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Preface

This book is devoted to a problem that lies at the crossroad of several sci-
ences: statistics, geometry, celestial mechanics and computational astronomy,
the problem of dating ancient star catalogs from an analysis of their contents,
on the basis of modern knowledge of how the visible picture of the sky evolves
with time. A vivid example is the problem of dating the star catalog of the
famous Ptolemy’s Almagest. The problem has a long and involved history; see
a review of publications on the subject in the book of R. Newton!.

The Almagest is traditionally attributed to Claudius Ptolemy (about the
2nd century AD). Yet, some investigations (mainly, the ones carried out in the
18th—19th centuries) revealed some contradictions between the astronomic
data contained in the catalog and the astronomic reality of the 2nd century
AD. This led to a hypothesis that Ptolemy had in fact used for the Almagest
a star catalog compiled by Hipparchus (whose lifetime is traditionally attrib-
uted to the 2nd century BC), presumably having added some observations
of his own. The reader can find a discussion of this hypothesis (and some
others) in classical works®3. A more recent book of R. Newton! presents
a thorough statistical and astronomical analysis of the 4lmagest as a whole,
and in particular of the star catalog it contains. R. Newton contends that his
analysis gives an irrefutable proof of most observational data contained in the
catalog being counterfeit. In any case R. Newton insists on the necessity of
an overall revision of our views of the position and the role of the Almagest in
the history of science. In fact, a similar conclusion and the inference that an
essential redating of the Almagest is necessary had been suggested long before

iii



v PREFACE

R. Newton by N. A. Morozov in his fundamental book History in the Light of
Natural Sciences, published in 1928-1932 under the title Khristos (Christ) (see
Ref. 4). It should be noted that the astronomical and mathematical arguments
of N. A. Morozov are diverse from the ones of R. Newton, but they lead to
a similar conclusion about the necessity of a revision of the traditional views
of the Almagest. A lot of additional criticism on the subject can be found in
the cycle of works of A. T. Fomenko® 1, devoted to the development of new
empirico-statistical methods for detecting dependent narrative texts and for
dating the events they describe (in particular, astronomic events).

We stress, however, that the investigations we expose in this book are
completely independent of the methods and arguments used in the afore-
mentioned works and that we do not use the hypotheses suggested therein.

In this book we suggest a new method for dating ancient star catalogs. The
method uses, in particular, the investigation of proper motions of stars. Since
these motions are now measured with a very high accuracy (on the basis of
astronomic observations of the last two centuries), it is possible to compute
the positions of stars in the past. Comparing these with the ones indicated in
a star catalog, we can try to determine the time when the observations were
made, and consequently the approximate time of compilation of the catalog.
However, a practical implementation of this seemingly simple idea encounters
major difficulties, both of technical and fundamental nature. Coping with
these difficulties requires the new statistico-geometrical method we present
in this book. The foundations of the method have been exposed in Refs. 14
and 15. Our approach involves both statistical and geometrical ideas; the
latter are necessary because of the geometrical nature of the object we deal
with, the evolution of a point set (the set of stars) in the celestial sphere.

We have tested the method on some reliably dated medieval star catalogs,
and also on some artificially created catalogs. In the latter case the catalogs
were compiled with the help of a computer; of course, the compiler knew the
“date of compilation”, but the researcher did not. The date was sealed in
an envelope to be unsealed only after getting a date from the method. The
procedure proved the efficiency of the method: the “date of compilation” was
always within the interval it produced.

Then we applied the method to the star catalog of the Almagest. The
results thus obtained contradict the traditionally accepted date and imply the
necessity of its considerable “rejuvenating”.

The main body of this book does not involve any historical questions or
questions concerning the origins of the data. Thus, we concentrate on the
contents of the star catalog itself, and do not even raise any questions con-
cerning the rest of the A/magest (the star catalog constitutes the seventh and
the eighth books of the Almagest).

However, for the reader’s convenience, we have supplemented the book
with the Addendum containing an exposition of some problems and conjec-
tures on dating the Almagest as a whole. We should stress once more that
the main body of the book is entirely independent of the Addendum. The



PREFACE v

Addendum is intended for a reader wishing to proceed with the study of the
questions we raise in the main body of the book toward understanding the
origins of the data. A reader interested in mathematical and astronomical
aspects alone may confine himself to the main body of the book.

The structure of the book is the following.

The Introduction provides a brief review of the contents of the Almagest,
and in particular of its star catalog. We also give a brief review of other star
catalogs and explain our interest in the problem of dating catalogs.

Chapter 1 provides some necessary information from astronomy, astrome-
try and history of observational equipment and methods for measuring coor-
dinates of stars.

In Chapter 2, we carry out a preliminary analysis of the star catalog of the
Almagest. We discuss here various problems that arise in connection with the
catalog (for example, the ambiguity in identification of stars), the accuracy of
altitudes and longitudes in the catalog, and some peculiarities of the catalog
(such as the Peters’ sine curve).

In Chapter 3, we analyze some attempts to date the star catalog of the
Almagest based on the most obvious ideas. We show that no straightforward
elementary methods lead to a reliable date, and reveal the difficulties behind
these failures.

In Chapter 4, we start the description of our new method for dating star
catalogs. Here we discuss the “Who is who?” problem, the problem of iden-
tification of the stars described in the catalog with the ones known in modern
astronomy.

Chapter 5 presents mathematical backgrounds for the statistical analysis
of the catalog. Here we classify various errors that occur in the catalog, and
suggest methods for their detection and for compensation for the systematic
component.

In Chapter 6, we carry out a global statistical processing of the catalog and
of its basic parts. We apply several statistical characteristics to various pieces
of the celestial sphere, which enables us to distinguish the “well-measured”
and “poorly measured” pieces. The ensuing decomposition of the sky into the
“homogeneous areas” (with contrasting accuracy of measurement) implies a
new view of the structure of the Almagest.

