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PREFACE 

EARLY STUDIES ON HYPERTENSION 
Research in the field of hypertension was initiated in 1834 by Richard 

Bright, a noted physician who observed that hypertrophy of the heart often 
accompanies kidney disease. Following the disclosure of Bright's observation, 
techniques for measuring blood pressure were designed, allowing scientists 
to link cardiac hypertrophy to renal hypertension. In 1898, the discovery of 
renin by Tigerstadt and Bergmann, and the demonstration that this kidney 
extract caused vasoconstriction, spotlighted the kidney, in addition to the 
adrenal medulla, as a hypothetical origin of hypertension. 

The next phase of hypertension research began in 1939, when Page, 
Helmer, and Kohlstaedt maintained that renin itself was not a direct vaso-
constrictor, but an enzyme that formed another substance, which they called 
angiotonin. At the same time the Page team was performing these renin 
studies, the Braun-Menendez group in Buenos Aires was isolating an identical 
substance, a small dialyzable material from the renal vein, which they named 
hypertensin. Page and Braun-Menendez later agreed to call the substance 
angiotensin. Almost two decades passed before angiotensin was purified and 
its structure elucidated. In 1956, during the purification stage, Skeggs and 
his group of investigators discovered angiotensin converting enzyme (ACE), 
and in the 1950s two peptides, angiotensin I and angiotensin II, were syn-
thesized. When these peptides later became available in large quantities, their 
widespread supply allowed many teams of investigators to develop a higher 
level of understanding of the "renin-angiotensin system." Part of this un-
derstanding included the concept that angiotensin is not only a vasoconstrictor, 
but also a major participant in the processes of sodium homeostasis, cate-
cholamine release, and thirst enhancement. Throughout this stage of inves-
tigation, Irvine Page continuously cautioned against the attitude of his clinical/ 
scientific contemporaries, who maintained that hypertension was not a disease 
but a perfusion of the body controlled by several factors in dynamic equilib-
rium, each affecting the others. 

Despite the vast amount of information about the physiology of the renin-
angiotensin system acquired during the 1950s and 1960s, the majority of 
clinicians and scientists maintained that renin was involved only in "renal 
hypertension," which represents only one aspect of the total picture of the 
human hypertensive system. This single-aspect concept was challenged by 
the development of angiotensin antagonists and ACE inhibitors. Because these 
inhibitors were shown to lower blood pressure in patients with hypertension 
of unknown etiology, many who doubted that the renin system played a role 
in forms of essential hypertension became convinced of the involvement of 
angiotensin, even when circulating renin levels were not elevated. Evidence 
supporting the more encompassing concept of angiotensin-dependent hyper-
tension was the discovery of renin-angiotensin system components in many 
tissues of the body, and the demonstration that by blocking one or more of 
the components of the system, blood pressure became lowered. 



EXPLOSION OF KNOWLEDGE 
This monograph presents the major achievements in the field of renin-

angiotensin investigation during the last decade. So far, various components 
of the renin-angiotensin system have been sequenced and the genes cloned. 
Because the angiotensin receptor(s) has so far been particularly resistant to 
purification, it has not been directly sequenced. The gene(s) for the AT, 
receptor, however, have been sequenced and cloned, an accomplishment that 
allows an understanding of the structure and function of the elusive receptors. 

The synthesis of potent nonpeptide angiotensin II antagonists has deci-
sively established the existence of various types of angiotensin receptors and 
has stimulated the search for the genes of these receptor types and subtypes. 
Detailed studies have been performed on the signal transduction mechanisms 
for the AT, receptor, but despite the sophistication and intricacy of this work, 
the function of the AT, receptor is not yet clearly understood. 

Since the experiments of the 1960s, which demonstrated that angiotensin 
II binds to the cellular plasma membrane, angiotensin binding has been as-
sumed to cause a receptor conformational change that results in the activation 
of a second-messenger system. This hormonal system, as well as various ion 
channels that, in turn, are activated or inactivated by mechanisms within the 
hormone system, is contained in the cellular plasma membrane. This plethora 
of information, now becoming available through the use of methodologies 
carried out at the molecular and cellular levels, is beginning to explain the 
role of angiotensin and its metabolites throughout the organ systems. The 
consolidation of this current information presented in this monograph offers 
an exciting treatise to the scientists involved in blood-pressure control mech-
anisms. 

F. Merlin Bumpus, Ph.D. 
Chairman Emeritus, Research Institute 
Department of Heart and Hypertension Research 
Cleveland Clinic Foundation 
Cleveland, Ohio 
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4 	Cellular and Molecular Biology of the Renin-Angiotensin System 

I. INTRODUCTION 

Nearly one hundred years ago, Tiegerstedt and Bergman reported that 
extracts of kidney induced an increase in blood pressure when injected into 
rabbits.' This activity, which they named renin, was subsequently found to 
be a proteolytic enzyme which increased the blood pressure by generating the 
decapeptide angiotensin I, that is subsequently cleaved by angiotensin con-
verting enzyme (ACE) to form the octapeptide angiotensin II (Figure 1). 
Angiotensin II (AII) modulates blood pressure directly by inducing vasocon-
striction and it stimulates the release of aldosterone, which in turn causes 
sodium retention and potassium loss.' In addition, it has recently become 
apparent that AII has growth factor-promoting activity3-5  which may be critical 
in the contributions of the renin-angiotensin system (RAS) to the pathological 
changes associated with heart failure, kidney failure, and chronic hyperten-
sion.6-1°  For these reasons, the RAS has become an important target for treating 
a number of cardiovascular diseases. While ACE inhibitors have been widely 
used for treating these pathological states,"-'° new and potent inhibitors of 
both renin"-'5  and antagonists of AII receptors (see Chapter 9) may soon join 
these compounds in the treatment of a broad variety of diseases. 

Within the circulation, renin is the rate-limiting component of the RAS. 
The release of renin into the circulation results from a number of intracellular 
steps, including organelle targeting and site-specific processing of the pre-
cursor to renin, prorenin. Both of these processes may eventually offer new 
targets for pharmacological interventions for controlling RAS activity. In this 
chapter we outline current knowledge regarding the intracellular processes 
that govern the ultimate release of active renin, in the context of recent 
information about the mechanism of secretion of other mammalian proteins. 

II. BRIEF OVERVIEW OF MAMMALIAN 
SECRETORY PROCESSES 

All mammalian messenger RNAs are translated into proteins on cyto-
plasmic ribosomes. Those proteins ultimately destined for insertion into the 
lumen of the endoplasmic reticulum (ER), lysosomes, Golgi apparatus or 
endosomes, and proteins which are secreted or are integrated into nuclear, 
lysosomal, or plasma membranes are synthesized on and integrated into the 
rough endoplasmic reticulum (RER). For these proteins, this first level of 
"sorting" occurs via the interaction between an amino-terminal hydrophobic 
peptide (the signal peptide) on the initial translation product with a "signal 
recognition particle" (SRP), which in turn binds to a high-affinity receptor 
on the membranes of the RER. '6  As translation proceeds, the nascent peptide 
chains are inserted into the lumen of the ER where the first chemical mod-
ifications to the protein occur: the signal peptide is cleaved off, disulfide 
bond formation is initiated between cysteine residues, and oligosaccharide 
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PRORENIN 

I 
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CONVERT ING 
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FIGURE 1. Schematic representation of the renin-angiotensin system. The shaded box depicts 
the area of focus of this chapter. 

addition begins on asparagine residues contained in the sequence Asn-X-Ser/ 
Thr (N-linked glycosylation). In addition, the growing peptide chain begins 
to fold into a native conformation with the help of "molecular chaperones," 
such as BiP/GRP78.' Such proteins are critical for the assembly of oligomeric 
protein complexes and may recognize specific amino acid sequences in in-
correctly folded polypeptides to target them for destruction in the ER. '8.'9  

Vesicles budding off from the ER transport the native protein to the first 
compartment of the Golgi lamellae, the so-called cis-Golgi (Figure 2). Proteins 
destined to remain in the ER are recaptured at this point by interaction of a 
specific amino acid sequence (Lys-Asp-Glu-Leu or KDEL) with the KDEL 
receptor.2° Both the transport of proteins from the ER through the Golgi stacks 
and the recycling of proteins back to the ER occurs via vesicular transport in 
a process that requires hydrolysis of GTP.2°'21  Proteins destined for further 
transport through the medial and trans-lamellae of the Golgi apparatus may 
undergo additional chemical modifications including further processing of N-
linked carbohydrate residues, sulfation, a-amidation, 0-glycosylation, phos-
phorylation, lipid attachment, and proteolytic processing . 22-24 All of these 
modifications occur through recognition of specific peptide sequences or 
through specific positioning of amino acids in the target protein. The trans-
most cisternae of the Golgi apparatus (commonly referred to as the trans-
Golgi network or TGN) is the site of another major sorting decision (Figure 
2): proteins are segregated depending on whether they are destined for inclu-
sion in lysosomes, direct secretion or integration at the plasma membrane 
(constitutive secretion), or storage in dense core secretory granules for se-
cretion in response to stimuli (regulated secretion). 25-28 

