

Holistic Game Development
with Unity

http://taylorandfrancis.com

Holistic Game Development
with Unity

An All-in-One Guide to Implementing Game
 Mechanics, Art, Design and Programming

Third Edition

Penny de Byl

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-48073-5 (Hardback)
978-1-138-48062-9 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable
data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their
use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any
information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/)
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and
explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: De Byl, Penny, author.
Title: Holistic game development with Unity : an all-in-one guide to implementing game mechanics, art, design and
programming/ Penny de Byl.
Description: Third edition. | Boca Raton : Taylor & Francis, 2019.
Identifiers: LCCN 2018058220 | ISBN 9781138480629 (pbk. : alk. paper) |
ISBN 9781138480735 (hardback : alk. paper)
Subjects: LCSH: Unity (Electronic resource) | Computer games--Programming. | Video games--Design.
Classification: LCC QA76.76.C672 D42 2019 | DDC 794.8/1525--dc23
LC record available at HYPERLINK “https://protect-us.mimecast.com/s/Ij6pCG6Y9jf1gp21yiQBwxB?domain=lccn.loc.
gov” https://lccn.loc.gov/2018058220

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov/
https://protect-us.mimecast.com/
http://www.copyright.com/
http://www.copyright.com

Contents
Preface . xi
Acknowledgments . xv
Author . xvii

Chapter 1: The Art of Programming Mechanics . .1
1.1 Introduction .1
1.2 Programming on the Right Side of the Brain3
1.3 Creating Art from the Left Side of the Brain8

1.3.1 Point .9
1.3.2 Line .9
1.3.3 Shape .10
1.3.4 Direction .11
1.3.5 Size .12
1.3.6 Texture. .13
1.3.7 Color .14

1.4 How Game Engines Work .17
1.4.1 A Generic Game Engine. .17
1.4.2 The Main Loop .18

1.5 A Scripting Primer .27
1.5.1 Logic .28
1.5.2 Comments .31
1.5.3 Functions .33
1.5.4 Variables . 34

1.5.4.1 C# Variables .37
1.5.5 Operators .43

1.5.5.1 Arithmetic Operators43
1.5.5.2 Relational Operators43

1.5.6 Conditional Statements. 46
1.5.7 Arrays . 54
1.5.8 Objects. .57

1.6 A Game Art Asset Primer .62
1.6.1 The Power of Two Rule. .63
1.6.2 Using Other People’s Art Assets 68

1.7 Summary .72

Chapter 2: Real-World Mechanics . 73
2.1 Introduction .73
2.2 Principles of Vectors .74
2.3 Defining 2D and 3D Space .79

2.3.1 Cameras. 80

v

2.3.2 Local and World Coordinate Systems87
2.3.3 Translation, Rotation, and Scaling87
2.3.4 Polygons and Normals .91

2.4 Two-Dimensional Games in a 3D Game Engine95
2.4.1 Quaternions? . 100
2.4.2 Quaternions to the Rescue . 103

2.5 The Laws of Physics .113
2.5.1 The Law of Gravity .114
2.5.2 The First Law of Motion .116
2.5.3 The Second Law of Motion. 120
2.5.4 The Third Law of Motion .121

2.6 Physics and the Principles of Animation 123
2.6.1 Squash and Stretch . 125
2.6.2 Anticipation .131
2.6.3 Follow-Through .132
2.6.4 Secondary Motion . 134

2.7 2D and 3D Tricks for Optimizing Game Space137
2.7.1 Reducing Polygons . 138

2.7.1.1 Use Only What You Need 138
2.7.1.2 Backface Culling. 138
2.7.1.3 Level of Detail . 140

2.7.2 Fog . 143
2.7.3 Textures . 143

2.7.3.1 Moving Textures . 144
2.7.3.2 Blob Shadows . 145

2.7.4 Billboards . 146
2.8 Summary . 149

Chapter 3: Animation Mechanics . 151
3.1 Introduction .151
3.2 Sprites . 153
3.3 Texture Atlas . 153
3.4 Animated Sprites . 157
3.5 Baked 3D Animations. 163
3.6 Biomechanics . 173
3.7 Animation Management. 177