In Chapter 7, we apply two different dating procedures, statistical and geo-
metrical, to the catalog of the Almagest; the two estimates turn out to agree.

In Chapter 8, we suggest an explanation for the “Peters’ sine curve”, based
on the previous results; we also discuss here the value of the angle between
the equatorial plane and the ecliptic given in the Almagest.

In Chapter 9, we apply our method to the catalogs of Tycho Brahe, Ulugh
Beg, Hevelius and Al Siifi (As-Sifi).

Chapter 10 is devoted to determination of the date using other parts of
the Almagest. The ensuing results demonstrate perfect agreement with our
date for the star catalog. Finally, we obtain the period of time that captures
the observations fixed in the Almagest (500-1350 AD), and reconstruct



vi PREFACE

the “Ptolemaic chronology”, that is, Ptolemy’s concepts of global chronology
(nowadays concealed by the erroneous tradition of recalculating Ptolemy’s
dates into the years AD). It turns out that similar concepts can be found
in several sources of the 13th-14th centuries. Thus, the Almagest keeps to
a chronological tradition, nowadays forgotten, but actual in the 13th-14th
centuries, which differs much from the chronology we are used to today.

The book is concluded by the Addendum, containing a brief review of prob-
lems connected with dating the Almagest as a whole. We treat this material
as supplementary, and do not use it in the main body of the book, although it
is probably of some epistemological interest.

The book is supplemented with tables containing some astronomic data
we use in the text.

The book contains a lot of material represented in tabular and graphical
form. We call reader’s attention to figures and graphs, which contain much
important information, necessary for a fuller understanding of the book. We
number the figures and tables consecutively within every chapter and chapter
number precedes the number of the figure. Thus “see Figure 2.1” means “see
Figure 1 in Chapter 2”.

We use the techniques of mathematical statistics, modern geometry, celes-
tial mechanics and astrometry. Therefore some chapters require an acquain-
tance with basic mathematical notions. Yet, we tried to make the mathematics
we used as simple as possible, and we hope that this book will be accessible toa
reader familiar with the elements of mathematics at the level of a second-year
student in mathematics. The book is intended not only for specialists in natu-
ral sciences, but also for the historians interested in modern mathematical and
statistical methods. See also the book: A. T. Fomenko, Empirico-Statistical
Methods for Analysis of Narrative and Numerical Sources with Applications to
the Problems of Ancient and Medieval History and Chronology, vols. 1,2. Kluwer
Acad. Publ. (in print).

The authors are indebted to Academicians E. P. Velikhov, Yu. V. Prokhorov,
Yu. I. Zhuravlev, B. V. Gnedenko and A. S. Zaimovski, Professors
V. M. Zolotarev, V. M. Kruglov, V. V. Kozlov, V. K. Abalakin, V. G. Demin,
A.V.Nagaev, Yu. N. Tyurin, Yu. K. Belyaev, I. G. Zhurbenko, E. V. Chepurin,
Yu. M. Sukhov and S. A. Aivazian for helpful discussions and support they pro-
vided in writing this book. We thank Professors H.-J. Lenz, T. Z. Nguen,
Yu. V. Deikalo, E. S. Gavrilenko, M. R. Vovchenko, V. V. Kalashnikov
(junior), A. A. Borisenko, Yu. G. Fomin, C. Yu. Zholkov, T. S. Turova,
O. Yu. Soboleva and Yu. A. Tyurina for their valuable help in processing
numerical data, analyzing sources (rare printed editions and manuscripts)
and helpful consultations on the subjects.

We thank E. K. Orlova for her selfless help in preparation of the manuscript
of this book.

A. T Fomenko
V. V. Kalashnikov
G. V. Nosovsky
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Introduction

1. Brief description of the Aimagest

The Almagest is a famous work of an Alexandrite astronomer, mathemati-
cian and philosopher Claudius Ptolemy, whose lifetime is traditionally attrib-
uted to the 2nd century AD. We give some information about Ptolemy below;
it should be noted, however, that “history treated somewhat strangely the
person and the works of Ptolemy. Historians of his time never mention his
life and activities ... . No facts of his life, neither the dates of his birth and
death are known” (Ref. 16, p. 96).

It is traditionally considered that the Almagest was created in the reign of
Roman emperor Antoninus Pius (131-161 AD).

The Almagest contains 13 books, about 1000 pages in total volume (in
modern editions).

The first book contains basic concepts and constructions, of which the fol-
lowing should be mentioned: 1) The firmament is spherical, and rotates like a
sphere; 2) The earth is a sphere, disposed at the center of the universe; 3) The
earth can be considered as a point in comparison with the distances to the
sphere of fixed stars; 4) The earth does not alter its position in space (does not
move). As Ptolemy notes, these principles are based on the conclusions of
Aristotle’s philosophy. Further, the first and the second books contain an ex-
position of elements of spherical astronomy (theorems on spherical triangles,
a method for calculating arcs (angles) from the lengths of their spans, etc.).

1



2 INTRODUCTION

The third book presents a theory of visible solar motion and a discussion of
the dates of equinoxes, the length of the year, etc. The fourth book treats the
length of the synodic month and the theory of lunar motion. The fifth book is
devoted to the construction of some astronomic instruments and to a further
development of the theory of the moon. The sixth book exposes a theory of
solar and lunar eclipses.

The famous star catalog (comprising more than 1000 stars) is contained in
the seventh and eighth books of the Almagest. The books contain the catalog
and a discussion of properties of fixed stars, of motion of the celestial sphere,
etc.

The last five books of the Almagest are devoted to the theory of motion
of planets (Ptolemy considers five planets, Saturn, Jupiter, Mars, Venus and
Mercury).