Targeting of proteins to the lumen of lysosomes requires two intracellular 
recognition events.28• 29  The first is the phosphorylation of mannose residues 
on N-linked oligosaccharides. In cathepsin D, a lysosomal aspartyl protease, 
a lysine residue and a noncontiguous 27-amino acid peptide sequence con-
tained in a surface loop of the protein are required for recognition by the 
phosphotransferase.30•3' The second recognition event is between the man-
nose-phosphorylated protein and a mannose-6-phosphate receptor located in 
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FIGURE 2. Schematic representation of the mammalian secretory pathway. Open arrows 
represent the major sorting pathways from the trans-Golgi network (TGN). 

the TGN." Recent evidence suggests that peptide signals may also play a 
role in targeting of mammalian lysosomal proteins to the proper intracellular 
compartment,' as they do in the lysosomal equivalent (the vacuole) of yeast 
and plants.32  

Proteins are secreted from the cell by two major pathways. The first 
involves direct secretion from the TGN. Because there is no evidence of 
intracellular storage of proteins secreted by this route, it has been called the 
constitutive secretory pathway (Figure 2). Data suggest that this pathway 
constitutes the bulk flow or "default" pathway of protein secretion''' and 
it is the dominant secretory pathway in most eukaryotic cell types. Proteins 
move to the plasma membrane through the constitutive pathway in micro-
tubule-anchored low-density vesicles" with a relatively rapid transit time on 
the order of minutes to hours.36  

Some specialized endocrine and neuroendocrine cells may also export 
proteins by the regulated secretory pathway20'3a'37  (Figure 2). In this pathway, 
certain proteins are sorted at the TGN to dense core secretory granules, where 
they are stored until the cell receives a signal which triggers their release. 
Little is known about the precise molecular signals that target proteins to 
dense core secretory granules. However, using the model system of mouse 
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pituitary AtT-20 cells, Moore and co-workers obtained the first evidence that 
cells from different tissues use a common mechanism to sort proteins to 
secretory granules." AtT-20 cells sort endogenous proopiomelanocortin 
(POMC) to secretory granules, process POMC to adrenocorticotrophic hor-
mone (ACTH) and other peptides and release them in response to cAMP. 
When transfected with an expression vector for human proinsulin, these cells 
sort and process the encoded prohormone correctly and release human insulin 
in response to a secretagogue.38  AtT-20 cells have subsequently been shown 
to correctly sort proteins destined for secretory granules from various species 
and tissues of origin and to exclude from granules proteins which are known 
to be secreted in a constitutive manner (Table 1). Further, fusion of a secretory 
granule-targeted protein with a protein secreted by the constitutive pathway 
results in secretory granule targeting of the fusion protein. 39'40  

Taken together, these results suggest that the signals for targeting of 
proteins to dense core secretory granules are (1) contained within the targeted 
protein; (2) universal (i.e., recognized across species and tissue barriers); and 
(3) dominant (i.e., not a bulk flow mechanism). Surprisingly, in spite of this 
apparent universal nature of the sorting machinery, there exists no extended 
sequence homology between proteins sorted to granules. There is, in fact, no 

TABLE 1 
Secretion of Exogenous and Endogenous Proteins 

by Mouse Pituitary AtT-20 Cells 

Source Regulated 
Protein Expressed Tissue Species Secretion Ref. 

Proneuropeptide Y Intestine Human + 131 
Proinsulin Pancreas Human + 38 
Proenkephalin Brain Human + 132 
Prothyrotropin releasing 
hormone (TRH) 

Hypothalamus Human + 133 

Trypsinogen Pancreas Rat + 134 
Growth hormone Pituitary Human + 36 
Prosomatostatin Hypothalamus Rat + 40 
Procholecystokinin (CCK) Small intestine Pig + 135 
Provasopressin/neurophysin Hypothalamus Rat + 136 
Proatrial natriuretic factor Heart Rat + 137 
(ANF) 

Prorenin Kidney submaxillary 
gland 

Rat, mouse, 
human 

+ 105-108 

Laminin Ubiquitous Mouse — 134 
Vesicular stomatitis virus G 

protein 
— Viral 36 

Imrnunoglobulin (kappa light 
chain) 

Lymphoid cells Mouse 138 

Angiotensinogen Liver Rat — 139 
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consensus regarding the actual mechanism of sorting. One hypothesis is that 
proteins destined for secretory granules interact with a specific secretory 
granule receptor in much the same way as proteins are sorted to lysosomes. 
While evidence for the existence of such a "sortase" in dog pancreatic 
microsomes has been reported,4' there has been no further confirmation of 
its role as a sorting receptor. 

Another hypothesis advanced to explain the segregation of granule tar-
geted proteins in the TGN is selective aggregation.34'42  Many of the proteins 
which end up in dense core secretory granules show a tendency to aggregate 
in the presence of calcium and a slightly acidic environment, conditions 
thought to be present in immature secretory granules.42-44  This proposed mech-
anism is also consistent with microscopic studies demonstrating aggregates 
in the trans-Golgi in the process of being encapsulated by membrane." Re-
gardless of the actual mechanism of sorting, the segregated protein is first 
packaged into a small, relatively electron-lucid "immature" granule which 
is often characterized by a clathrin "patch."" The maturation process for 
secretory granules is poorly understood but may involve fusion of immature 
granules and progressive condensation of the granule contents by formation 
of dense para-crystalline aggregates." Mature secretory granules reside at or 
near the plasma membrane at "docking" sites' and fuse with the plasma 
membrane in response to an extracellular signal. The transit time of proteins 
in the regulated pathway is longer than that for the constitutive pathway, being 
in the range of hours to days, and depends on the timing of a stimulus for 
exocytosis.36'45 

Sorting can also occur to two additional secretory pathways in specialized 
mammalian cells. The first is a recently demonstrated "basal" pathway in 
which presumably immature secretory granules fuse with the plasma mem-
brane, resulting in a seemingly constitutive pattern of release of proteins which 
would normally be destined for dense core secretory granules."'" The second 
is the secretion or membrane anchoring of proteins selectively by either the 
apical or basolateral membranes of polarized cells. This sorting mechanism, 
which has been most extensively studied in the targeting of polymeric im-
munoglobulin receptor to the basolateral surface of epithelial cells, requires 
a short peptide sequence adjacent to the membrane-spanning domain of the 
receptor." The finding that thyroglobulin, a regulated secretory protein, is 
also segregated to the apical surface of thyroid epithelial cells has led to the 
suggestion that some relationship between the targeting signals for the two 
secretory pathways may exist.49  

Cell-type specific proteolytic processing of proteins also plays an im-
portant role in the mammalian secretory pathway. Numerous hormones, bioac-
tive peptides, and proteases are synthesized as precursors and are processed 
in the secretory pathway to the biologically active forms that are subsequently 
secreted."-" The intracellular site of processing for these precursors may vary 
significantly, however. For example, proalbumin is a constitutively secreted 
protein and is processed to albumin in the Golgi lamellae of hepatocytes.54 
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In contrast, insulin appears to be activated only after its sequestration into 
secretory granules and is stored in these granules in the active form.55  Atrial 
natriuretic factor (ANF), on the other hand, seems to be packaged in atrial 
cardiocyte secretory granules as the prohormone, and is activated only upon 
release of the granule.56'57  These processing enzymes can be exquisitely se-
lective in the sites they cleave in individual substrates. For example, while 
proalbumin and proinsulin are cleaved at sites that contain a pair of basic 
amino acids ,"'" pro-ANF is cleaved at a site containing only a single basic 
amino acid.57  Indeed, not all potential processing sites within a given substrate 
are cleaved. POMC is processed differentially in the anterior and intermediate 
lobes of the pituitary, in spite of the fact that all of the processing events 
occur at pairs of basic amino acids."'" It is easy to see why prediction of 
endoproteolytic cleavage sites in complex mammalian proteins based on se-
quence comparison has not been very successful to date. Thus, processing 
specificity may be determined by a combination of cellular distribution of 
different processing enzymes, the particular architecture of the substrate, and 
effects on the chemistry of the reaction by the intracellular compartment or 
environment. 

