhance classical numerical statistical
analyses. Most classical procedures are based, either implicitly or
explicitly, on assumptions about the data, and the validity of the
analyses depends upon the validity of the assumptions. Graphical
methods prOVide powerful diagnostic tools for confirming assumptions,
or, when the assumptions are not met, for suggesting corrective actions.
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Figure 1.1 Scatter plot of displacement (in cubic inches) versus weight
(in pounds) of 74 automobile models.

Without such tools, confirmation of assumptions can be replaced only by
hope.

Until the mid-1970's, routine large-scale use of plots in data
analysis was not feasible, since the hardware and software for computer
graphics were not readily available to many people and making large
numbers of plots by hand took too much time. We no longer have such
an excuse. The field of computer graphics has matured. The recent
rapid proliferation of graphics hardware - terminals, scopes, pen
plotters, microfilm, color copiers, personal computers - has been
accompanied by a steady development of software for graphical data
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analysis. Computer graphics facilities are now widely available at a
reasonable cost, and this book has a relevance today that it would not
have had prior to, say, 1970.

1.2 WHAT IS A GRAPHICAL METHOD FOR
ANALYZING DATA?

The graphical displays in this book are visual portrayals of quantitative
information. Most fall into one of two categories, displaying either the
data themselves or quantities derived from the data. Usually, the first
type of display is used when we are exploring the data and are not
fitting models, and the second is used to enhance numerical statistical
analyses that are based on assumptions about relationships in the data.
For example, suppose the data are the heights Xi and weights Yi of a
group of people. If we knew nothing about height and weight, we
could still explore the association between them by plotting Yi against
Xj; but if we have assumed the relationship to be linear and have fitted a
linear function to the data using classical least squares, we will want to
make a number of plots of derived quantities such as residuals from the
fit to check the validity of the assumptions, including the assumptions
implied by least squares.

If you have not already done so, you might want to stop reading
for a moment, leaf through the book, and look at some of the figures.
Many of them should look very familiar since they are standard
Cartesian plots of points or curves. Figures 1.2 and 1.3, which reappear
later in Chapters 3 and 7, are good examples. In these cases the main
focus is not on the details of the vehicle, the Cartesian plot, but on what
we choose to plot; although Figures 1.2 and 1.3 are superficially similar
to each other, each being a simple plot of several dozen discrete points,
they have very different meanings as data displays. While these
displays are visually familiar, there are other displays that will probably
seem unfamiliar. For example, Figure 1.4, which comes from Chapter 5,
looks like a forest of misshapen trees. For such displays we discuss not
only what to plot, but some of the steps involved in constructing the
plot.
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Figure 1.2 Empirical quantile-quantile plot of Newark and Lincoln
monthly temperatures.

1.3 A SUMMARY OF THE CONTENTS

The book is organized according to the type of data to be analyzed and
the complexity of the data analysis task. We progress from simple to
complex situations. Chapters 2 to 5 contain mostly exploratory methods
in which the raw data themselves are displayed. Chapter 2 describes
methods for portraying the distribution of a single set of observations,
for showing how the data spread out along the observation scale.
Methods for comparing the distributions of several data sets are covered
in Chapter 3. Chapter 4 deals with paired measurements, or two-
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dimensional data; the graphical methods there help us probe the
relationship and association between the two variables. Chapter 5 does
the same for measurements of more than two variables; an example of
such multidimensional data is the heights, weights, blood pressures,
pulse rates, and blood types of a group of people.

Chapters 6 and 7 present methods for studying data in the context
of statistical models and for plotting quantities derived from the data.
Here the displays are used to enhance standard numerical statistical
analyses frequently carried out on data. The plots allow the investigator
to probe the results of analyses and judge whether the data support the
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Figure 1.4 Kleiner-Hartigan trees.

underlying assumptions. Chapter 6 is about probability plots, which are
designed for assessing formal distributional assumptions for the data.
Chapter 7 covers graphical methods for regression, including methods
for understanding the fit of the regression equation and methods for
assessing the appropriateness of the regression model.
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Chapter 8 is a general discussion of graphi~s including a number
of principles that help us judge the strengths and weaknesses of
graphical displays, and guide us in designing new ones.