2. A brief review of the history of the Aimagest

It is commonly accepted that the Almagest was created in the reign of An-
toninus Pius (131-161 AD) and that the last observation included therein
had been made on February 2, 141 AD. The Greek title of the Almagest,
uabnuaticn ovvraéig, implies that the Almagest exposes the state-of-the-
art of contemporary Greek astronomy. Nowadays it is not known whether
any other astronomical treatises comparable to the Almagest existed at the
time. Usually, the tremendous success of the Almagest (with astronomers, as
well as with other scientists) is attributed!’ to the loss of most of the astro-
nomic treatises of the time. The Almagest had become the basic textbook in
astronomy (as is considered nowadays) for more than a thousand years. It
influenced greatly the late medieval astronomy, both in Islamic and Christian
regions, up to the 16th century. The influence of this book might be only
compared to the influence of Euclid’s Elements on the medieval science.

As noted, for example, by Toomer (Ref. 17, p. 2), it is extremely difficult
to trace the history of the Almagest and its influences from the 2nd century
AD to the Middle Ages. Commentaries of Pappus and Theon of Alexandria
are the usual source for judgment on the role of the Almagest as a standard
textbook in astronomy for “advanced students” in the schools at Alexandria in
late antiquity. Further, a “period of darkness” comes. We will only note here
the following description of this period: “After the exciting blossoming forth
of antique culture, on the European continent a long period of stagnation,
sometimes even of regress, began, usually referred to as Middle Ages .. . Over
more than 1000 years not a single essential discovery in astronomy was made
... 7 (Ref. 17, p. 73).

Furthermore, it is believed that in the 8th and the 9th centuries, in connec-
tion with growing interest in Greek science in the Islamic world, the Almagest
was “raised from the darkness” and was translated, first into Syrian and later,
several times, into Arabic. By the middle of the 12th century at least five



4. WHY DATING STAR CATALOGS IS INTERESTING 3

versions of the translations existed. It is presumed that while in the East (in
particular, in Byzantium), the work of Ptolemy, originally written in Greek,
was being copied and, to some extent, studied, “all knowledge of it was lost
to western Europe by the early middle ages. Although translations from the
Greek text into Latin were made in medieval times, the principal channel for
the recovery of the Almagest in the west was the translation from the Arabic
by Gerard of Cremona, made at Toledo and completed in 1175. Manuscripts
of the Greek text (of the Almagest — Authors) began to reach the west in the
fifteenth century, but it was Gerard’s text which underlay (often at several
removes) books on astronomy as late as the Peurbach-Regiomontanus epit-
ome of the Almagest . . . It was also the version in which the Almagest was first
printed (Venice, 1515). The sixteenth century saw the wide dissemination of
the Greek text (printed at Basel by Hervagius, 1538), and also the obsolence
of Ptolemy’s astronomical system, brought about not so much by the work of
Copernicus (which in form and concepts is still dominated by the Almagest)
as by that of Brahe and Kepler” (Ref. 17, pp. 2-3).

3. Basic medieval star catalogs

The catalog of the Almagest is the only extant antique star catalog; it is tra-
ditionally dated about the 2nd century AD. It is considered, however, that
Ptolemy used the star catalog compiled by his predecessor Hipparchus about
the 2nd century BC. The Almagest catalog (as well as other catalogs of later
origin) comprises about 1000 stars, whose positions are described in terms
of their longitudes and latitudes (see below for details). After Ptolemy, the
“period of darkness and regress” in the history of astronomy (and in the his-
tory of all natural sciences) begins, and we know of no other star catalogs up
to the 10th century. Finally, only as late as in the 10th century (according
to the traditional chronology) was the first medieval catalog created, the one
composed by Arabic astronomer As-Siifi (Abd Al Rahman Al Sifi, 903-966)
in Baghdad. This catalog has come down to us. The next at our disposal is the
Ulugh Beg star catalog (13941449, Samarkand). The three catalogs are not
very precise: they indicate the coordinates of stars to an accuracy within 10
minutes of arc. The next extant is the famous catalog of Tycho Brahe (1546
1601), the precision of which is an order of magnitude better than that of the
three preceding catalogs. Brahe’s catalog is the acme of skill reached with
the help of medieval methods and instruments for astronomical observations.
We stop our enumeration here and do not list the catalogs created after Tycho
Brahe (there were many, and they are of no interest to us here).

4. Why dating star catalogs is interesting

Every star catalog comprising about 1000 stars is a result of a lot of obser-
vations made by an astronomer (even more likely, by a group of professional
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observers), which required much effort, thoroughness and professionalism,
and also an utmost use of available measuring instruments, which were made
at the highest contemporary level. Moreover, a catalog required a proper
astronomic theory, a world view. Thus, every ancient catalog is a focus of the
astronomic mind of the age. So, analyzing a catalog we can learn much about
the available accuracy of measurement, the astronomic ideas of the time, etc.

But to understand properly the results of the analysis, we need to know
the time when the catalog was compiled. Any variation in the date alters
automatically our estimates and conclusions about the catalog. Meanwhile,
to determine the date of compilation of a catalog is far from easy. This is very
well seen in the case of the Almagest. First (in the 18th century), the tradi-
tional version attributing the catalog to Ptolemy, about the 2nd century AD,
was indisputably accepted. In the 19th century, a more thorough analysis of
longitudes of stars indicated in the Almagest showed (we describe the details
below) that they are more likely to belong to the 2nd century BC, that is, to
the time of Hipparchus.