3.7.1 Single 2D Sprite Actions . 177
3.7.2 Single-Filed 3D Animations . 182

3.8 Secondary Animation . 184
3.9 Summary . 187

Chapter 4: Game Rules and Mechanics . 189
4.1 Introduction . 189
4.2 Game Mechanics . 190

vi

4.3 Primary Mechanics . 192
4.3.1 Searching. 192
4.3.2 Matching . 193
4.3.3 Sorting . 193
4.3.4 Chancing . 194
4.3.5 Mixing. 195
4.3.6 Timing . 195
4.3.7 Progressing. 196
4.3.8 Capturing . 196
4.3.9 Conquering. 196
4.3.10 Avoidance . 197
4.3.11 Collecting . 197

4.4 Developing with Some Simple Game Mechanics 198
4.4.1 Matching and Sorting . 198
4.4.2 Shooting, Hitting, Bouncing, and Stacking. . . .217
4.4.3 Racing. 223
4.4.4 Avoidance and Collecting 227
4.4.5 Searching. 235

4.5 Rewards and Penalties . 238
4.6 Summary . 242
Reference . 242

Chapter 5: Character Mechanics . 243
5.1 Introduction . 243
5.2 Line of Sight . 245
5.3 Graph Theory . 250
5.4 Waypoints . 251

5.4.1 Searching through Waypoints. 252
5.5 Finite State Machines . 269
5.6 Flocking . 292
5.7 Decision Trees . 301
5.8 Fuzzy Logic . 306
5.9 Genetic Algorithms .317
5.10 Cellular Automata. 322
5.11 Summary . 323

Chapter 6: Player Mechanics . 325
6.1 Introduction . 325
6.2 Game Structure . 326
6.3 Principles of Game Interface Design 334

6.3.1 User Profiling . 334
6.3.2 Metaphor. 335
6.3.3 Feature Exposure . 336
6.3.4 Coherence. 337
6.3.5 State Visualization . 338
6.3.6 Shortcuts . 338

vii

6.3.7 Layout . 339
6.3.8 Focus . 340
6.3.9 Help . 340

6.4 Inventories . 343
6.5 Teleportation . 358

6.5.1 Implicit Teleports. 358
6.5.2 Explicit Teleports . 360

6.6 Summary . 362

Chapter 7: Environmental Mechanics . 363
7.1 Introduction . 363
7.2 Map Design Fundamentals . 364

7.2.1 Provide a Focal Point . 364
7.2.2 Guide and Restrict the Player’s Movement 364
7.2.3 Scaling. 366
7.2.4 Detail . 366
7.2.5 Map Layout . 367

7.2.5.1 Open . 369
7.2.5.2 Linear. 369
7.2.5.3 Branching . 370
7.2.5.4 Spoke and Hub . 370

7.2.6 Other Considerations. 371
7.2.6.1 Player Starting Position. 371
7.2.6.2 Flow . 371
7.2.6.3 Trapping. 371
7.2.6.4 Use the Third Dimension 371
7.2.6.5 Vantage Points. 372

7.3 Terrain . 372
7.3.1 Drawing a Terrain . 373
7.3.2 Procedural Terrain. 378
7.3.3 Procedural Cities . 383
7.3.4 Infinite Terrain. 389

7.4 Camera Tricks . 391
7.4.1 Depth of Field . 391
7.4.2 Blur . 392
7.4.3 Grayscale . 393
7.4.4 Motion Blur . 394
7.4.5 Sepia Tone . 394
7.4.6 Twirl . 394
7.4.7 Bloom . 394
7.4.8 Flares . 395
7.4.9 Color Correction . 395
7.4.10 Edge Detection . 395
7.4.11 Crease . 395
7.4.12 Fish Eye . 396
7.4.13 Sun Shafts . 396

viii

7.4.14 Vignette . 396
7.4.15 Screen Space Ambient Occlusion 396

7.5 Skies . 401
7.5.1 Skyboxes. 402
7.5.2 SkyDomes . 404
7.5.3 Clouds . 407

7.6 Weather. 409
7.6.1 Wind . 409
7.6.2 Precipitation .412

7.7 Particles. .412
7.8 Summary .419
Reference .419

Chapter 8: Mechanics for External Forces . 421
8.1 Introduction . 421
8.2 Mobile . 422