The Appendix contains most of the data sets used in the examples
of the Jrook and other data sets referred to just in the exercises.

1.4 THE SELECTION AND PRESENTATION OF
MATERIALS

We have selected a group of graphical methods to treat in detail. Our
plan has been first to give all the information needed to construct a plot,
then to illustrate the display by applying it to at least one set of data,
and finally to describe the usefulness of the method and the role it plays
in data analysis.

The process for selecting methods to feature was a parochial one:
we chose methods that we use in our own work and that have proved
successful. Such a selection process is necessary, for we cannot write
intelligently about methods that we have not used. We have had to
exclude many promising ones with which we are just beginning to have
some experience and others that we are simply unfamiliar with. Some
of these are briefly described and referenced in "Further Reading"
sections at the ends of chapters.

1.5 DATA SETS

Almost all of the data sets used in this book to illustrate the methods are
in the AppendiX together with other data sets that are treated in the
exercises. There are two reasons for this. One is to prOVide data for the
reader to experiment with the graphical methods we describe. The
second is to allow the reader to challenge more readily our
methodology and devise still better graphical methods for data analysis.
Naturally, we encourage readers to collect other data sets of suitable
nature to experiment further.
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1.6 QUALITY OF GRAPHICAL DISPLAYS

The plots shown in this book are generally in the form we would
produce in the course of analyzing data. Most of them represent what
you could expect to produce, routinely, from a good graphics package
and a reasonably inexpensive graphics device, such as a pen plotter. A
few plots have been done by hand. None were produced on special,
expensive graphics devices. The point is that the value of graphs in
data analysis comes when they show important patterns in the data, and
plain, legible, well-designed plots can do this without the expense and
delay involved with special presentation-quality graphics devices.

Naturally, when the plots are to be used for presentation or
publication rather than for analysis, making the graphics elegant and
aesthetically pleasing would be important. We have deliberately not
made such changes here. These are working plots, part of the everyday
business of data analysis.

1.7 HOW SHOULD THIS BOOK BE USED?

Readers who experiment with the graphical methods in this book by
trying them in the exercises, on the data in the Appendix, and on their
own data will learn far more from this book than passive readers.

It is usually easy to understand the details of making a particular
plot. What is more difficult is to acquire the judgment necessary for
successful application of the method: When should the method be used?
For what types of data? For what types of problems? What patterns
should be looked for? Which patterns are significant and which are
spurious? What has been learned about the data in its application
context by looking at the plots? The book can go just so far in dealing
with these matters of judgment. Readers will need to take themselves
the rest of the way.
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Portraying the
Distribution of
a Set of Data

2.1 INTRODUCTION

A simple but common need arises in data analysis when we have a
single set of numbers that are measurements, observations, or values of
some variable, and we want to understand their basic characteristics as a
collection. For example, if we consider the gross national product of all
countries in the United Nations in 1980, we might ask: What is a
"typical" or "average" or "central" value for the whole set? How
spread out are the data around the center? How far are the most
extreme values (both high and low) from the typical value? What
fraction of the numbers are less than the value for one particular
country (our own, say)?

In short, we need to understand the distribution of the set of data
values: where they lie along the measurement axis, and what kind of
pattern they form. This often means asking additional questions. What
are the quartiles of the distribution (the 25 percent and 75 percent
points along the observation scale)? Are any of the observations
outliers, that is, values that seem to lie too far from the majority? Are
there repeated values? What is the density or relative concentration of
observations in various intervals along the measurement scale? Do the
data accumulate at the middle of their range, or at one end, or at several
places? Are the data symmetrically distributed?
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Figure 2.1 Quantile plot of the exponent data. The y coordinates of the
plotted points are the ordered observations.

One way to present the distribution of a set of data is to present
the data in a table. Many questions can be answered by carefully
studying a table, especially if the data have first been ordered from
smallest to largest (or the reverse). In a sense, a table contains all the
answers, because apart from possible rounding, it presents all of the
data.