The catalog, contained in the seventh and the eighth books of the Al-
magest, comprises 1028 stars (three of which are duplicates). It contains not
a single star that could be observed by Ptolemy from Alexandria, but not
by Hipparchus from Rhodes. Moreover, Ptolemy claimed that he had de-
termined, from comparison of his observations with the ones of Hipparchus
and others, the magnitude of precession 38’ (which is erroneous), treated by
Hipparchus as the least possible value, and by Ptolemy, as the final estimate.
The positions of stars as indicated in Ptolemy’s catalog are nearer to their
real positions in the time of Hipparchus, with the purported 38’ yearly cor-
rection, than to their real positions in the time of Ptolemy. So, it looks very
likely that the catalog is not a result of Ptolemy’s own observations, but the
catalog of Hipparchus, corrected for precession, with a few alterations from
observations of Ptolemy or other astronomers (see Ref. 2, pp. 68-69).

Thus, in this case the date of compilation of the catalog acquires a para-
mount importance. For several centuries astronomers and historians of as-
tronomy analyzed the catalog (and the Almagest in the whole) trying to “sort”
the data contained therein to separate the observations of Hipparchus from
the ones of Ptolemy. A lot of literature is devoted to this dating problem. We
do not dwell on a review of this literature here; an interested reader will find
a guide thereto in Ref. 1.

In this book we consider the question: Is it possible to create a method for
dating star catalogs “intrinsically”, that is, using only the numeric information
contained in the coordinates of stars indicated in the catalog? Our answer is
YES. We have worked out such a method, tested it on several reliably dated
catalogs and applied it, in particular, to the Almagest. The reader will learn
our results from this book.
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Chapter 1

Some Concepts

of Astronomy

and History of Astronomy

1. Ecliptic, equator and precession

Let us consider the orbital motion of the earth around the sun. It is con-
ventional to treat this motion as the motion of the so-called barycenter, the
mass center of the system earth-moon. The barycenter is about six thousand
kilometers from the center of the earth (hence under the earth’s surface).
This distance is unessential for our further treatment, so we will make no
distinction between the motion of the earth and the motion of the barycen-
ter. Gravitational pull from other planets brings about steady rotation of the
orbital plane of the barycenter. The principal sinusoidal component of the ro-
tation has a very large period, and in small intervals of time may be treated as
linear. The real motion is the sum of this component with minor oscillations,
which we will neglect. The rotating plane that contains the orbit is called the
ecliptic plane. The circumference where the ecliptic plane meets the sphere
of fixed stars is called the ecliptic. We assume that the center of the sphere of
fixed stars O lies in the ecliptic plane (Figure 1.1). Since the ecliptic moves,
it is called the moving ecliptic. The position of the ecliptic at a given moment
of time is called the instantaneous ecliptic. For example, we can speak of the
instantaneous ecliptic of January 1, 1900. It should be clear that we can use
any fixed instantaneous ecliptic as a frame of reference for other ecliptics.

Celestial mechanics usually treats the earth as a rigid body. A rotation of
a rigid body is usually described in terms of its moment ellipsoid, determined
by its axes, called the axes of inertia. A particular rotation of a rigid body is

7
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Figure 1.1. The sphere of fixed stars, with the ecliptic and the equatorial coordinate
systems.

characterized by the vector of angular velocity w, sometimes called the instan-
taneous rotation axis of the body (in our case, of the earth). Since the axes of
inertia 4, B, C (A> B > C) are orthogonal, we can use them as the axes of
a rectangular coordinate system. Now we can consider the projections x, y, z
of the vector w on the axes 4, B and C as the coordinates of w. The rotation
of a rigid body can now be described by the Euler-Poisson equations:

A+ (C—- Byyz= M4
1) By+(A-C)xz= Mp
Cz+(B—- Axy= Mc

where M4, Mg, Mc are the projections on the axes of a vector M, called
the moment of outer forces about the barycenter. The moment M is mainly
due to the gravitational pull of the sun and the moon on the ellipsoid that
is the earth. Usually, the earth is assumed to be an ellipsoid of revolution
(that is, the greater semiaxes A4 and B are assumed equal). The position of M
with reference to the axes 4, B and C varies with time very fast and in a very
complicated way; however, modemn theories of lunar and solar motion enable
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us to compute it to a high accuracy for any moment of time. Consequently,
we can solve the Euler-Poisson equations, thus determining the evolution of
w. Usually, the Tables of the Motion of the Earth on its Axis and around the Sun
by the well-known astronomer S. Newcomb!® are used to take into account all
irregularities of the motion. A study of the Euler-Poisson equations from the
point of view of the existence of exact solution constitutes an important field
of modern theoretical mechanics, physics and geometry; see a short review
hereof, for example, in Ref. 20.

The vector of instantaneous angular velocity of the earth « determines the
(instantaneous) axis of rotation. The points where the axis of rotation pierces
the surface of the earth are called the instantaneous poles of the earth, and the
points where the axis meets the celestial sphere (the sphere of fixed stars) are
called the (North and South) poles of the world (Figure 1.1). The intersection
of the plane through the center of the earth perpendicular to the axis of
rotation with the surface of the earth is called the (instantaneous) equator,
and its intersection with the celestial sphere is called the (true) equator of the
celestial sphere.

Let us now consider a coordinate system that does not rotate together with
the earth, for example, the one associated with the ecliptic. Conventionally,
the following axes are used as coordinates in this system: the normal to the
ecliptic plane, the axis where the ecliptic plane intersects the equatorial plane
(the equinoctial axis) and the axis of inertia C. The projections of w on the
three axes are denoted by ¥/, § and ¢. Thus, we have expanded the velocity of
rotation of the earth into three components. What is their geometrical sense?
v is called the velocity of precession of the earth. 1t characterizes the motion of
the axis of precession C (the third axis of inertia) along a circular cone about
the normal OP (see Figure 1.2); thus, the vector ® = ON moves along the
same cone. Note that the axes @ and OC are very close to each other, so in
calculations that do not require high accuracy we may assume that the vector
w is parallel to OC. Because of the precession, the equinoctial axis rotates in
the ecliptic plane.