8.2.1 Design Considerations. 422
8.2.1.1 Text. 423
8.2.1.2 Icons and User Interface Elements . . . 424
8.2.1.3 Gameplay. 424

8.2.2 Haptics. 434
8.2.3 Accelerometer . 434
8.2.4 Orientation. 436
8.2.5 Web Services . 439
8.2.6 GPS . 445

8.3 Gestures and Motion . 450
8.4 3D Viewing. 454

8.4.1 Side-by-Side . 454
8.4.2 Anaglyphs . 456
8.4.3 Head-Mounted Displays . 457

8.5 Augmented Reality. 458
8.6 The Social Mechanic. 462

8.6.1 External Application Security Matters 463
8.6.2 Twitter . 465
8.6.3 Facebook . 466

8.7 Platform Deployment: The App Store, Android
Market, and Consoles. 466
8.7.1 Publishing for the App Store and

Android Market . 466
8.7.2 Console Publishing . 467
8.7.3 Download Direct to Player . 468

8.8 Summary . 468
8.9 A Final Word . 469

Index . 471

ix

http://taylorandfrancis.com

Preface

About This Book
I first decided to write this book in 2010 when I found existing literature for
budding game designers, artists, and programmers tended to focus on only
one specific vein of games development, that being either a design, artistic,
or programming book. Those with artistic talents and ideas for games could
not find a good resource to ease them into programming. On the other hand,
programming texts tended to be dry and ignore the visual aspect.

At the time, the face of the game development industry was rapidly changing
from a small number of large development teams to much more of a cottage
industry consisting of small multi-skilled teams. And today, some eight years
later, it is more imperative than ever that individuals are skilled in both art
and programming.

Game development tools are also not what they used to be, and rapid game
development tools such as Unity are making it a possibility for individuals to
make complete games from scratch. It’s also becoming almost impossible
to write a book about software and have it published before the software
is updated. Year after year we see advancements that quickly make printed
material obsolete.

To address all these issues, this book is written for the artist who wants to
program and the programmer who wants some pointers about using game
art. In the beginning, I started writing just for artists, but soon came to realize
the content was equally as relevant to those wanting to learn how to start
programming games. In addition, the content inside these pages is organized
by theory first, followed by application and practice in Unity. While the theory
will remain relevant long into the future, the versions of Unity and how the
interface changes will not, although, to Unity’s credit, the interfaces from one
version to another are mostly the same. What you’ll find inside these pages
are code and techniques that work from versions 5.6 through to 2019.

How This Book Is Organized

This book has been written with artists who want to learn how to develop
games and programmers who want to learn about using art in games in mind.
It approaches game development in a unique combination of teaching
programming that keeps design in mind, because programming a games
graphical user interface is entirely different from making it look good.

xi

Learning about how design impacts programming and vice versa is a
logical way to introduce both sides of the game development coin to
game creation.

All chapters focus on sets of mechanical functions existing within games:

• Chapter 1, The Art of Programming Game Mechanics, explains the
roles both art and programming play in creating games and explores
the limitations of having one without the other. In addition, the
complementary nature of digital art and programming is established.

• Chapter 2, Real World Mechanics, examines the branch of physics dealing
with the study of motion. Motion is a fundamental idea in all of science
that transcends the computer screen into virtual environments. This
chapter examines kinematics, which describes motion, and dynamics,
examining the causes of motion with respect to their use in computer
games. It introduces the physical properties of the real world and
demonstrates how a fundamental understanding of mathematics,
physics, and design principles is critical in any game environment.
Composition, rules of animation, and design principles are introduced in
parallel with technical considerations, mathematics, and programming
code that controls and defines the movement of characters, cameras,
environments, and other game objects.

• Chapter 3, Animation Mechanics, studies the technical nature of 2D and
3D animated models. The reader will develop skills with respect to the
programmatic control of their own artwork, models, and/or supplied
assets in a game environment. Elementary mathematics, physics, and
programming concepts are introduced, demonstrating the concepts of
keyframes, animation states, and the development of dynamic character
movement and sprite animation.

• Chapter 4, Game Rules and Mechanics, introduces common generic
game mechanics such as matching, sorting, managing, and hitting.
Examples of how each of these is visually represented in a game
and the programming that controls them are explained in depth.
Common algorithms and data structures used for each mechanic are
worked through with the reader, integrating the key art assets where
appropriate.