While there have been many attempts to purify and characterize processing 
enzymes from mammalian tissues and cell lines, a major advance was made 
in this field with the cloning of the gene which encodes the processing enzyme 
responsible for cleaving yeast pro-(alpha) mating factor.6° Surprisingly, this 
enzyme, called Kex2, was also found to correctly cleave both proalbumin 
and POMC when expressed in mammalian cells."'62  Using sequence infor-
mation from the yeast Kex2 gene, several related sequences have been iden-
tified in mammalian cells, including furin, PC1 (also called PC3), PC2, and 
PACE4.53'63  Whereas furin and PACE4 are expressed ubiquitously in tissues 
and cell lines, PC1/PC3 and PC2 have to date only been detected in neural 
and endocrine cells.53•64  

III. SECRETION OF PRORENIN AND RENIN IN 
WHOLE ANIMALS AND TISSUES 

The genes encoding mouse, rat, and human renins have been cloned and 
characterized.65-69  The genomic organization and deduced amino acid se-
quence of human renin confirm its close relatedness to other aspartyl pro-
teinases. Human and rat genomes contain only one renin gene"' and while 
all inbred strains of mice carry the Ren-1 structural gene (expressed at high 
levels in the kidney), some strains contain a second closely linked gene (Ren-
2) which is expressed at high levels in the submaxillary gland (SMG; see 
Chapter 2). In all cases, these genes encode protein precursors of 400 to 406 
amino acids.' " A signal peptide encoded at the amino-terminus directs the 
nascent polypeptides to the ER. Upon insertion into the ER, the signal peptide 
is removed (Figure 5) to generate prorenin and posttranslational modification 
begins. There are two consensus sequences for N-glycosylation in human 
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renin and three such sites in rat and mouse (Ren- 1) renal renin.70• 72•73  These 
sites may be modified to different extents, resulting in multiple species of 
renin and prorenin that can be separated by either isoelectric focusing or lectin 
affinity chromatography.74• 75  In human renin, mannose residues on the car-
bohydrate side chains may also be partially phosphorylated,76  creating a clas-
sical lysosomal targeting signal. The importance of the glycosylation of pro-
renin and renin is most obvious in clearance of the protein from the 
circulation,77•78  although some evidence has accumulated that glycosylation 
may also affect intracellular transit time,' efficiency of intracellular sorting,' 
and stability" (protease sensitivity?) of prorenin. There is no direct evidence 
that prorenin undergoes post-translation modifications other than N-glyco-
sylation. However, rat prorenin can be fractionated into multiple isoelectric 
species even after enzymatic deglycosylation.82  In contrast, recombinant hu-
man prorenin in which the glycosylation sites have been eliminated by protein 
engineering migrates as a single isoelectric species.'" It is currently uncertain 
whether this difference is explained by incomplete removal of carbohydrate 
side chains by the glycosidase, as has been demonstrated for human renin," 
or whether rat and human prorenins undergo different post-translational mod-
ifications. 

Evidence to date suggests that glycosylated prorenin is analogous to the 
circulating "big" or "inactive" renin and can be present at 3 to 5 times the 
level of "active" renin in the circulation of humans."' While circulating active 
renin is derived almost exclusively from the kidney, numerous nonrenal tissues 
in humans secrete prorenin."" In rats, the case seems a bit different: although 
several extrarenal tissues contain prorenin mRNA and/or protein" (see Chap-
ter 4), nephrectomy results in the disappearance of both renin and prorenin 
from the circulation.' Thus, the kidney is clearly capable of releasing both 
prorenin and renin. How is this accomplished and what determines the relative 
proportions of the two proteins secreted? Much of what we understand about 
this process has derived from ultrastructural studies on the cells that secrete 
renin from the kidney. 

The juxtaglomerular apparatus of the kidney is the primary site of syn-
thesis for circulating renin. Juxtaglomerular (JG) cells are modified smooth 
muscle cells which make up approximately 0.1% of the cellular mass of the 
adult kidney." While JG cells resemble other neuroendocrine cells in their 
rich cytoplasmic content of dense core secretory granules (Figure 3), they are 
distinguished from these other cell types by two rather striking characteristics. 
First, rhomboid, para-crystalline structures can be seen budding off from the 
TGN and in membrane-bound structures within the cytoplasm (Figure 4A). 
Second, the secretory granules of JG cells are atypical and display many 
similarities to lysosomes. At the ultrastructural level, the electron-dense matrix 
of these granules is sometimes seen to contain multiple vesicular inclusions 
and membrane fragments (Figure 4C) and some micrographs suggest that 
these granules are capable of micropinocytosis and autophagy of other cellular 
organelles.8e.9°  In addition, JG cell granules are immunoreactive to antibodies 
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FIGURE 3. Ultrastructure of the juxtaglomerular (JG) apparatus in the 5-day-old mouse kidney. 
Tissue was fixed in 2% glutaraldehyde and post-fixed in 2% osmium tetroxide. Thin sections 
were stained in uranyl acetate and lead citrate. (A) Electron micrograph of the JG apparatus. 
Note the abundant rough endoplasmic reticulum and dense core secretory granules in the JG 
cells. Original magnification x 2500. (B) Schematic representation of the micrograph depicted 
in panel A, showing the location of the various cell types in the JG apparatus. 

against a number of lysosomal enzymes, including acid phosphatase, 
curonidase, arylsulfatase, N-acetyl-B-glucosaminidase, and cathepsins B, D, 
H, and L.90'9' These results, combined with the apparent lack of any recog-
nizable, classical lysosomal structures, have led some investigators to suggest 
that JG cells do not contain the type of secretory granules seen in many 
endocrine cell types, but rather have adapted lysosomes for the processing 
and secretion of prorenin.9° 
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FIGURE 4. Detailed ultrastructure of the JG cells of 5-day-old mice. (A) Emergence of a 
para-crystalline protogranule (solid arrow) from the TGN. Note the presence of two membrane-
encapsulated protogranules in the cytoplasm (open arrows). Original magnification x 46,600. 
(B) Detail of an immature secretory granule. Note the nonaligned crystalline structures of the 
recently fused protogranules which will eventually become lost as the granules mature. RER, 
rough endoplasmic reticulum. Original magnification x 73,200. 
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FIGURE 4 (continued). (C) Diversity of granule densities in JG cells. Arrows point to cy-
toplasmic inclusions in intermediate granules. G, Golgi apparatus; M, mitochondrion; N, nucleus. 
Original magnification x 17,200. (D) Schematic representation of the proposed routes of prorenin 
and renin secretion in JG cells. See text for details. 
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Using antibodies to various portions of the human prorenin prosegment, 
Taugner and colleagues have demonstrated that the para-crystalline structures 
budding off from the TGN of JG cells contain prorenin." These structures 
(Figure 4A), which have been called protogranules, subsequently fuse together 
to form a membrane-bound structure with a relatively amorphous, low-density 
content, which has been termed the "immature" or "juvenile" secretory 
granule (Figure 4B). In some micrographs these immature granules can be 
seen to fuse directly with the plasma membrane,' which would presumably 
result in the release of prorenin and would correspond, therefore, to the 
"basal" pathway of protein secretion described above. Immature granules 
which are not released from the cell become progressively more electron 
dense and have been referred to as "intermediate" or "mature" granules, 
depending on their apparent degree of condensation (Figure 4C). 

Evidence suggests that conversion of prorenin to active renin begins in 
the immature secretory granule. Antibodies specific for the prosegment of 
human prorenin stain predominantly protogranules and immature granules and 
show little or no staining of intermediate and mature granules.' In contrast, 
an antibody which reacts with both prorenin and renin stains all of these 
granular structures." The role of the secretory granule in processing prorenin 
is further supported by biochemical studies: granule fractions purified from 
kidney homogenates contain predominantly active renin." In addition, renin 
is secreted more slowly than prorenin from human renal cortical slices and 
with kinetics that are consistent with its storage in secretory granules." Fi-
nally, pharmacologic stimuli which cause a release of secretory granules result 
in an acute and preferential release of active renin into the circulation.95  

Amino-terminal sequencing of renin isolated from human kidney lysates 
suggests that activation occurs by the proteolytic removal of a 43-amino acid 
prosegment from the amino-terminus of prorenin." This processing site fol-
lows a pair of basic amino acids in human renin (Figure 5). Processing of 
prorenin in the mouse SMG occurs at the analogous position,' but processing 
of rat renal renin seems to occur after a threonine residue which is located 7 
amino acids toward the carboxy-terminus relative to the analogous site in 
human renin82.98  (Figure 5). The processing site for mouse renal renin is 
currently unknown. Rat renal and mouse SMG renins subsequently undergo 
an additional internal processing event, converting "one-chain" active renin 
to a "two-chain" molecule82.97,98  in which the two halves are held together 
by a disulfide bridge (Figure 5). Notably, while renal renins appear to be 
processed within secretory granules, mouse SMG renin may be processed to 
"one-chain" renin within the Golgi and only a portion of the protein is further 
processed in granules to yield the "two-chain" protein.' Thus, while renins 
from mice, rats, and humans share many similarities in protein structure and 
function, differences exist in the way these proteins are modified within the 
secretory apparatus. 
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FIGURE 5. Proposed cleavage sites for human and rat renal renins and mouse submaxillary 
gland renin (SMG). Numbering is from amino acid I of preprorenin.71.".9  ."5  Open arrows, 
signal peptide cleavage site; closed arrows, cleavage of the prosegment; stippled arrows, cleavage 
to generate "two-chain" renin. Question marks indicate that assignment has only been made by 
homology to human prorenin. 

IV. MODELS OF PRORENIN SORTING 
AND ACTIVATION 

Clearly, a critical determinant in the exclusive ability of renal JG cells 
to secrete active renin is the proteolytic cleavage of prorenin to generate renin. 
However, since ultrastructural and biochemical studies suggest that this pro-
cessing is granule specific, the sorting of prorenin to dense core secretory 
granules is also a crucial step in the secretion of active renin by the kidney. 
Investigations of the molecular mechanisms of prorenin processing and sorting 
in the kidney would be facilitated if large quantities of renal JG cells were 
available for study. Several approaches have been used to isolate and char-
acterize JG cells, including density-gradient enrichment of primary cell 
preparations' and culture of cells from human renin-secreting tumors." To 
date, these attempts have largely been frustrated by two major problems: the 
relative paucity of JG cells in the kidney (less than 0.1% of the cell mass) 
and the tendency of tumor-derived JG cells to dedifferentiate in culture.'" In 
an alternative approach, Sigmund et al. '°3  have used renin gene fragments to 
target expression of a viral oncogene to renin-producing cells of transgenic 
mice. Initial reports suggest that cells derived from a renal tumor in such 
mice express active renin and contain secretory granules.' However, more 
extensive characterization will be required to determine whether these trans-
formed cells will retain sufficient terminal differentiation to be useful for 
studying all of the intracellular steps in renin biosynthesis. 
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In the absence of suitable quantities of JG cells, efforts have largely been 
directed at characterizing the biochemical properties of various prorenin-
processing enzymes and at using model cell systems which correctly sort and 
process prorenin to obtain a better understanding of these two important 
intracellular processes. 