The component § characterizes variation of the angle § the axis OC makes
with the ecliptic plane. As for ¢, it determines the velocity of the earth’s
rotation about the axis OC; in theoretical mechanics this magnitude is called
the velocity of proper rotation. This velocity is much greater than ¥ and 4.
From the point of view of theoretical mechanics, this reflects the principle
according to which a rotation of a rigid body is stable when its axis is close to
the axis of the greatest moment of inertia, that is, to the shortest axis of the
ellipsoid of inertia.

Thus, @ = ¥ +0 + ¢ where + stands for summation of vectors. Each of ¥,
6 and ¢ is the sum of a constant (or almost constant) component and many
minor periodic summands, called nutations. Neglecting nutations, we come
to the following picture of rotation of the earth.
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ecliptic

Figure 1.2. Trajectory of motion of the earth’s precession.

1) The (almost) constant component of v is called the longitudinal preces-
sion; it moves the axis OC uniformly along a circular cone (see Figure 1.2)
at the rate of approximately 50” per year; the equinoctial axis rotates in the
ecliptic plane clockwise if looked at from the North pole of the ecliptic. The
vector of precession is directed toward the South pole of the ecliptic.

2) The constant component of § is now approximately equal to 0.5” per
year.

3) The constant component of ¢ is the mean proper rotation of the earth
about the axis OC, anticlockwise if looked at from the North pole of the
earth; the period of rotation is 24 hours.

Note that the axis O P (the normal to the ecliptic plane), the vector w (the
instantaneous angular velocity of the earth) and the axis OC lie in the same
plane. The precession turns this plane about the axis O P,

Nutational addends in ¥, 6 and ¢ distort the above picture of rotation.
Therefore the vector w moves not along an ideal circular cone, but along a
“wavy” surface near the cone (Figure 1.2). In Figure 1.2, the trajectory of the
endpoint of w is depicted by a wavy line. Two circumferences in the celestial
sphere, the ecliptic and the equator, meet at the angle ¢ = 23°27’ at points
Q and R (Figure 1.1). These are the points where the sun passes the equator
in its yearly motion along the ecliptic. The point Q, where the sun enters the
Northern hemisphere, is called the spring equinoctial point (when the sun is at
this point, day and night have equal length all over the surface of the earth).
The point R is the fall equinoctial point (Figure 1.1). As the moving ecliptic
turns, the spring equinoctial point moves steadily along the equator (shifting
simultaneously along the ecliptic). The rate of this motion of the equinoctial



2. EQUATORIAL AND ECLIPTIC COORDINATES 11

point along the ecliptic is exactly the longitudinal precession. The shift of the
equinoctial points thus produces a shift of dates of equinoxes (Figure 1.1).

2. Equatorial and ecliptic coordinates

Recording observations of heavenly bodies requires a convenient coordi-
nate system. Several coordinate systems are used to that end. The equatorial
coordinate system is defined as follows. Figure 1.1 shows the North pole N and
the celestial equator, containing the arc O B. We may assume with sufficiently
high accuracy that the plane of the celestial equator contains also the earth’s
equator; furthermore, we assume that the center of the earth coincides with
the center O of the celestial sphere; Q is the spring equinoctial point. Let A
be a fixed star and N B the meridian through the North pole and 4; here B is
the point where the meridian meets the equatorial plane. The arc QB = « is
the equatorial longitude of the star A, also called the direct ascent of the star.
The ascent is counted in the direction opposite to the one of the motion of the
spring equinoctial point Q. Consequently, due to precession, the direct ascents
of stars slowly increase with time. The arc § of the meridian 4B in Figure 1.1
is called the equatorial latitude, or the declination of the star A. If we neglect
oscillations of the ecliptic, the declinations of stars in the Northern hemisphere
slowly decrease with time (because of the shift of the spring equinoctial point),
and the declinations of stars of the Southern hemisphere slowly increase. The di-
urnal rotation of the earth does not affect declinations, and the direct ascents
vary uniformly at the velocity of the earth’s rotation.

Another frequently used system (especially in ancient catalogs) is the eclip-
tic coordinate system. Consider the celestial meridian through the pole of the
ecliptic P and the star A (Figure 1.1). The meridian meets the ecliptic plane
at a point D. The arc QD in Figure 1.1 is the ecliptic longitude !, and the
arc AD is the ecliptic latitude b of A. Because of precession, the arc QD in-
creases with time (at the rate of about 1° per century), so the ecliptic longitudes
uniformly increase with time. If we neglect oscillations of the ecliptic, we can
assume to a first approximation that the ecliptic latitudes b do not vary with
time. This circumstance made the ecliptic coordinates popular among me-
dieval astronomers. The advantage of the ecliptic coordinates over equatorial
is for uniform (and easily computable) variation of / and the constancy of b.
As for the variations of equatorial coordinates generated by precession, they
are described by more complicated formulas (taking into account the turn
through the angle between the equator and the ecliptic). This is the reason
why medieval astronomers chose to compile their catalogs in ecliptic coor-
dinates, despite the fact that equatorial coordinates are easier to measure
from observations. The disappointing discovery of oscillations of the ecliptic
brought about the use of equatorial coordinates in modern catalogs.
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3. Methods of measuring equatorial and ecliptic coordinates

Here we dwell for a while on a brief description of concrete measurements
of equatorial and ecliptic coordinates. We will describe a simple geometrical
idea that underlies such measuring instruments as quadrant, sextant, meridian
circle, etc.