• Chapter 5, Character Mechanics, explains simple artificial intelligence
algorithms to assist the reader in creating their own believable non-player
characters. Animation states and techniques covered in Chapter 3 are
integrated with game-specific data structures and algorithms to control
the behavior of characters, from the flocking of birds to opponents that
follow and interact with the player.

• Chapter 6, Player Mechanics, presents the code and artwork that will
be deployed to develop graphical user interfaces and maintain player
states. It includes details about the development of inventory systems,
heads-up displays, and character–environment interaction.

xii

• Chapter 7, Environmental Mechanics, reveals the fundamental concepts
in creating and optimizing game environments. It covers techniques that
range from adding detail to environments to make them more believable
to tricks for working with large maps and weather simulations.

• Chapter 8, Mechanics for External Forces, examines issues related to
developing games while keeping in mind the new plethora of input
devices, social data, GPS locators, motion sensors, augmented reality, and
screen sizes. Practical advice is included for using Unity to deploy games
that leverage touch screens, accelerometers, and networking to the
iPhone, iPad, and Android mobile devices.

The Companion Website
The website accompanying this book is http://www.holistic3d.com. It
contains all of the files referred to in the workshops, finished examples, and
other teaching and learning resources.

More Holistic3D Resources
Join Penny’s students online on Discord at https://discord.gg/su2zar2 or
Facebook at https://www.facebook.com/groups/hgdev.

To accompany this book, there is also a YouTube channel updated constantly
with new techniques and game development examples in Unity. This can be
found at https://www.youtube.com/c/holistic3d. There are also several high-
quality online video courses produced by the author, which you can access
at a heavily discounted rate with the following coupons. These courses cover
a vast range of topics from animation to procedural terrain generation to
machine learning. You can find each here:

Augmented Reality:
https://www.udemy.com/augmented_reality_with_unity/?couponCode

=H3DGAMEDEVBOOK
Procedural Terrain Generation:
https://www.udemy.com/procedural-terrain-generation-with-unity/

?couponCode=H3DGAMEDEVBOOK
Machine Learning:
https://www.udemy.com/machine-learning-with-unity/?couponCode

=H3DGAMEDEVBOOK
Shader Development:
https://www.udemy.com/unity-shaders/?couponCode=H3DGAMEDEV

BOOK
Artificial Intelligence:
https://www.udemy.com/artificial-intelligence-in-unity/?couponCode

=H3DGAMEDEVBOOK
Minecraft Voxel Worlds:
https://www.udemy.com/unityminecraft/?couponCode=H3DGAMEDE

VBOOK

xiii

https://www.udemy.com/
https://www.udemy.com/
https://www.udemy.com/
https://www.udemy.com/
https://www.udemy.com/
https://www.udemy.com/
https://www.youtube.com/
https://www.facebook.com/
https://discord.gg/
http://www.holistic3d.com

C# Programming:
https://www.udemy.com/naked_cs/?couponCode=H3DGAMEDEVBOOK
Networking:
https://www.udemy.com/unet_intro/?couponCode=H3DGAMEDEVBOOK
Animation:
https://www.udemy.com/mastering-3d-animation-in-unity/?couponCode

=H3DGAMEDEVBOOK

xiv

https://www.udemy.com/
https://www.udemy.com/
https://www.udemy.com/

Acknowledgments
First, I’d like to thank my editor, Sean Connelly, who has kept my project on
track. His encouragement and enthusiasm for the book have been highly
motivating. In addition, thanks must go to Mark Ripley of Effervescing
Elephant Interactive, who acted as the initial technical editor and provided
valuable insight on game programming with Unity, as well as Rachel, Ramesh,
and Joy from the Unity educational team, without whose enthusiasm this
third edition of the book wouldn’t have materialized.

Next, I’d like to acknowledge Unity3d, who have helped shape the content of
the book through their reviews and the development of a truly inspirational
game development tool; as well as all of the forum contributors who
have freely shared their ideas and code to answer all conceivable game
development questions. The forums at http://forums.unity3d.com are an
invaluable knowledge base.