A. SORTING DETERMINANTS IN PRORENIN 
One possible explanation for the seemingly exclusive ability of JG cells 

to secrete active renin could be that only this particular cell type recognizes 
sorting and processing signals contained on prorenin. This hypothesis has 
been directly tested by transfection of a number of cell types with expression 
vectors encoding human, mouse, and rat prorenins. Transfection of Chinese 
hamster ovary (CHO) cells, which contain only a constitutive secretory path-
way, with an expression vector encoding human preprorenin leads to secretion 
of proreninm5'1°6  (Figure 6). As expected, this prorenin accumulates in a linear 
fashion in the transfected culture supernatants and secretion is not stimulated 
acutely by secretagogues. In contrast, transfection of AtT-20 cells, which 
contain secretory granules and process endogenous POMC, leads to secretion 
of both prorenin and renin. In addition, while prorenin accumulates in culture 
supernatants constitutively, treatment of the transfected cells with a secre- 

FIGURE 6. Pattern of secretion of prorenin and renin from transfected AtT-20 cells. F, point 
of addition of secretagogue to the cultures. Data from Fritz et al.105 



17 

tagogue causes a selective and acute release of active renin105•'0G (Figure 6). 
This result is characteristic of proteins secreted by the regulated secretory 
pathway45  and implies that a portion of the prorenin is sorted to dense core 
secretory granules where it is processed and stored for later release. Mouse 
SMG'" and renal prorenins,'" as well as rat prorenin,'" are also sorted to 
the regulated secretory pathway in transfected AtT-20 cells. Human prorenin 
is also sorted to the regulated secretory pathway in PC12 rat pheochromo-
cytoma cells' and rat somatomammotrophic GH4  cells,"° although in these 
two cases, prorenin is not activated in granules. These results imply that 
sorting and activation of prorenin can be seen in cells other than JG cells and 
that prorenin must contain primary or higher-order structural information 
which directs the cell to carry out these processes. 

What is the nature of the secretory granule sorting signal on prorenin? 
Although the physical segregation of proteins destined for secretory granules 
occurs at the TGN,25  commitment to this pathway could theoretically take 
place as early as insertion of the nascent protein into the ER. However, 
replacement of the native signal peptide of human prorenin with a signal 
peptide from a constitutively secreted immunoglobulin M (IgM) did not impair 
the sorting of human prorenin to the regulated pathway in AtT-20 cells." 
Likewise, eliminating the glycosylation sites on human prorenin did not pre-
vent its targeting to secretory granules but, instead, increased the percentage 
of prorenin activated (sorted?) in AtT-20 cells."' The dispensability of the 
carbohydrate residues for granule sorting is also evidenced by the fact that 
mouse SMG prorenin (which is naturally nonglycosylated) is sorted to granules 
in AtT-20 cells.' The processing of prorenin to renin also is not required; 
prorenin molecules containing mutations in the paired basic amino acids at 
the native processing site cannot be activated in AtT-20 cells, but are never-
theless sorted to the regulated pathway and released as prorenin in response 
to secretagogues."2  In addition, regulated secretion of prorenin is seen in 
transfected PC12 and GH4  cells which contain granules but apparently lack 
of processing enzyme capable of activating prorenin.109."°  Finally, the pro-
segment can also be deleted from human prorenin and the resulting "prerenin" 
is secreted in a regulated manner in both PC12 and AtT-20 cells.109,111,113 By 

deduction, a sorting signal would appear to be located within the protein 
domain corresponding to active renin. 

To further characterize this sorting sequence, we have constructed fusion 
proteins between a portion of an immunoglobulin constant region (which is 
constitutively secreted) and fragments of human prorenin and have examined 
the targeting of these fusion proteins to the regulated secretory pathway in 
AtT-20 cells (Figure 7A). The results indicate that human prorenin contains 
a peptide at the extreme amino-terminus of its prosegment that can direct the 
fusion protein to the regulated secretory pathway (Figure 7B). How do these 
results fit with the finding that the prosegment can be deleted without pre-
venting correct sorting? The simplest explanation is that prorenin contains 
more than one domain involved in secretory granule targeting (Figure 7C). 



18 	Cellular and Molecular Biology of the Renin-Angiotensin System 

A Native 
	PRO RENIN 

lgG f2b 

Prepro31Fc 

PreFc A 

B Forskolin 

18 hr 3 hr Medium Cells 
labeling chase - + 	- + 

III 	II 	1 I 	I 

Native 

Prepro31Fc 

a 411111111106 Prorenin 
Renin 

Pro31Fc 
4—  Fc 

Fc PreFc 

PRE 
	

PRO 
	

RENIN 

LPTDTTTFKRIFLKRMPSIRESLKERGVDMA 

FIGURE 7. Location of a secretory granule-sorting peptide in the prosegment of human 
prorenin. (A) Construction of the fusion proteins. (B) Plasmids containing either native prepro-
renin or the fusion proteins were transfected into AtT-20 cells and the expressed proteins were 
assayed by pulse-chase studies for unstimulated ( — ) and forskolin (10 µM)-induced release ( + ) 
of the products, as described in Chu et al."' (C) Location of secretory granule-sorting peptides 
in human prorenin. 

As previously mentioned, there is no obvious linear homology between the 
putative sorting peptide in the human prorenin prosegment and peptide se-
quences contained within other proteins destined for the secretory granule 
such as POMC, growth hormone, insulin, and ANF.' This result suggests 
that potential homologies in secretory granule-sorting peptides may either be 
in secondary or tertiary structure rather than the linear amino acid sequence. 
Alternatively, multiple sorting receptors may exist or a given sorting receptor 
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may have the capacity to interact with a wide spectrum of binding sequences, 
thereby restricting homologies to subsets of secretory granule-sorted proteins. 
Discrimination between these possibilities will likely have to await the further 
characterization of minimal sorting peptides in both prorenin and other proteins 
secreted by the regulated pathway. 

Is the use of an endocrine cell model a reasonable approach to identifying 
sorting determinants to the lysosome-like granules contained in JG cells? In 
this regard, it is interesting to note that up to 80% of human prorenin expressed 
in Xenopus oocytes (which do not contain dense core secretory granules) is 
directed to lysosomes.76  Elimination of N-linked glycosylation sites in human 
prorenin by site-directed mutagenesis appears to eliminate lysosomal uptake 
of prorenin in injected oocytes and leads to the secretion of the prorenin,' 
but does not inhibit targeting of human prorenin to dense core secretory 
granules in AtT-20 cells.' Secretory granule targeting of the nonglycosylated 
prorenin in the mouse SMG must also occur in the absence of carbohydrate 
signals, suggesting that the lysosomal and granular targeting signals on pro-
renin are distinct and separable. Nevertheless, while only 5 to 6% of prorenin 
expressed in mammalian cells acquires phosphomannosyl residues,76  it is an 
intriguing possibility that renal prorenins make use of both granular and 
lysosomal signaling mechanisms to ensure their efficient sorting to the ly-
sosome-like secretory granules in JG cells. Clearly, it will be imperative to 
test for the function of any potential prorenin-sorting peptides in the JG cells 
of intact animals. 

B. PROCESSING OF PRORENIN 
Amino-terminal sequencing of renin isolated from human kidney lysates 

suggests that the cleavage of prorenin is highly specific and occurs at a pair 
of basic amino acids (Lys-Arg), resulting in removal of a 43-amino acid 
prosegment from the amino-terminus of prorenin."5  There are 6 additional 
pairs of basic amino acids in human prorenin," including Lys-Lys, Arg-Arg, 
and Arg-Lys within the body of renin, two Lys-Arg pairs in the prosegment, 
and the Lys-Lys-Arg triplet in the body of renin, none of which appear to be 
cleaved in the kidney. What determines this cleavage site selectivity? 