Suppose the vantage point H is at the latitude ¢ on the surface of the earth

(Figures 1.3 and 1.4). It is not difficult to determine the straight line HN' to-
wards the North pole of the world (the line parallel to ON). Find the meridian
through H and erect a vertical wall along the meridian (Figures 1.3,1.4). If we
draw on the wall the ray HN’, we can also find the equatorial line HK’ parallel
to OK, lying at aright angle off HN’. Sectoring the right angle into degrees of
arc, we get an astronomic goniometer. The idea of this instrument underlies
modern meridian instruments. The instrument can be used to measure decli-
nations of stars, i.e., their equatorial latitudes, and to fix the moments when
the stars pass the meridian. Since we can determine the equatorial plane (at
a given latitude of the vantage point) with a sufficiently high accuracy from
a series of consequent independent observations, this instrument enables us
to measure declinations with a fairly high accuracy. Meanwhile, as can be
seen from the above description of elementary concepts of celestial mechan-
ics, measuring longitudes requires fixing moments of stars’ passing the meridian,
for which we need either a sufficiently precise clock, or an additional instrument
for fast measurement of longitudinal distance between the star and the meridian.
In any case, measurement of longitudes is a much more complicated oper-
ation, so it looks likely that medieval astronomers measured direct ascents
with much lower accuracy than declinations.

To determine ecliptic coordinates, the observer H must first determine
the position of the ecliptic in the sky. This nontrivial procedure requires
a fair knowledge of the geometry of basic elements of motion of the earth
and the sun. Some ancient methods for determination of inclination of the
ecliptic to the equator and for finding the position of the equinoctial axis are
described in Ref. 1. It is important to note that an immediate measurement
of ecliptic coordinates of stars is impossible unless we have a clockwork able
to compensate for the rotation of the earth and to keep fixed the direction
towards the equinoctial point. The obvious difficulty of this problem made the
astronomers as they calculated ecliptic coordinates either use the formulas
for the turns of the celestial sphere, or celestial globes carrying frames both
of equatorial and ecliptic coordinates, thus making it possible to recalculate
immediately. Of course, this procedure inevitably added errors originating in
determination of the position of the ecliptic in relation to the equator and to
the equinoctial axis.

The above brief discussion of methods of measuring ecliptic coordinates
leads to the conclusion that the following algorithm was used:
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90°

earth

Figure 1.3. The procedure of measurement of equatorial latitude of a star with the help of
a meridian circle (1).

Figure 1.4. The procedure of measurement of equatorial latitude of a star with the help of
a meridian circle (2).

1) Find equatorial coordinates (latitudes were determined with a higher ac-

curacy than longitudes). '
2) Calculate the position of the ecliptic and the equinoctial axis in relation to

the equator.
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3) Recalculate equatorial coordinates into ecliptic with the help of trigono-
metric formulas, or an instrument, or a double-framed celestial globe.

Furthermore, since all observational instruments were earthbound, the
above algorithm is the only realistic way of finding ecliptic coordinates the
medieval astronomers could use. The fact that the observational instrument
is attached to the surface of the earth and hence shares the earth’s rotation
means that the instrument is bound to the equatorial coordinate system.

Below, we will get a confirmation for the assumption that the above algo-
rithm (or a similar procedure) was used for the star catalog of the Almagest
from our statistical analysis.

4. Modern starry sky

1. If we want to date an ancient or medieval star catalog from the coor-
dinates of stars it contains, we must be able to compute positions of stars at
various moments of time in the past. The starting point is the now existing
starry sky. We will only be interested in coordinates of stars, their proper ve-
locities and their star magnitudes, that characterize visible brightness (the less
the star magnitude, the brighter is the star). Star magnitudes are indicated in
the most ancient catalogs. In particular, the Almagest indicates magnitudes
for all stars it contains. The scale it uses matches in general with the one now
in use, but modern catalogs indicate fractional values of the magnitudes. For
example, Arcturus, which has magnitude 1 in the Almagest, has magnitude
0.24 in modern catalogs?!; Sirius, also having magnitude 1 in the Almagest,
has magnitude —1.6 (negative) in modern catalogs. Thus, Sirius is brighter
than Arcturus, while Ptolemy considered them as equally bright. In the Mid-
dle Ages, the brightness (star magnitude) was judged by eye. The color of the
star, the brightness of nearby stars and other factors influenced the result. So,
star magnitudes were determined rather roughly. Nowadays star magnitudes
are measured with the help of photometry. A comparison of the Almagest’s
star magnitudes with modern precise values shows? that the difference usu-
ally does not exceed two units. We used the catalog?!, comprising about nine
thousand stars up to the eighth star magnitude. Recall that only sixth to sev-
enth magnitude stars are visible to the unaided eye, and the catalog of the
Almagest, as Ptolemy claims, contains all stars of the visible part of the sky up
to the sixth magnitude. In fact, though, there are many more stars of sixth
and lesser magnitudes in the visible sky than in Ptolemy’s catalog. This
is one of the causes of ambiguities that arise in attempts to identify the stars
in the Almagest with the stars in modern catalogs (computed back to the
past).

The astronomer of the 17th century 1. Bayer suggested to denote stars
in a constellation by Greek letters: the brightest star is denoted by «, the
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second in brightness by B8, and so on. For example, o Leo is the brightest
star in the constellation Leo. Later on, J. Flamsteed (1646-1720) assigned
to stars the numbers (in the constellation): the westernmost star acquired
number 1, the next to the east number 2, and so on. The Flamsteed number
and the Bayer letter are usually written together in the denotation of a star, for
example, 32 a Leo. Furthermore, a star can have a proper name. There are
comparatively few “named” stars; the names were only given to the stars which
had special significance in antique and medieval astronomy. For example,
32 a Leo has the proper name Regul (Regulus).
We used the following characteristics of stars from Ref. 21:

1) Direct ascent of the star in 1900, denoted by aj900 and measured in
hours, minutes and seconds.