However, many distributional questions are difficult to answer just
from peering at a table. Plots of the data can be far more revealing,
even though it may be harder to read exact data values from a plot.
This chapter discusses a variety of plots designed for studying the
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distribution of a set of data.
Two sets of data will be used to illustrate the methodology. One is

the daily maximum ozone concentrations at ground level recorded
between May 1, 1974 and September 30, 1974 at a site in Stamford,
Connecticut. (There are 17 missing days of data due to equipment
malfunction.) The current federal standard for ozone states that the
concentration should not exceed 120 parts per billion (ppb) more than
one day per year at any particular location. A day with ozone
concentration above 200 ppb is regarded as heavily polluted. The data
are given in the Appendix.

The second set of data is from an experiment in perceptual
psychology. A person asked to judge the relative areas of circles of
varying sizes typically judges the areas on a perceptual scale that can be
approximated by

judged area - a(true area,!.

For most people the exponent fJ is between .6 and 1. Apart from
random error, a person with an exponent of .7 who sees two circles, one
twice the area of the other, would judge the larger one to be only
2.7 - 1.6 times as large. Our second set of data is the set of measured
exponents (multiplied by 100) for 24 people from one particular
experiment (Cleveland, Harris, and McGill, 1982).

In this chapter we are concerned only with data values themselves,
not with any particular ordering of them. (The ozone data have an
ordering in time, for instance, and the exponent data could be ordered,
say, by the ages of the people in the experiment.) We will usually refer
to raw (unordered) data by "Yi for i-I to n", and to ordered data by
"y(i) for i-I to n." The parentheses in the subscript simply mean that
Y(I) is the smallest value, Y(2) is the second smallest, and so on.

2.2 QUANTILE PLOTS

A good preliminary look at a set of data is provided by the quantile plot
which is shown for the exponent data in Figure 2.1. Before describing
it, we must define "quantile".

The concept of quantile is closely connected with the familiar
concept of percentile. When we say that a student's college board exam
score is at the 85th percentile, we mean that 85 percent of all college
board scores fall below that student's score, and that 15 percent of them
fall above. Similarly, we will define the .85 quantile of a set of data to
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be a number on the scale of the data that divides the data into two
groups, so that a fraction .85 of the observations fall below and a
fraction .15 fall above. We will call this value Q(.85). The only
difference between percentile and quantile is that percentile refers to a
percent of the set of data and quantile refers to a fraction of the set of
data. Figure 2.2 depicts Q(.85) for the ozone data plotted along a
number line.

Q <. 85)

___---__~---_ L_-__15_4_--
o 50 100 150 200 250

OZONE (PARTS PER BILLION)

Figure 2.2 The Stamford ozone data, showing the .85 quantile.

Unfortunately, this definition runs into complications when we
actually try to compute quantiles from a set of data. For instance, if we
want to compute the .27 quantile from 10 data values, we find that each
observation is 10 percent of the whole set, so we can split off a fraction
of .2 or .3 of the data, but there is no value that will split off a fraction
of exactly .27. Also, if we were to put the split point exactly at an
observation, we would not know whether to count that observation in
the lower or upper part.

To overcome these difficulties, we construct a convenient
operational definition of quantile. Starting with a set of raw data Yi, for
i-I to n, we order the data from smallest to largest, obtaining the
sorted data Y(ip for i-I to n. Letting p represent any fraction between
o and 1, we begin by defining the quantile Q(p) corresponding to the
fraction p as follows: Take Q(p) to be Y(i) whenever P is one of the
fractions Pi - (i - .5)/n, for i-I to n.

Thus, the quantiles Q(Pi) of the data are just the ordered data
values themselves, Y(i). The quantile plot in Figure 2.1 is a plot of Q(Pi)
against Pi for the exponent data. The horizontal scale shows the
fractions Pi and goes from 0 to 1. The vertical scale is the scale of the
original data. Except for the way the horizontal axis is labeled, this plot
would look identical to a plot of Y(i) against i.
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Figure 2.3 Interpolated quantiles for the exponent data.