Many proteases are capable of activating human prorenin in vitro, in-
cluding trypsin, plasmin, tissue and plasma kallikreins, and cathepsin B.84'116'117  
While some of these enzymes cleave prorenin with the correct specificity,'" 
most are likely to be physiologically irrelevant due to their tissue distribution. 
An exception to this rule is cathepsin B, which was recently purified as a 
prorenin-processing activity from human kidney lysates. "2• "  '9  While cathepsin 
B is a lysosomal enzyme which is expressed in a broad variety of cell types,'" 
it appears to co-localize with renin not only in the lysosome-like granules of 
JG cells,90• 91  but also in the more classical secretory granules of prorenin-
containing human pituitary lactotrophs.'2' In vitro, cathepsin B cleaves human 
prorenin with the correct specificity and with a Ks  in the nanomolar range."' 
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For these reasons, cathepsin B has been proposed as the renal prorenin-
processing enzyme. In a similar effort, an enzyme capable of processing 
mouse SMG prorenin has been isolated from submaxillary glands.122  This 
enzyme, which has been called PRECE, was subsequently revealed to be 
identical to the mGK-13 gene product'23  (also known as the epidermal growth 
factor-binding protein type B), a member of the kallikrein gene family. While 
PRECE can activate mouse SMG prorenin to generate "one-chain" renin, it 
is unable to carry out the second cleavage to yield the "two-chain" form 
(Figure 5).122  In addition, kidney glandular kallikrein cannot activate mouse 
SMG prorenin and PRECE is unable to activate mouse renal or human pro-
renins.122  Recently, a second enzyme capable of converting mouse SMG 
prorenin to "one-chain" renin has also been isolated from mouse submaxillary 
gland.'" Thus, while it has been possible to purify and characterize candidate 
prorenin-processing enzymes by classical biochemical techniques, the occa-
sional promiscuity displayed by processing enzymes in vitro and the tendency 
for cellular colocalization to be misleading regarding function125,126 has com-
plicated the unequivocal identification of prorenin-processing enzymes. For 
this reason, it is imperative that these studies be complemented with genetic 
or other experiments that specifically block the actions of the putative protease 
in vivo before a specific role in prorenin activation can be confirmed. 

AtT-20 cells transfected with a human preprorenin expression vector also 
cleave prorenin at the same site as that reported for renin purified from human 
kidney lysates.'" One hypothesis to explain the cleavage site selectivity dis-
played by enzymes in vitro, AtT-20 cells, and the kidney is that primary and/ 
or higher-order structural determinants on prorenin render the native pro-
cessing site uniquely sensitive to proteolytic cleavage. This hypothesis was 
directly tested by introducing single amino acid mutations in human prepro-
renin surrounding the natural cleavage site and expressing the resultant re-
combinant proteins to proteolytic activation either by trypsin or by the en-
dogenous processing enzyme in AtT-20 cells. 127  The results suggest that amino 
acids in addition to the pair of basic amino acids surrounding the cleavage 
site affect the ability of both trypsin and the AtT-20-processing enzyme to 
cleave prorenin (Figure 8). Notably, while a proline at position — 4 is essential 
for processing of human prorenin in AtT-20 cells and is correlated with 
predicted formation of a 13-turn at this position, other site-directed mutations 
suggest that this structural feature in addition to a pair of basic amino acids 
is not sufficient to lead to proteolytic activation of prorenin.127  In contrast to 
the case with human prorenin, neither mouse renal proreninms nor rat 
prorenin1°8-'28  are processed at the analogous positions in transfected AtT-20 
cells. In both cases, mutagenesis of the natural substrates has demonstrated 
that this is also due to the particular arrangement of amino acids immediately 
adjacent to the native processing site (Figure 9). 

Is the AtT-20 cell-processing enzyme identical to the enzyme which 
activates prorenin in mammalian JG cells? The answer cannot be unequivo-
cally positive, since AtT-20 cells are unable to cleave mouse or rat renal 
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FIGURE 8. Effect of mutations on activation of human prorenin. Abcissa denotes the position 
(relative to amino acid 1 of human renin) at which the native amino acid has been changed to 
alanine. Left ordinate, trypsin-activatable prorenin (ng Al/ml/h) in culture supernatants of trans-
fected CHO cells (0). Right ordinate, active renin secreted from transfected AtT-20 cells in the 
presence of 10 I.LM forskolin (•). Data from Chu et al.'27  

SEQUENCE ACTIVATION 

Mouse Ren2 ...V F T K RtS S L T... 	++ 
VETKRSSLT 
	+++ 

3 FTKRESLT 

Mouse Rent 

Rat 

Human 

...VFTKRPSLT... 
3 FTKRESLT +++ 

...EFIKKSSFT... 

..F F I KES SF T... 	+++ 

...Q P M K RtL T L G... 	++ 

0PMEIRLILG 
.Q P MKELTLG.. 

Q P MIRJKJL T L G.. 
Q P MERLTL a. 
.0 P KELTL G.. 
(DEMKRLTLG. 
QEMKRLILG.. 
QEMKRLTLG.. 

FIGURE 9. Summary of the effect of processing site mutations on the generation of active 
renin in transfected AtT-20 cells.i08•'27  The native sequences of the analogous region of mouse, 
rat, and human prorenins are represented in bold type. Mutations induced are represented by 
shaded boxes. Where the native processing site is known, it is denoted by an arrow. 
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prorenins .108,128 Nevertheless, it should be remembered that the processing 
site of rat renal renin is not in the same position as that of human renin82'98  
and the amino-terminus of mouse renal renin has not yet been determined. 
Therefore, it is possible that species-specific differences exist in the processing 
enzymes which activate prorenins. Could the AtT-20 enzyme be related to 
the human renal prorenin-processing enzyme? The first step in answering this 
question is to identify the human prorenin-processing enzyme in AtT-20 cells. 
Transfection of secretory granule-containing GH4  cells with an expression 
vector encoding human prorenin results in the secretion of prorenin into culture 
supernatants, confirming the lack of a prorenin-processing enzyme in these 
cells"°  (Figure 10). When prorenin is cotransfected into GH4  cells with an 
expression vector encoding the mammalian subtilisin-like endoprotease PC 1, 
the cells are rendered capable of selectively processing prorenin at the identical 
site as that reported for the kidney. Interestingly, this processing event does 
not occur in cells devoid of secretory granules (CHO and BSC-40) and is not 
due to any apparent differences in processing of PC1 in these cell types.128  
When tested in a similar assay, neither furin,1°  PC2128  nor human cathepsin 
13'4' are able to process human prorenin. Mutations which inhibit the pro-
cessing of human prorenin in AtT-20 cells also inhibit processing of human 

CHO 

HUMAN PRORENIN 

MOUSE PC1 

GH4 

PRORENIN 
	

RENIN 
	

• PRORENIN 	RENIN 

1.20 

100 

0.80 

0.60 

0.40 

020 

0.00 R
E

L
A

T
IV

E
 S
E

C
R

E
T

IO
N

 

1.80 

100 

0,80 

0.80 

R
E

L
A

T
IV

E
 S

E
C

R
E

T
IO

N
 

0.40 

020 

0.00 

+pUC 
	+mPC1 	 +pUC 

	+mPC1 

FIGURE 10. Cell type-specific processing of human prorenin by the endoprotease PC1.1" 
CHO cells (lacking granules) and GH4  cells (containing granules) were cotransfected with expres-
sion vectors encoding human prorenin and either carrier plasmid DNA ( + pUC) or an expression 
vector encoding mouse PC I ( + inPC I ). Cell culture supernatants were tested for prorenin and 
renin content 48 h after transfection. 
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prorenin by PC1.1" This finding, combined with the fact that PC1 is expressed 
at high levels in AtT-20 cells,' makes it likely that the human prorenin-
processing activity in AtT-20 cells is PC1. Whether or not the human homolog 
of PC1/PC3 colocalizes with prorenin in human JG cells remains to be de-
termined. 

V. FUTURE DIRECTIONS 

What have we learned from studies to date concerning the sorting and 
processing of prorenins? First, the regulated secretory pathway in JG cells 
exhibits unique features, particularly with regard to its content of para-crys-
talline structures containing prorenin and the striking similarity of its secretory 
granules to lysosomes. In spite of these unique characteristics, prorenins 
contain information which direct unrelated neuroendocrine cells to sort them 
to the dense core secretory granules. Several questions remain however: are 
the sorting signals identified in model cell systems functional in JG cells? Is 
the secretory granule sorting event mediated by interaction of prorenin with 
a "sortase" receptor or by aggregation of prorenin in the TGN? Are there 
unique features of the sorting process for prorenin in the kidney which would 
make it amenable to pharmacologic intervention in an effort to control the 
production of circulating renin? 

The second lesson we have learned from these studies is that processing 
of prorenin can be species-, organelle-, and substrate-specific. In the case of 
rat renal renin, processing occurs at a different amino acid position than that 
for human renin. In addition, mouse SMG prorenin is processed in the Golgi 
by an enzyme which will not cleave renal prorenin. Human prorenin can be 
activated in vitro by a widely distributed lysosomal protease (cathepsin B), 
but active renin is only secreted in the circulation from the kidney. In spite 
of these complexities, in vitro processing studies and model cell culture 
systems are giving us information which is useful in the ultimate character-
ization of the processing of prorenin in the kidney. In vitro assays are allowing 
the purification and characterization of candidate processing enzymes. In 
addition, prorenin molecules containing site-directed mutations provide a 
powerful tool to distinguish between processing activities, as different pro-
teases appear to require different amino acids in the immediate area of the 
processing site. Finally, transfection studies in cultured cells will determine 
whether candidate processing enzymes carry out their putative function in the 
appropriate cellular compartment. In combination, these approaches will pro-
vide extremely useful information in designing experiments to directly test 
the activity of potential processing enzymes in JG cells. 