2) Declination of the star in 1900, denoted by 51900 and measured in degrees,
minutes and seconds of arc.

3) Velocities of the proper motion of the star in declination and in ascent,
that is, the projections of the velocity of proper motion on the equatorial
coordinate axes in 1900.

The velocities of proper motions of stars are rather small; as a rule, they
do not exceed 1” per year, and the fastest stars visible by unaided eye (o? Eri,
1 Cas) move at the rate of about 4” per year. In the interval of time we are
interested in, about two to three thousand years long, the proper motion may
be assumed uniform in each coordinate in a fixed coordinate system. For us,
this coordinate system is the equatorial coordinate system of 1900. For the
reader’s convenience, we adduce in the Appendix two lists of characteristics
of stars taken from Ref. 21. Table Ap. 1 is the list of fast stars. It contains all
stars whose proper motion in at least one of the coordinates o190 , 81900 is not
less than 0.5” per year. Table Ap. 2 is the list of named stars. The two tables
have a common part: some named stars have a notable proper motion; such
stars are especially useful for dating purposes (see below).

5. Computation of the starry sky to the past. Catalogs K(t).
Newcomb's theory

1. Having at our disposal the coordinates and the velocities of proper
motion of stars in our time, we can calculate a precise catalog for an arbitrary
epoch. We had to do this many times and for various epochs as we investi-
gated the Almagest and other ancient catalogs. Compiling these “theoretical”
catalogs, we first computed the positions of stars at the year ¢ in coordinates
a1900 and 81999, and then recalculated into ecliptic coordinates /, and b, for
the year ¢. Below, we give the necessary formulas making it possible to take
into account the precession and, in particular, to recalculate from a; , 8, into
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Figure 1.5. Relations between ecliptic and equatorial coordinates in various epochs.

I, , by, for any two epochs s and u. These formulas, as well as Figure 1.5 are
taken from Ref. 23. They were obtained on the basis of a theory of New-
comb, modified by Kinoshita. The procedure of recalculating coordinates is
described in Subsection 2 below. In the formulas, we assume that the epochs
u and s are counted in Julian centuries from 2000 AD, and that 8 = u — s (see
Figure 1.5).

@(s, u) = 174°5227766 + 3289780023u + 07576264u>

®»
— (870763478 + 07554988u)0 + 0"0245786*
® x(s, u) = (4770036 — 0706639 + 07000569.2)0
2
+ (—0703320 + 070005691)6% + 070000500>
e(s, u) = 23°26'21747 — 46/8155%
— 070004122 + 0700183:°
(3)
+ (—4678156 — 0"000824 + 07005489%)6
+ (0700041 + 0”0054901)6% + 070018306>
co(s, u) = 23°26'21747 — 46"81559u
4)

— 07000412:2 + 07001834°
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e1(s, u) = 23°26'21747 — 46781559
) — 07000412u> + 0700183u°
+ (0705130 — 07009203u)62 — 070077346°

W (s, u) = (5038”7802 + 0749254u — 0700039u)8

6
© + (=1705331 — 07001513u)6% — 070015300
x (s, u) = (1075567 — 1788692u — 0"'000144u)0
7
( + (—2"38191 — 07001554u)6° — 070016616>
W (s, u) = (502970946 + 2722280u + 07000264u*)6
®

+ (1713157 + 07000212u)6% + 070001026>

We should note that the distinctions between the original Newcomb theory
and its modification by Kinoshita®, which we use here, are unimportant for
us: for any moment of time ¢ in the interval we are interested in (600 BC-
1900 AD), the difference between the ecliptic coordinates computed from the
Newcomb theory and the ones from the modification is negligible in compari-
son with the errors of the Almagest. We used Ref. 23 because the formulas for
precession are given there in a form convenient for computer calculations.

2. Let us now describe in details the algorithm of compilation of the cat-
alog K(z) reflecting, according to Newcomb’s theory, the sky at the moment ¢.
Henceforth we consider ¢ to be an arbitrary moment in the interval 600 AD-
1900 BC, counted back in Julian centuries from 1900; thus, for example, = 1
corresponds to 1800 AD, ¢ = 10to 900 AD, and t = 18 to 100 AD (the several
days’ difference that accumulates because of the difference between Julian
and Gregorian calendars is absolutely immaterial for our purposes). The
reason for this somewhat strange denotation is its matching the existing com-
puter programs and our wish to avoid confusion that could initiate a change
of notation. We will compare the catalogs K (¢) for various values of ¢ with the
ancient catalog we study (say, with the Almagest); t will serve as an a priori
date for the catalog. Therefore K (¢) are to be compiled in ecliptic coordinates
of the epoch ¢, because as we have already noted, ancient and medieval star
catalogs used these coordinates.

So, suppose a star has equatorial coordinates ® = a¥y, and 8° = 8%, in
a modern star catalog (say, in Ref. 21). These coordinates show the position
of the star in 1900 in the spherical coordinate system the equator of which
coincides with the earth’s equator (hence lies in the plane of earth’s rotation,
which, as we have noted above, changes with time) in 1900. We need to deter-
mine the coordinates /; and b, (that is, coordinates in the spherical coordinate
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Figure 1.6. The recalculation of ecliptic coordinates of January 1, 1990 into ecliptic coor-
dinates of an arbitrary epoch, taking into account the proper motion of stars.

system whose equator is the ecliptic in the year ¢). To that end it suffices to
do the following (see Figure 1.6):

1) Find the coordinates of the star a°(t) and 8°(t) for the year t in the equatorial
coordinates of 1900. This can be done with the help of the proper motion
velocities v, and vs in the coordinates o and 3§ (see the fifth and the sixth
columns of Tables Ap. 1 and Ap. 2). We have:

9 (1) = apo () = a® — et

(10) 8(t) = 83900 (1) = 8° — w5t

Indeed, as we have noted above, within the interval of time we are interested
in, the proper motion of stars may be treated as uniform. The minuses in (9)
and (10) come from our counting time to the past, while the signs of v, and
vs correspond to the natural time count.