Finally, I’d like to thank my family, Daniel, Tabytha, and Merlin (my labrador).
Daniel has been an absolute rock. His knowledge of Microsoft Word
formatting still leaves me amazed, and his proofreading and testing of all
the workshops have saved so much time, which has been an invaluable
contribution to this work (i.e., if the code in this book doesn’t work for you—
blame him! ☺). Tabytha has also been a source of inspiration, as she’s now at
an age where programming and mathematics are becoming fascinating to
her. Her journey with Unity is just beginning. As always, Merlin has provided
constant companionship and copious amounts of fur by sitting constantly
under the desk at my feet, snoring and snuffling.

I should also thank my close friends, Kayleen and James, who’ve provided
editorial, art directing, code testing, and rewriting support over the years;
and especially Adrian, who’s been a hard-working little minion for me over
the final few weeks of pulling this third version together. His dedication to the
project and occasional comic relief have been greatly appreciated.

To me, game development is the quintessential seam where the tectonic
plates of programming and art meet: It is where both domains really start to
make sense. If you are reading this, I hope you feel the same.

xv

http://forums.unity3d.com

http://taylorandfrancis.com

Author
Dr . Penny de Byl, former university professor of games and multimedia, is
the founder of Holistic3D.com, an online education provider for all things
games related. She has researched and taught computer science, computer
graphics, animation, artificial intelligence, and mobile game development for
over 25 years and has students working for Ubisoft, Apple, The Binary Mill,
and Unity. Penny hosts the popular Unity development YouTube channel,
Holistic3D.

xvii

http://www.Holistic3D.com

http://taylorandfrancis.com

Chapter 1

The Art of Programming
Mechanics

Everyone can be taught to sculpt: Michelangelo would have had to be taught
how not to. So it is with the great programmers.

Alan Perlis

1.1 Introduction
In 1979, art teacher Betty Edwards published the acclaimed Drawing on the
Right Side of the Brain. The essence of the text taught readers to draw what
they saw, rather than what they thought they saw. The human brain is so
adept at tasks such as pattern recognition that we internally symbolize
practically everything we see and regurgitate these patterns when asked to
draw them on paper. Children do this very well. The simplicity in children’s
drawing stems from their internal representation for an object. Ask them
to draw a house and a dog and you will get something you and they can
recognize as a house and dog (or, more accurately, the icon for a house and
dog), but something that is far from what an actual house and dog look like.

1

This is evident in the child’s drawing in Figure 1.1. The title of the book,
Drawing on the Right Side of the Brain, also suggests that the ability to draw
should be summoned from the side of the brain traditionally associated with
creativity and that most bad drawings could be blamed on the left.

Different intellectual capability is commonly attributed to either the left or
the right hemispheres, with the left side being responsible for the processing
of language, mathematics, numbers, logic, and other such computational
activities, whereas the right side deals with shapes, patterns, spatial acuity,
images, dreaming, and creative pursuits. From these beliefs, those who are
adept at computer programming are classified as left brained and artists as
right brained. The segregation of these abilities to either side of the brain is
called lateralization. While lateralization has been generally accepted and even
used to classify and separate students into learning style groups, it is a common
misconception that intellectual functioning can be separated so clearly.

In fact, the clearly defined left and right brain functions are a neuromyth
stemming from the overgeneralization and literal isolation of the brain
hemispheres. While some functions tend to reside more in one side of the
brain than the other, many tasks, to some degree, require both sides. For
example, many numerical computation and language activities require both
hemispheres. Furthermore, the side of the brain being utilized for specific
tasks can vary among people. Studies have revealed that 97% of right-handed
people use their left hemisphere for language and speech processing and
70% of left-handed people use their right hemisphere.

In short, simply classifying programmers as left brainers and artists as right
brainers is a misnomer. This also leads to the disturbing misconception that
programmers are poor at art skills and that artists would have difficulty in
understanding programming. Programming is so often generalized as a
logical process and art as a creative process that some find it inconceivable
that programmers could be effective as artists and vice versa.

FIG 1.1 Dogs in the yard of a castle, by Tabytha de Byl, age 4.