Nevertheless, the lack of established cultures of fully differentiated JG 
cells in which prorenin sorting and processing determinants can be directly 
tested remains a major impediment in this field. For this reason, novel ap-
proaches to the development of JG cell cultures, such as by targeted onco-
genesis in transgenic animals, should remain a high priority. In the meantime, 



24 	Cellular and Molecular Biology of the Renin-Angiotensin System 

targeted expression of native and mutated prorenin molecules to the JG cells 
of transgenic mice, which have the demonstrated ability to activate and secrete 
both rat and human prorenin,'29,'3° should provide an alternative means of 
further characterizing the intracellular processes which determine the secretion 
of active renin. 
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I. INTRODUCTION 

From the earliest observations indicating the existence of a renal pressor 
substance,' we have come to appreciate that renin is an aspartyl protease 
which participates in the regulation of systemic blood pressure and electrolyte 
balance through its fundamental role in the renin-angiotensin system (RAS).2  
Classical systemic renin is produced and secreted by modified intrarenal 
arterial smooth muscle cells (juxtaglomerular [JG] cells) in response to ap-
propriate physiological and neurological signals.' Clearly, a detailed un-
derstanding of the mechanisms governing how these signals are transduced 
within the JG cell to regulate the expression and elaboration of renin would 
assist our comprehension of the biology of the RAS and its role in arterial 
pressure regulation. Unfortunately, while considerable insight into general 
features of regulation has been gained from functional studies of the cell in 
situ, direct analysis of fundamental processes, such as gene transcription, has 
been hampered by the relative paucity of renin-expressing cells in the kidney 
and the lack of suitable cell culture models. 

In addition to the unresolved issues of renal renin expression, it has also 
become apparent that renin or renin-like activities or immunoreactive renin 
can be detected at a number of extrarenal sites.' While the variety of these 
sites and the precise role subserved by renin expression at these extrarenal 
sites is not yet clear, the provocative observation that such expression can be 
found in association with other components of the classic RAS has prompted 
speculation on, and interest in, the existence of extrarenal tissue-renin-an-
giotensin systems.' 5-19  

Indeed, it was the fortuitous discovery of unusually high levels of a renin-
like activity at one extrarenal site, the submandibular gland (SMG) of mice,20'2' 
that has proved to play a paramount role in providing molecular access to the 
renin genes.22-28  Inbred strains can be divided into two classes: those that 
produce high levels of SMG renin, and those that produce significantly lower 
levels.2' The two expression phenotypes serve to define two alleles, Rnrs and 
Rnrb, at this locus.29  Rnrs (after the type strain SWR) can exhibit SMG renin 
levels that correspond to as much as 2% of SMG protein.20'2' Moreover, these 
abundant levels of renin protein are paralleled by high levels of mRNA.3"' 

It was this copious abundance of a renin mRNA that facilitated devel-
opment of the first cDNA clones and ultimately recovery of the corresponding 
genomic sequences encoding the mouse renin gene(s).22,23,25,32,33 The avail-
ability of these cloned recombinant probes from mouse has permitted in turn 
isolation of the homologous sequences from other mammals and provided the 
tools necessary to conclusively demonstrate for the first time primary expres-
sion of renin mRNA in a spectrum of other tissues.''3Q33-" 

Cloning of the mouse renin (Ren) sequences was also instrumental in 
definitively establishing that gene duplication provided the molecular basis 
for the high renin salivary phenotype and ultimately, the demonstration that 
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the structural genes for renin, lie coincident with the Rnr locus on chromosome 
1.22,46,47 We now know that all mice have the Ren-1 locus which encodes the 
classical circulating enzyme and has homologs in other species as well. The 
locus in mouse has two alleles: Ren-1` after type strain C57BL/6 which is 
found in strains with a single renin gene and a low salivary renin phenotype 
(Rnrb), and Ren-1°  after type strain DBA/2 which is found in strains harboring 
the renin gene duplication and exhibiting the high salivary renin phenotype 
(Rnrs).48  The duplicated locus is termed Ren-2 and is found only in strains 
with the high salivary renin phenotype. 

The species-specific duplication of the renin genes in mouse has been the 
bane as well as the boon of renin research in this organism. The multiplicity 
of renin genes in this system has complicated analysis of expression and made 
it incumbent upon investigators to develop methods to distinguish and quan-
titate gene-specific expression patterns. Moreover, the existence of the du-
plication locus has always raised the specter that somehow the mouse was a 
different and unacceptable model from which to generalize on renin expression 
and regulation. It may well be, however, that understanding the basis for the 
differences which superficially appear to distinguish the mouse from other 
organisms, for example the rat, may in fact provide a key to deriving a deeper 
understanding of renin's biological role(s) in general. In any event, currently 
much of our detailed knowledge of renin expression and regulation stems 
from work performed in mice, and it is evident that the mouse continues to 
offer an experimentally manipulable system with which to address funda-
mental issues of renin gene regulation. This reflects its tractability as a clas-
sical genetic system as well as the continuing development of a host of 
sophisticated modern molecular genetic tools, such as transgenic technology 
and targeted recombination strategies. These combined approaches permit 
rigorous evaluation of the role and regulation of single or multiple components 
in complex physiological systems, such as the RAS. 

This chapter will review: (1) cellular sites in adult mice where renin 
mRNA accumulates; (2) spatial, developmental, and hormonal aspects of the 
differential expression of murine renin genes at renal and extrarenal sites; (3) 
current knowledge of murine renin gene and transcript structure; (4) what is 
presently understood about renin gene structure/expression correlations; (5) 
the use of transfected cells and transgenic mice to identify cis-acting regions 
of DNA involved in regulating renin expression; and (6) the development of 
cognate cell lines for examining regulation of renin expression. 

II. RENIN GENE EXPRESSION 

Since renin is present in the circulation and periarterial fluid, it is im-
portant to distinguish whether the presence of renin at a given site is due to 
uptake from extracellular fluid or serum vs. that actually synthesized at the 
site.49'5°  For instance, in murine kidneys, renin was detected by immunocy-
tochemistry in cells of the afferent arteriole (JG cells, myoepithelioid cells) 
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and in cells of the proximal tubule.51-53  However, in situ hybridization assays 
using a renin cDNA probe located renin mRNA in the former cell types but 
not in the latter, thereby eliminating proximal tubule cells as a site of primary 
renin synthesis .54-57  

A variety of direct approaches employing cDNA probes have been used 
to screen for the primary expression of renin mRNA in other tissues where 
renin had reportedly been localized. These investigations were able to confirm 
or expunge tissues as sites of renin transcription. Numerous reports have now 
clearly demonstrated the primary expression of renin mRNA in: kidney, ad-
renal gland, submandibular gland, testes, ovary, and coagulating gland using 
classical Northern blot assays. 30,33,36,37,42,43,58,59  These results demonstrate that 
the levels of renin mRNA in these tissues are relatively abundant. In addition, 
however, substantial controversy exists over whether renin mRNA is present 
in heart and brain as previously reported.38.39.42'6° Other sites of renin expres-
sion have been detected using the highly sensitive but not quantitative po-
lymerase chain reaction (PCR) assay.45,61,62 These include brain, heart, hy-
pothalamus, spleen, thymus, lung, prostate, and liver. The significance of 
these results remains unclear and therefore, for the purposes of this review, 
we will discuss only those sites where renin mRNA is relatively abundant. 

A. DIFFERENTIAL RENIN EXPRESSION IN THE ADULT MOUSE 
A priori, with the existence of multiple loci in the mouse, it became 

necessary to clarify the individual contributions of each gene to the expression 
pattern in each tissue. The Ren-lc, Ren-l d, and Ren-2 genes encode highly 
similar yet unique renin transcripts. By taking advantage of minute sequence 
differences between them it proved possible to develop methods to discern 
the tissue specificity of each. These studies have revealed highly complex 
gene-specific patterns of differential expression. Details of these methods 
have been previously described.3°'" The following is a summary of differential 
renin gene expression in renal and extrarenal tissues. 

Kidney — Renin expression in the kidney has been shown to be roughly 
equivalent among Ren-lc, Ren-l d, and Ren-2. 3°  Under normal physiological 
conditions, the expression is limited to a population of modified smooth 
muscle cells of the afferent arteriole proximal to the glomerulus (myoepithe-
lioid or JG cells).4'52'63  The population of cells expressing renin mRNA, as 
well as the renin mRNA levels in JG cells, can be modulated."'"'''' Both 
are induced by conditions of physiological stress such as sodium depletion, 
pathophysiologic stress such as uretal and renal artery obstruction, as well as 
by pharmacologic intervention with angiotensin-converting enzyme inhibitors. 
In situ hybridization assays localizing renin transcripts to specific cells have 
shown that vascular smooth muscle cells in the afferent arterioles and inter-
lobular arteries can be recruited into a renin-expressing phenotype. These 
vascular smooth muscle cells have been termed intermediate cells because 
their ultrastructural appearance contains elements of both vascular smooth 
muscle cells and fully transformed JG cells.4•5 
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Adrenal gland — In adult adrenal glands, Ren-l d  and Ren-2 expression 
is equivalent and higher in females than in males."'" Expression occurs in 
the X-zone and zona fasciculata but undergoes shifts of cell specificity during 
the estrus cycle (see below). Ren-P is not detectable in adult adrenal glands 
of either sex at this site by Northern blot or in situ hybridization assay."'" 