50 far, we have only defined the quantile function Q(p) for certain
discrete values of p, namely Pi' Often this is all we need; in other cases,
we extend the definition of Q(p) within the range of the data by simple
interpolation. In Figure 2.1 this means connecting consecutive points
with straight line segments, leading to Figure 2.3. In symbols, if p is a
fraction f of the way from Pi to PHV then Q(p) is defined to be

Q(p) - (l-f)Q(Pi) + !Q(Pi+l)'
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We cannot use this formula to define Q(p) outside the range of the
data, where p is smaller than .51n or larger than 1-.5In. Extrapolation is
a tricky business; if we must extrapolate we will play safe and define
Q(p) - Y(l) for P < PI and Q(p) - Yen) for P > Pn' which produces the
short horizontal segments at the beginning and end of Figure 2.3.

Why do we take Pi to be (i-.5)/n and not, say ifn? There are
several reasons, most of which we will not go into here, since this is a
minor technical issue. (Several other choices are reasonable, but we
would be hard pressed to see a difference in any of our plots.) We will
mention only that when we separate the ordered observations into two
groups by splitting exactly on an observation, the use of (i-.5)/n means
that the observation is counted as being half in the lower group and
half in the upper group.

The median, Q(.5), is a very special quantile. It is the central value
in a set of data, the value that divides the data into two groups of equal
size. If n is odd, the median is Y«n+1)/2); if n is even there are two
values of Y(i) equally close to the middle and our interpolation rule tells
us to average them, giving (Y(n/2) + Y(n/2+1»f2. Two other important
quantiles with special names are the lower and upper quartiles, defined
as Q(.25) and Q(.75); they split off 25 percent and 75 percent of the data,
respectively. The distance from the first to the third quartile,
Q(.75) - Q(.25), is called the interquartile range and can be used to
judge the spread of the bulk of the data.

Many important properties of the distribution of a set of data are
conveyed by the quantile plot. For example, the medians, quartiles,
interquartile range, and other quantiles are quite easy to read from the
plot. For the exponent data in Figure 2.1 we see that the median is
about 95 and that a large fraction of points lie between 85 and 105.
Thus, most of the subjects have a perceptual scale that does not deviate
markedly from the area scale, which corresponds to the value 100. But a
few subjects do have values quite different from 100. In fact, the total
range (maximum minus minimum) is seen to be about 70. The subject
with the smallest exponent, 58, comes close to judging some linear
aspect of circles, such as diameter, rather than area. (A value of 50
corresponds to judging linear aspects exactly.)

Figure 2.4 is a quantile plot of the ozone data. It shows that the
median ozone is about 80 ppb. The value 120 ppb is roughly the .75
quantile; thus the federal standard in Stamford was exceeded about 25%
of the time. The highest concentration is somewhat less than 250 ppb
and only 8 values are above 200 ppb (corresponding to days heavily
polluted with ozone). The two smallest values of 14 ppb seem
somewhat out of line with the pattern of points at the low end.
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Figure 2.4 Quantile plot of the Stamford ozone data.

The local density or concentration of the data is conveyed by the
local slope of the quantile plot; the flatter the slope. the greater the
density of points. The rough overall density impression for the ozone
data conveyed by Figure 2.4 is one in which the density decreases with
larger ozone values. The highest local density of points occurs when
there are many measurements with exactly the same value. This is
revealed on the quantile plot by a string of horizontal points. For
example. in Figure 2.4 there are two such strings of length 6 between 50
ppb and 100 ppb, and another of length 8 at about 35 ppb. A more
detailed description of the ozone density will be given in Section 2.8
where a display specifically designed to convey density will be
described.
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The quantile plot is a good general purpose display since it is fairly
easy to construct and does a good job of portraying many aspects of a
distribution. Three convenient features of the plot are the following:
First, in constructing it, we do not make any arbitrary choices of
parameter values or cell boundaries (as we must for several of the
displays to be described shortly), and no models for the data are fitted
or assumed. Second, like a table, it is not a summary but a display of all
the data. Third, on the quantile plot every point is plotted at a distinct
location, even if there are exact duplicates in the data. The number of
points that can be portrayed without overlap is limited only by the
resolution of the plotting device. For a high resolution device several
hundred points are easily distinguished.

2.3 SYMMETRY

We often use the idea of symmetry in data analysis. The essence of
symmetry is that if you look at the reflection of a symmetric object in a
mirror, its appearance remains the same. Since a mirror reverses left
and right, this means that an object is symmetric if every detail that
occurs on the left also occurs on the right, and at the same distance from
an imaginary line down the center.