2

Holistic Game Development with Unity

When Betty Edwards suggests that people should use their right brain for
drawing, it is in concept, not physiology. The location of the neurons the
reader is being asked to use to find their creative self is not relevant. What
is important is that Dr. Edwards is asking us to see drawing in a different
light—in a way we may not have considered before. Instead of drawing our
internalized symbol of an object that has been stored away in the brain, she
asks us to draw what we see—to forget what we think it looks like. In the end,
this symbolizes a switch in thinking away from logic and patterns to images
and visual processing.

There is no doubt that some people are naturally better at programming and
others at art. However, by taking Edwards’ anyone can draw attitude, we can
also say anyone can program. It just requires a little practice and a change of
attitude.

1.2 Programming on the Right Side
of the Brain

While it is true that pure logic is at the very heart of all computer programs,
it still requires an enormous amount of creativity to order the logic into a
program. The process is improved greatly when programmers can visualize
the results of their code before it even runs. You may liken this to a scene
from The Matrix where the characters look at screens of vertically flowing
green numbers and text, but can visualize the structure and goings on in a
photorealistic, three-dimensional virtual reality. To become a good computer
programmer, you need to know the language of the code and be able
to visualize how it is affecting the computer’s memory and the results of
running the program.

Learning a computer language is one key to being able to program. However,
understanding how the language interacts with the computer to produce
its output is even more important. Good programmers will agree that it is
easy to switch between programming languages once you have mastered
one. The fundamental concepts in each language are the same. In some
languages, such as C, C++, C#, JavaScript, Java, and PHP, even the text and
layout look the same. The basic code from each aforementioned language to
print Hello World on the computer screen is shown in Listings 1.1 through 1.6.

Listing 1.1 C

#include <stdio.h>
main()
{
 printf("Hello World");
}

3

The Art of Programming Mechanics

Listing 1.2 C++

#include <iostream>
using namespace std;
void main()
{
 cout << "Hello World" << endl;
}

Listing 1.3 C#

public class HelloWorld
{
public static void Main()
 {
 System.Console.WriteLine("Hello World");
 }
}

Listing 1.4 JavaScript (in bold) embedded in HTML

<html>
 <head>
 <title> Hello World </title>
 </head>
 <body>
 <script type = "text/javascript">
 document.write('Hello World');
 </script>
 </body>
</html>

Listing 1.5 Java

class helloworld
{
 public static void main(String args[])
 {
 System.out.println("Hello World");
 }
}

Listing 1.6 PHP

<?php
 echo "Hello World";
?>

4

Holistic Game Development with Unity

Umberto Eco, the creator of Opera Aperta, described the concept of art as
mechanical relationships between features that can be reorganized to make
a series of distinct works. This is true of programming, too. The same lines of
programming code can be reorganized to create many different programs.
Nowhere is this shared art/programming characteristic more obvious than in
fractals.

Fractals are shapes made up of smaller self-similar copies of themselves. The
famous Mandelbrot set or Snowman is shown in Figure 1.2. The whole shape
is made up of smaller versions of itself. As you look closer, you will be able
to spot tens or even hundreds of smaller snowman shapes within the larger
image.

A fractal is constructed from a mathematical algorithm repeated over
and over where the output is interpreted as a point and color on the
computer screen. The Mandelbrot set comes from complex equations, but
not all fractal algorithms require high-level mathematical knowledge to
understand.

The Barnsley fern leaf is the epitome of both the creative side of
programming and the algorithmic nature of art. Put simply, the algorithm
takes a shape, any shape, and transforms it four times, as shown in Figure 1.3.
It then takes the resulting shape and puts it through the same set of
transformations. This can be repeated ad infinitum; however, around 10
iterations of this process give a good impression of the resulting image
(see Figure 1.4).

Creating images with these types of algorithmic approaches is called
procedural or dynamic generation. It is a common method for creating

FIG 1.2 The Mandelbrot set and periodicities of orbits.

5

The Art of Programming Mechanics

assets such as terrain, trees, and special effects in games. Although
procedural generation can create game landscapes and other assets
before a player starts playing, procedural generation comes into its own
while the game is being played. Programming code can access the assets
in a game during run time. It can manipulate an asset based on player
input. For example, placing a large hole in a wall after the player has blown
it up is achieved with programming code. This can only be calculated at
the time the player interacts with the game, as beforehand a programmer
would have no idea where the player would be standing or in what
direction he would shoot. The game Fracture by Day 1 Studios features
dynamic ground terrains that lift up beneath objects when shot with a
special weapon.