Salivary glands — Submandibular gland Ren-2 expression is 100-fold 
higher than Ren-lc expression in male SMG as detected by primer extension 
analysis.' Miller et al.42  reported Ren-1d was detectable but was at very low 
levels by RNase protection assay. In this tissue, renin is expressed by the 
granular convoluted tubule cell (GCT, a glandular epithelial cell which makes 
up 20% of the cellular population) and becomes detectable by in situ hybrid-
ization at puberty. In the female SMG, renin transcripts accumulate to an 
approximately 5-fold lower level than is seen in males.22'37:12  The sublingual 
gland also expresses renin mRNA which has been located to the striated ductal 
cell by in situ hybridization. These cells were similar to GCT cells in that 
they appeared to have comparable levels of transcripts on a per cell basis. 
Male sublingual glands of mice with Ren-ld and Ren-2 genes exhibited high 
levels of renin mRNA, while in females, transcripts were detectable by treat-
ment with androgen. In situ hybridization did not detect any cells with renin 
transcripts in the parotid gland.' 

Gonads — Renin expression in Leydig cells of the testes is roughly 
equivalent for Ren-P and Ren-2 with Ren-ld  slightly in excess.36•43  Renin 
expression in the ovary is equivalent between Ren-P' and Ren-2 .45  Low levels 
of Ren-1 were also detected by Sigmund and Gross.11' The renin-expressing 
cell type in the mouse ovary has not been identified. 

Coagulating gland — Renin gene expression is high for Ren-le but 
undetectable for Ren-ld  and Ren-2.43'" Renin expression in this tissue is 
limited to the glandular epithelial cells. 

B. DEVELOPMENTAL SHIFTS IN RENIN EXPRESSION 
In addition to the observed adult patterns of murine renin expression, 

developmentally regulated expression occurs during organogenesis in the me-
tanephric kidney of mice and rats,51'53-5" the mouse adrenal gland,'4,54  and 
also in subcutaneous tissues of mice and rats.' In the murine fetal kidney, 
expression of Ren-P,Ren-ld, and Ren-2, as detected by in situ hybridization, 
is first observed 14.5 days post coitum (pc).31.54  By 15.5 days pc, renin 
expression is clearly visible in cells surrounding the lumens of early-forming 
intrarenal arteries. This expression shifts with the newer portions of the elon-
gating arteries, while the more mature portions of the vascular tree lose the 
ability to express renin. Expression becomes progressively restricted so that 
by one week of age, the expression sites become similar to those seen in 
adult kidney. 

Fetal adrenal gland expression is characterized by accumulation of high 
levels of renin transcripts in both males and females. This stands in contrast 
to the adult adrenal gland where expression in females of Ren-1d  and Ren-2 
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genes is higher than in males. Interestingly, Ren-I e, which is not detectable 
in adult adrenal gland, is expressed at comparable levels to Ren-ld and Ren-
2 at this time. Again, expression is first visible by in situ hybridization at 
14.5 days pc.3 L54  Expression is located throughout the entire gland except 
for the outermost cell layers, as judged by accumulation of silver grains over 
the tissue. By 16.5 days, expression appears less intense, becomes limited 
to the cortical region and is clearly absent in the medulla. Ren-le expression 
disappears by birth, reflecting a developmental downregulation of steady-
state levels of renin transcripts while detectable renin expression persists in 
strains with both Ren-ld and Ren-2. 35  

Renin expression can also be detected by in situ hybridization in the testes 
during fetal development.54  Accumulation of silver grains in this fetal tissue 
is lower relative to the kidneys and adrenal glands. The testes, along with 
the kidney and the adrenal gland derive from the same limited region of the 
intermediate mesoderm.75•76  This leads one to speculate that perhaps some 
event predisposes cells derived from this embryonic tissue with the potential 
to express renin, provided the cells then follow defined paths of differentia-
tion. 

Renin expression in murine subcutaneous sites also appears to be devel-
opmentally regulated.74•77  The expression of an SV40 large T antigen reporter 
gene under the control of renin regulatory elements in transgenic mouse fetuses 
first suggested the presence of renin at this extrarenal site. The reporter gene 
was expressed at all fetal sites known to express renin and in a mesenchymal 
cell type amid the muscle layers directly beneath the developing dermis. 
Interestingly, the fetal expression pattern of the reporter gene is remarkably 
similar to the pattern of angiotensin II receptors reported by Zemel et al. ,78  
suggesting a possible developmental role for the RAS. The levels of expression 
were below the limit of sensitivity of in situ hybridization. However, Northern 
blot analysis of decapitated and eviscerated fetal carcasses revealed the pres-
ence of renin mRNA consistent with localization to extra-visceral tissue. 
Sigmund et al.74  were able to show that transcripts from either the Ren-le or 
the Ren-l d  allele accumulated to higher levels than transcripts derived from 
the Ren-2 gene. 

C. HORMONAL INFLUENCES ON RENIN EXPRESSION 
Renin expression in mouse SMG has been shown to be androgen and 

thyroxine responsive.2o.29,a6'"  Wilson et al.29  investigated renin activity in 
SMG of female mice with the Ren-IdIRen-2 genotype. Onset of activity was 
observed around puberty (3 to 4 weeks of age), reaching maximum basal 
levels around 7 weeks of age. The basal activity in females treated with 
dihydrotestosterone was found to be increased 4- to 5-fold compared with 
untreated females, which is comparable to the levels in the male gland. 
Likewise, Ren-P exhibits androgen inducibility. Nuclear runoff transcription 
assays show androgen responsiveness to be a result of increased transcriptional 
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activity, as opposed to merely increased message stability.72,80,81 Administra-
tion of the thyroid hormone thyroxine has the same effect as dihydrotestos-
terone, resulting in an approximately 5-fold increase in the accumulation of 
renin mRNA.72•80,81 

Another interesting fluctuation in renin expression which appears to be 
under hormonal influence has been observed in the adrenal gland of some 
closely related inbred strains carrying Ren-ld and Ren-2.35  Female mice of 
this genotype exhibit shifts in renin expression between the X-zone and the 
zona fasciculata of the cortex as the animal cycles through estrus. The adrenal 
gland at various stages of the estrus cycle was examined by in situ hybridi-
zation and revealed that in proestrus, renin transcripts are evident in both the 
X-zone and the zona fasciculata. During the next stage, estrus, transcripts 
are found only in the zona fasciculata. At metestrus, expression is evident 
in the X-zone but not the zona fasciculata. In diestrus, expression at both 
locations is evident, with noticeably higher accumulation of transcripts in the 
zona fasciculata. Differential primer extension revealed that the level of Ren-
ld and Ren-2 remained equivalent at each stage of the estrus cycle. The 
molecular mechanisms regulating this change in cell specificity remain un-
clear. 

D. INTERSPECIES CONSERVATION OF EXTRARENAL RENIN 
EXPRESSION 
The important role of renal renin expression is widely conserved in ver-

tebrate animals (see Nishimura82  and Wilson83  for reviews). The relevance 
of extrarenal renin expression is not as clear but conservation of expression 
at a given site suggests these sites may also have an important function. It 
seems probable that common sites of extrarenal expression found across mam-
malian species serve an important function in order to have persisted over an 
evolutionary time scale. Table 1 lists extrarenal tissues where renin mRNA 
has reportedly been detected by Northern or in situ analysis in mice, rats, 
and humans. 

Renin expression in some extrarenal sites is apparently unique to the 
mouse, raising questions as to its functional relevance. Examples of this are 
the SMG and the coagulating gland."'" In addition, there are differences in 
cell specificity among species. For instance, renin expression in the rat adrenal 
gland is restricted to the zona glomerulosa.8  On the other hand, renin expres-
sion in the mouse adrenal gland is confined to the inner cortical zones, X-
zone, and zona fasciculata. 

III. PHYSICAL STRUCTURE OF THE 
MOUSE RENIN GENES 

A. GENE STRUCTURE 
Extensive genetic linkage information has permitted the formation of a 

relational map of mouse chromosome 1. Using the linkage information, the 
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TABLE 1 
Comparison of Mouse, Rat, and Human Extrarenal Sites 

of Renin mRNA Synthesis 

Ren-1' Ren-P Ren-2 Rat Human 

Submandibular gland A 	Negative' A 	Negative No data 
Adrenal gland 	F 	F, A 	F, A 	A 	A 
Coagulating gland 	A 	Negative 	Negative Negative No data 
Testes 	 F, A 	Fb, A 	P, A 	A 	No data 
Ovary 	 A 	A 	A 	A 	No data 
Subcutaneous tissue 	F 	F 	F 	F 	No data 
Chorion 	 No data No data 	No data 	No data 	Positive 

Note: F, Present in fetal tissue; A, present in adult tissue. 