The distribution of a set of data is symmetric if a plot of the points
along a simple number line is symmetric in the usual sense. The sketch
in Figure 2.5 shows such a plot of six fictitious symmetric data values,

Yell Y(2) Y(3) Ye4l Y(S) Yes)

• I • • i • • ! •
I I I

-1 0
I I

2
I

3 4I I I
I I I
I I I
I I I
I J I----- --------1.1 1.1

MEDIAN

Figure 2.5 Six fictitious symmetric data values.
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-1.2, 0.4, 1.3, 1.7, 2.6, and 4.2. The center of symmetry must be the
median, and the sketch shows that Y(2) and YCS) are equidistant from the
center, that is,

median - Y(2) - YeS) - median - 1.1.

The general requirement for symmetry is

median - y(;) - YCIl+1-i) - median, for i-I to n/2.

{If n is odd we can use (n+l)/2 instead of n/2.) Of course, just as faces
and others things that we regard as symmetric in real life are not exactly
symmetric, so data will not be exactly symmetric. We will look for
approximate symmetry.

We can also characterize symmetry in terms of the quantile
function. Since the median is Q(.5), we say that the data are
symmetrically distributed if

Q(.5) - Q(p) - Q(I-p) - Q(.5) for all p, 0 < p < .5.

When data are asymmetric in a way that makes the quantiles on the
right progressively further from the median than the corresponding
quantiles on the left, then we say that the data are skewed to the right,
or toward large values.

The quantile plot can be used to examine data for symmetry. If the
data are symmetric the plot itself will not be symmetric in the usual
sensei rather, the points in the top half of the plot will stretch out
toward the upper right in the same way that the points in the bottom
half stretch out toward the lower left. This is shown for our artificial
data in Figure 2.6. When the data are skewed toward large values, then
the top of the quantile plot extends upward more sharply. Figure 2.4
shows that the ozone data are skewed, but in Figure 2.1 the exponent
data appear to be nearly symmetric. Section 2.8 discusses a plot
specifically designed for investigating symmetry in data.

There are several reasons why symmetry is an important concept
in data analysis. First, the most important single summary of a set of
data is the location of the center, and when data are symmetric the
meaning of "center" is unambiguous. We can take center to mean any
of the following three things, since they all coincide exactly for
symmetric data, and they are close together for nearly symmetric data:
(I) the center of symmetry, (2) the arithmetic average or center of
gravity, (3) the median or 50% point. Furthermore, if the data have a
single point of highest concentration instead of several (that is, they are
unimodal), then we can add to the list (4) the point of highest
concentration. When data are far from symmetric, we may have trouble
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Figure 2.6 Quantile plot of the six fictitious symmetric data values of
Figure 2.5.

even agreeing on what we mean by center; in fact, the center may
become an inappropriate summary for the data.

Symmetry is also important because it can simplify our thinking
about the distribution of a set of data. If we can establish that the data
are (approximately) symmetric, then we no longer need to describe the
shapes of both the right and left halves. (We might even combine the
information from the two sides and have effectively twice as much data
for viewing the distributional shape.)

Finally, symmetry is important because many statistical procedures
are designed for, and work best on, symmetric data. For example, the
simple and common practice of summarizing the spread of a set of data
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by quoting a single number such as the standard deviation or the
interquartile range is only valid, in a sense, for symmetric data. For
readers familiar with the normal or Gaussian distribution (which we do
not discuss until Chapter 6), we mention that whereas the normal
distribution is the foundation for many classical statistical procedures,
symmetry alone underlies many modern robust statistical methods. The
modern procedures have wider applicability because normality is often
an unrealistic requirement for data, but approximate symmetry is often
attainable. Interestingly, symmetry is a basic property of the normal
distribution!

2.4 ONE-DIMENSIONAL SCATTER PLOTS

A simple way to portray the distribution of the data is to plot the data Yi
along a number line or axis labeled according to the measurement scale.
The resulting one-dimensional scatter diagram or scatter plot is shown
in Figure 2.7 for the ozone data. Note that if we horizontally project
the points on a quantile plot onto the vertical axis, the result is a
vertical one-dimensional scatter plot. In this sense the quantile plot can
be thought of as an expansion into two dimensions of the one-
dimensional scatter plot.

a 50 100 150 200 250

OZONE <ppb)

Figure 2.7 One-dimensional scatter plot of the ozone data.