2) Pass from coordinates o0, 81900 0 the coordinates ligy, brogo. This
gives us coordinates /°(¢) and b%(¢) of the star in the year ¢ in the spherical
coordinate system bound to the ecliptic of 1900.
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We have:
an sinb’(¢) = — sino®(¢) cos 8°(r) sin £° + sin 8°(¢) cos £°
(12) tan0(r) = sin a®(t) cos 8%(¢) cos £% + sin §°(¢) sin £°
B cosa®(t) cos 89(¢)
where
& = i
13 0 23027/8//26

These formulas enable us to restore uniquely the values of bO(t) and I°(r),
because —90° < a < 90° and |I°(t) — a%(t)] < 90°. The angle £° is the
inclination of the ecliptic to the equator in 1900 (see (4), where we putu = —1
to pass from year 2000 to 1900).

3) Pass from coordinates 11909 and by to the coordinates I' and b, which are
also bound to the ecliptic of 1900, but whose zero point is at the intersection
of the ecliptic of 1900 I1(1900) and the ecliptic of the year ¢ I[1(¢). The two
coordinate systems are connected by the relations

'o=0rn-¢
(14) bty = bt
¢ = 173°57'387436 + 870”0798t + 07024578¢2

Here ¢ is the arc of I1(1900) between the spring equinoctial point of 1900
and the point of intersection of I1(1900) and T1(¢); it can be found from (1)
by putting # = —1 (then IT1(x) in Figure 1.5 will correspond to I1(1900)) and

= —t. Then I1(s) in Figure 1.5 will depict the ecliptic of the epoch ¢. Indeed,
t is counted in centuries from 1900 to the past, and & = s — u is counted in
centuries from u to the future; since we put u = —1, which corresponds to
1900 (2000 — 100 = 1900), we have to put ¢ = —¢ to make the epochs = u+-6
in (1) correspond to the epoch ¢.

4) Pass from the coordinates I' and b! to the coordinates 1> and b?, the
spherical coordinates bound with the ecliptic IT(¢) and differing from the
ecliptic coordinates /, and b, only for the choice of zero point of the longitudes.
In the coordinates I? and b2, the zero point is the intersection of [1(1900) and
T(¢). The transfer formulas from (', b*) to (I, b,) are similar to (14); we only
have to replace g% by the angle £, between I1(1900) and I1(¢); we have

(15) £ = —47"0706¢t ~ 07033769:% — 0/000050¢>

This expression can be obtained from (2) by puttingu = ~1 and 6 = —¢.
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5) Finally, we are to pass from I> and b? to the ecliptic coordinates 1, and b,.
This can be done by the formulas

L=P+¢+V

(16)

b[ = b2
where ¢ is as in (10) and W can be obtained from (8) by putting u = —1 and
6 = —¢, that is,

17 W = —50267872t + 171314¢2 + 07000173

The sequence of steps 1)-5) is illustrated in Figure 1.6.

6. Astrometry. Some medieval astronomic instruments

In Section 3 we have exposed a general idea of an astronomic goniometer;
an important feature of it is the possibility of a sufficiently accurate deter-
mination of the line of the celestial equator. The ray HK' along which the
observer’s eye is directed does not leave the equator in the process of diurnal
rotation. Of course, the setting of the ray HK' depends on the geographical
latitude of the vantage point. In principle, one can imagine the plane HLM as
attached to the quadrant (Figure 1.7). This plane is parallel to the equatorial
plane, and intersects the celestial sphere along the celestial equator. This is
in no way affected by the fact that HLM actually does not pass through the
center of the earth. Thus, at any point of the earth’s surface it is possible to
build a stationary instrument (oriented along the meridian) that allows a prac-
tically visual observation of the equator. This makes a reliable measurement of
equatorial latitudes of stars possible (Figure 1.7), for example, at the moment
when the star passes the vertical plane of the quadrant. As we already noted,
for a professional medieval astronomer measuring equatorial latitudes was
not a complicated procedure; it only required accuracy and a sufficient time
for observations. In particular, we can expect that a thorough observer should
not make a big systematic error in declinations of stars.

Let us now look at particular implementations of this idea in medieval
astronomic instruments.

The first instrument, the so-called meridian circle is described by Ptolemy
(Figure 1.8). The device is a flat metallic ring installed vertically on a firm
support in the plane of the meridian. The ring is graduated, for example,
into 360 degrees. A smaller ring, rotating freely inside the first ring in the
same plane was installed (Figure 1.8). Two small metallic plates with arrows
pointing to the divisions on the outer ring were attached at two diametrically
opposite points of the inner ring (points P in Figure 1.8). The device is
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stars

L
celestial equator L

Figure 1.7. Visual determination of the equator’s position in the celestial sphere.

Figure 1.8. Meridian circle.

installed in the meridian plane with the help of a plumb; the direction of the
meridian was determined from the shade of a vertical pole at noon. Then the
zero division of the outer ring was matched with the zenith. The device could
be used for measurement of the altitude of the sun (at the latitude of the
vantage point); to that end, the inner ring is turned at noon so that the shade
of one of the plates P covered the other. Then the arrow on the upper plate
points to the altitude of the sun in degrees on the outer ring. Note that we
can read the result after fixing the plates; so we can read the altitude after the
moment of noon. Furthermore, the meridian circle can be used to determine
the angle € between the ecliptic and the equator.