• Detectable by RNase protection assay. 
▪ Relative contributions of Ren-1° and Ren-2 not determined. 

position of the renin structural genes has been established in relation to other 
chromosomal markers (Figure 1A)." Comparison of the three mouse renin 
genes revealed they have the same intron-exon arrangement and that this 
region spans a distance of roughly 10 kb (Figure 1B).87  Sequence comparison 
of the respective cDNAs revealed that the coding regions of Ren-lc and Ren-
/d are 99% identical, while Ren-1d  and Ren-2 are 97% identical." Interest-
ingly, the Ren-2 gene does not encode any of the potential N-linked glyco-
sylation sites encoded in the Ren-1 gene (and found in the renin-1 polypep-
tide).26,87,89  The lack of glycosylation could explain the thermolability of renin 
seen in the SMG of mice with the duplicated gene. The mouse, rat, and 
human renin genes share significant structural organization and sequence 
similarity with each other. The renin gene coding regions in mouse and rat 
are approximately 88% identical, while between mouse and human renin 
genes they are approximately 78% identical.28  These genes are members of 
the aspartyl protease family.87  

The 5' flanking regions of the mouse renin genes exhibit significant 
homology.9°-93  The renin genes are homologous for 150 bases upstream from 
the transcription start site (designated as + 1), preserving the TATA boxes 
( — 23 to — 29) and a region of alternating purine pyrimidine bases ( — 30 to 
—45). Renin promoters do not contain a CAAT box but do have an AT-rich 
region conserved in mice and humans at approximately — 60. 

B. DNA INSERTIONS ASSOCIATED WITH MOUSE RENIN LOCI 
The availability of rat and human genomic renin sequences permitted 

other interspecies comparisons of renin genes. These studies revealed that 5' 
flanking regions of the mouse renin genes exhibit significant segmental ho-
mology with each other and regions of rat and human renin.'-92•94•95  The 
segmental nature is due to a number of genetic events including not only the 
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duplication of the gene, but also the presence of numerous insertional elements 
in the 5' and 3' flanking regions of the genes (Figure 1C).9°-93'95-99  Several 
of these elements are well-characterized repetitive sequences, namely BI, 
B2, and a partial intracisternal A particle (IAP). Others are anonymous in-
sertions which are arbitrarily referred to as Ml, M2, M3, and M4 (M, mouse). 
At least M1 is known to be repetitive in the mouse genome. The presence or 
absence of these insertions has helped distinguish between the mouse renin 
genes and contribute to the segmental homology of the 5' flanking DNA 
through their breakup of the primordial flanking regions (Table 2). 

The combined approaches of sequence analysis, southern blotting, and 
pulse field gel electrophoresis (PFGE) studies have permitted comparison of 
the murine renin genes. It has been found that Mus hortulanus, a wild derived 
variant with two renin loci, lacks MI, M2, M4, and the IAP found in DBA/ 
2J while possessing the M3 and B2 insertions.94•95  The lack of the insertions 
in M. hortulanus also suggests the insertional events probably occurred after 
the duplication event in the inbred strains. These genomic inserts have been 
proposed to have potential influences on renin gene expression. However, 
M. hortulanus, which lacks many of the inserts, showed the same patterns 
of tissue-specific expression as is seen in DBA/2J. One exception where a 
lack of insertions in M. hortulanus correlates with altered expression as com-
pared with DBA/2J, is in the adult adrenal gland, where no mRNA from 
either renin gene is detected. 

C. STRUCTURE AT THE DUPLICATION LOCI 
The unique pattern of tissue-specific expression in mice carrying the Ren-

Jd and Ren-2 loci and in those with the solitary Ren-P locus has led to efforts 
to characterize the physical structure of the duplicate locus. Genetic analysis 
indicates that the two loci are tightly linked.22•98•99  PFGE helped to determine 
that Ren-2 lies upstream of Ren-l d, that the respective coding regions are 
separated by approximately 21 kb and that the two genes are transcribed in 
the same direction (Figure 1D).9" Abel and Gross,99  using PFGE and se-
quence information, determined the precise site of the recombination event 
that resulted in the gene duplication. Duplication apparently occurred through 
nonhomologous recombination. The analysis by PFGE also identified clusters 
of rare cutting restriction enzyme sites (or HTF islands) in the vicinity of the 
renin gene. HTF islands have been shown to be associated with 5' regions 
of many vertebrate genes. Ren-l d  and Ren-2 genes have an HTF island at 
homologous positions in their 3' flank which apparently has been duplicated 
along with the Ren-2 locus. Additional HTF islands are located 21 kb upstream 
and 65 kb downstream of the locus. 

D. TRANSCRIPT STRUCTURE 
In the kidney, the size of the mature mouse renin mRNA is approximately 

1450 bases." Additional higher molecular weight species of renin mRNA 
have been detected in SMG and coagulating gland by northern blot analysis. 
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TABLE 2 
Approximate Size and Location of the Insertional Elements Associated 

with the Mouse Renin Locus 

Insertion Size Location Ref. 

M1 7.0 kb —3.1 kb of Ren-P 98 
M2 143 by —110 by of Ren-25  92,97,98 
M3 500 bp —80 bp of Ren-P, Ren-ld, Ren-2 97 
M4 300 bp +1.5 kb of Ren-1° 98 
B1 180 bp —1.5 kb of Ren-P, Ren-P, Ren-2 96 
B2 200 bp Within the M3 element of Ren-2 90 
lAP 3.5 kb +1.0 kb of Ren-25  92 

Note: A (—) indicates upstream distance from exon I if intervening insertions are not present. 
A (+) indicates downstream distance from exon IX. * Indicates the element is not 
associated with the Ren-2 gene of Mus hortulanus. 

S 1 nuclease protection and primer extension assays have demonstrated the 
utilization of additional upstream transcriptional start sites .9° These encode 
an open reading frame which potentially adds 23 amino acids to the N-terminus 
of the translated products. It remains unclear if this open reading frame is 
ever utilized. 

IV. STRUCTURE/EXPRESSION CORRELATES 

As has been shown, the mouse renin genes exhibit an array of complex 
expression patterns. Recent reports have speculated that the structural vari-
ations noted above may be responsible for several of the gene-specific expres-
sion patternS.93'97'98'M  An opportunity to correlate specific structural features 
with gene expression patterns is afforded by comparing naturally occurring 
genetic variants (such as Mus hortulanus) with inbred strains (such as DBA/ 
2).95  Also, genetic crosses as well as transgenic analysis have demonstrated 
that the gene-specific expression differences are mediated by closely linked 
sequences in cis .35'43'46  However, the available information does not satis-
factorily limit which regions control the variable expression patterns of the 
renin genes. Therefore, in order to define the specific identity of the regulatory 
DNA sequences controlling these variations of expression, investigators have 
employed direct tests of recombinant DNA constructs in expression assay 
systems. 

A. EXPRESSION ASSAY SYSTEMS 
To identify regulatory DNA sequences, it is necessary to systematically 

examine the effects of discrete regions with an assay system which can directly 
measure the effects of linked DNA sequences on expression from a particular 
promoter. These fall into two categories, transfection into established cell 
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lines, and more recently the ability to insert genes via transgenesis.88•10'-103 
Each system has its own advantages and disadvantages. 

The transgenic approach provides the opportunity to examine expression 
of transgenes temporally in all tissues, with ensuing physiological feedback 
regulation. However, this method is time consuming, expensive, and labor 
intensive. Furthermore, the integration of the transgene into a chromosome 
is a random event and therefore the site of insertion cannot be controlled. 
The chromosomal environment around the integration site can have significant 
influences on transgene expression; a position effect. Therefore, it becomes 
necessary to examine multiple independent founder lines for each transgenic 
construct to determine whether the pattern of transgene expression is being 
controlled by elements of the transgene or by endogenous flanking elements. 

The transfection approach allows the rapid testing of many different DNA 
constructs, as will be illustrated below. This should facilitate systematic ex-
amination of DNA sequences derived from large regions known to regulate 
expression. Ideally, the assay cell line should elaborate the trans-acting factors 
which promote the transcription of the endogenous renin gene (a cognate cell). 
Until recently, there have been no suitable established cell lines available for 
fulfilling this criterion. Previous attempts at establishing cells which express 
renin in vitro have been unsuccessful because the resulting cells often lose 
the ability to express renin. 

B. TRANSGENIC ASSAYS FOR IDENTIFICATION OF 
CIS-ACTING ELEMENTS 
To date, several groups have undertaken informative studies utilizing 

transgenic animals containing various renin genes and constructs. Initial ex-
periments centered on reconstructing two renin gene type mice from a single 
transgene on a Ren-1` genetic background. Tronik et al.' used a Ren-2 
transgene with 2.5 kb of upstream flanking sequence, the exon-intron region, 
and 3 kb of downstream flanking sequence. The Ren-2 transgene was ex-
pressed in a quantitative tissue-specific manner; and Ren-2 expression in the 
SMG was inducible by androgen. Mullins et al.35"°5  performed similar studies 
using a Ren-2 transgene with a more extensive upstream and downstream 
flanking sequence (approximately 5 kb of 5' flank, the exon-intron region, 
and approximately 10 kb of 3' flank). They found qualitatively similar results 
to those reported with the less extensive Ren-2 transgene. This group was 
also able to extend these observations to the adrenal gland, where they showed 
that the estrus cycle-specific effects on Ren-2 expression could be partially 
reconstituted in the transgenic mice. In a similar set of studies Miller et al.42  
examined the expression of a Ren-I d  transgene (spanning approximately 19 
kb with approximately 5 kb of 5' flank, the exon-intron region, and approx-
imately 4 kb of 3' flank) in a Ren-lc genetic background. They showed that 
the expression differences between Ren-le and Ren-l d  were encoded in cis. 
All these studies are in agreement with genetic studies and support the notion 