The main virtue of the one-dimensional scatter plot is its
compactness. This allows it to be used in the margins of other displays
to add information. (An example will be shown later in the chapter.) In
a one-dimensional scatter plot we can clearly see the maximum and
minimum values of the data. Provided there is not too much overlap we
can also get very rough impressions of the center of the data, the
spread, local density, symmetry, and outliers. Furthermore the plot is
easy to construct and to explain to others.
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Figure 2.8 A one-dimensional scatter plot of the ozone data with
stacking (top panel) and a jittered one-dimensional scatter plot (bottom
panel).

However, a price is paid for collapsing the two-dimensional
quantile plot to the one-dimensional scatter plot. Individual quantiles
can no longer be found easily, and visual resolution of the points is
more likely to be a problem even for moderately many points. We
obtain maximum resolution by using a plotting character that is narrow
such as a dot or a short vertical line instead of, say, an asterisk or an x.
But this does not solve the problem of exact duplicates. If y<;) - Y<;+1)'

then the plotting locations for Y(i) and Y(i+1) on the one-dimensional
scatter plot are the same. (Note that this did not happen on the quantile
plot.) For example, there are several repeated values in the ozone data
which are not resolved in Figure 2.7. One way to alleviate this problem
is to stack points, that is, to displace them vertically when they coincide
with others. A one-dimensional scatter plot of the ozone data with
stacking is shown in the top panel of Figure 2.8. This, however, is only
a solution to the problem of exact overlap and does not help us when
there are a lot of points that crowd one another. Another method that
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helps to alleviate both exact overlap and crowding is vertical jitter,
which is illustrated in the bottom panel of Figure 2.8. Let Uj, i-I to n,
be the integers 1 to n in random order. The vertical jitter is achieved by
plotting Uj against Yj with Uj on the vertical axis and Yi on the
horizontal axis. To keep the display nearly one-dimensional the range
of the vertical axis - that is, the actual physical distance - is kept
small compared to the range of the horizontal axis, and, of course, we
do not need to indicate the vertical scale on the plot. The vertical jitter
in Figure 2.8 appears to have done a good job of reducing the overlap in
Figure 2.7.

2.5 BOX PLOTS

It is usually important to take an initial look at all of the data, perhaps
with a quantile plot, to make sure that no unusual behavior goes
undetected. But there are also situations and stages of analysis where it
is useful to have summary displays of the distribution. One simple
method of summarization, called a box plot (Tukey, 1977), is illustrated
in Figure 2.9 for the ozone data and in Figure 2.10 for the exponent
data.

In the box plot the upper and lower quartiles of the data are
portrayed by the top and bottom of a rectangle, and the median is
portrayed by a horizontal line segment within the rectangle. Dashed
lines extend from the ends of the box to the adjacent values which are
defined as follows. We first compute the interquartile range, IQR -
Q(.75) - Q(.25). In the case of the exponent data the quartiles are 83.5
and 101.5 so that IQR - 18. The upper adjacent value is defined to be
the largest observation that is less than or equal to the upper quartile
plus 1.5 x IQR. Since this latter value is 128.5 for the exponent data,
the upper adjacent value is simply the largest observation, 127. The
lower adjacent value is defined to be the smallest observation that is
greater than or equal to the lower quartile minus 1.5 x IQR. For the
exponent data, it is the smallest observation, 58. Thus for the exponent
data, the adjacent values are the extreme values. If any Yj falls outside
the range of the two adjacent values, it is called an outside value and is
plotted as an individual point; for the exponent data there are no
outside values and for the ozone data there are two.
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Figure 2.9 A box plot of the ozone data.

The box plot gives a quick impression of certain prominent
features of the distribution. The median shows the center, or location,
of the distribution. The spread of the bulk of the data (the central 50%)
is seen as the length of the box. The lengths of the dashed lines
relative to the box show how stretched the tails of the distribution are.
The individual outside values give the viewer an opportunity to
consider the question of outliers, that is, observations that seem
unusually, or even implausibly, large or small. Outside values are not
necessarily outliers (indeed, the ozone quantile plot suggests that the
two ozone outside values are not), but any outliers will almost certainly
appear as outside values.

The box plot allows a partial assessment of symmetry. If the
distribution is symmetric then the box plot is symmetric about the
median: the median cuts the box in half, the upper and lower dashed
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Figure 2.10 A box plot of the exponent data.

lines are about the same length, and the outside values at top and
bottom, if any, are about equal in number and symmetrically placed.
There can be asymmetry in the data not revealed by the box plot, but
the plot usually gives a good rough indication. The box plot in Figure
2.9 shows that the ozone data are not symmetric. The upper
components are stretched relative to their counterparts below the
median, revealing that the distribution is skewed to the right. For the
exponent data the box plot in Figure 2.10 suggests that the tails are
symmetric, but that the median is high relative to the quartiles. Recall
from Section 2.3 that the quantile plot of these data in Figure 2.1
suggests the data are approximately symmetric. To resolve this apparent
contradiction, we can look more closely at Figure 2.1. Ignoring the two
largest and two smallest values, the rest of the data appear slightly
skewed toward small values, which explains the position of tHe median
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relative to the quartiles. But we should remember that the number of
observations in this sample is small and that we would quite likely see
different behavior in another sample.

Box plots are useful in situations where it is either not necessary or
not feasible to portray all details of the distribution. For example, if
many distributions are to be compared, it is difficult to try to compare
all aspects of the distributions. In situations where the summary values
of the box plot do a good job of conveying the prominent features of
the distribution and the less prominent detailed features do not matter,
it makes sense to use the box plot and eliminate the unneeded
information.

The width of the box, as defined so far, has no particular meaning.
The plot can be made quite narrow without affecting its visual impact so
that it can be used in situations where compactness is important. This is
useful in Chapter 3 when many distributions are being compared and in
Chapter 4 when the box plot is added to the margin of another visual
display.

2.6 HISTOGRAMS

Another way to summarize a data distribution, one that has a long
history in statistics, is to partition the range of the data into several
intervals of equal length, count the number of points in each interval,
and plot the counts as bar lengths in a histogram. This has been done
in Figure 2.11 for the ozone data. The relative heights of the bars
represent the relative density of observations in the intervals.

The histogram is widely used and thus is familiar even to most
nontechnical people and without extensive explanation. This makes it a
convenient way to communicate distributional information to general
audiences.

However, as a data analysis device it has some drawbacks. Figure
2.12 is a second histogram of the same ozone data. Below each
histogram is a jittered one-dimensional scatter plot to show the
relationship of the histogram to the original data. The two histograms
give rather different visual impressions, and the differences depend on
the fairly arbitrary choice of the number and placement of intervals.
This choic~ determines whether we show more detail, as in Figure 2.12,
or retain a smoothness or simplicity, as in Figure 2.11. But even Figure
2.11 is not genuinely smooth, because the bars have sharp corners. The
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Figure 2.11 Histogram of the ozone data, with a jittered one-
dimensional scatter plot.

positions of the corners have little to do with the data; they are an
artifact of the histogram construction. (Smoother approaches are
discussed in Section 2.9.) Figure 2.11 reveals an additional problem:
following common practice, we put the ends of the intervals at
convenient numbers (multiples of 50 ppb) so they can be easily read
from the plot, but in doing so we have covered up the important
nonzero lower bound for ozone and have created the erroneous
impression that the density of the data points just below 50 ppb is much
less than the density just above 50 ppb.
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2.7 STEM-AND-LEAF DIAGRAMS

Figure 2.13 shows a stem-and-Ieaf diagram of the ozone data (Tukey,
1977). It is a hybrid between a table and a graph since it shows
numerical values as numerals but its profile is very much like a
histogram.

To construct a stem-and-Ieaf diagram we first write down, to the
left of a vertical line, all possible leading digits in the range of the data.
Then we represent each data value by writing its trailing digit in the
appropriate row to the right of the line. Thus the fifteenth row of the