Original shape

Transform 1
shrink and slightly tilt

clockwise about 5°

Transform 2
quarter the size,

and tilt approx. 45°
clockwise

Transform 3
quarter the size,

and tilt approx. 45°
anticlockwise

Transform 4
halve the size,

and squash into upright line

Resulting shape

FIG 1.3 Transformations of Barnsley’s fern leaf.

(a) (b) (c)

FIG 1.4 Three iterations of Barnsley’s fern leaf transformations after (a) 2 iterations, (b) 5 iterations, and
(c) 10 iterations.

6

Holistic Game Development with Unity

 For Research
Procedural Generation in Unity
The Unity website has a project with numerous procedural generation
demonstrations. At this point in your game-development learning
journey, you may not be able to understand the underlying code, but
the examples will show you what is possible and the types of things
you will be able to achieve by the end of this book. The Unity project
can be downloaded from https://assetstore.unity.com/packages/
essentials/tutorial-projects/procedural-examples-5141.

A purpose-built programming language for creating art is Processing.
The syntax of the code is not unlike JavaScript or C# and contains
all the fundamental programming concepts you will learn about
in Section 1.4. A book entitled Creating Procedural Artworks with
Processing: A Holistic Guide by Dr. Penny de Byl that teaches these
techniques is available on Amazon. The image in Figure 1.5 was created
using Processing by randomly plotting circles and drawing a series of
curves from a central location to each circle. Art created by Casey Reas,
shown in Figure 1.6, programmed with Processing, has been displayed
at the DAM Gallery in Berlin.

FIG 1.5 An image created with Processing.

7

The Art of Programming Mechanics

https://assetstore.unity.com/

1.3 Creating Art from the Left Side
of the Brain

Most people know what they like and do not like when they see art. However,
if you ask them why they like it, they may not be able to put their thoughts
into words. No doubt there are some people who are naturally gifted with
the ability to draw and sculpt and some who are not. For the artistically
challenged, however, hope is not lost. This is certainly Betty Edwards’ stance.

A logical approach to the elements and principles of design reveals rules
one can apply to create more appealing artwork. They are the mechanical
relationships, alluded to by Umberto Eco, that can be used as building blocks
to create works of art. These fundamentals are common threads found to run
through all good artwork. They will not assist you in being creative and coming
up with original art, but they will help in presentation and visual attractiveness.

The elements of design are the primary items that make up drawings,
models, paintings, and design. They are point, line, shape, direction, size,
texture, color, and hue. All visual artworks include one or more of these
elements.

FIG 1.6 Artwork created by Casey Reas using Processing, as exhibited at DAM Gallery, Berlin.

 For Research
Getting Started with Processing
If you’re interested in learning more about Processing and drawing images
with programming code, you can download the open source language
and find tutorials at http://processing.org.

8

Holistic Game Development with Unity

http://processing.org

In the graphics of computer games, each of these elements is as important to the
visual aspect of game assets as they are in drawings, painting, and sculptures.
However, as each is being stored in computer memory and processed by
mathematical algorithms, their treatment by the game artist differs.

1.3.1 Point
All visual elements begin with a point. In drawing, it is the first mark put on paper.
Because of the physical makeup of computer screens, it is also the fundamental
building block of all digital images. Each point on an electronic screen is called a
pixel. The number of pixels visible on a display is referred to as the resolution. For
example, a resolution of 1024 × 768 is 1024 pixels wide and 768 pixels high.

Each pixel is referenced by its x and y Cartesian coordinates. Because pixels
are discrete locations on a screen, these coordinates are always in whole
numbers. The default coordinate system for a screen has the (0,0) pixel in the
upper left-hand corner. A screen with 1024 × 768 resolution would have the
(1023,767) pixel in the bottom right-hand corner. The highest value pixel has
x and y values that are one minus the width and height, respectively, because
the smallest pixel location is referenced as (0,0). It is also possible to change
the default layout depending on the application being used such that the y
values of the pixels are flipped with (0,0) being in the lower left-hand corner
or even moved into the center of the screen.

1.3.2 Line
On paper, a line is created by the stroke of a pen or brush. It can also define
the boundary where two shapes meet. A line on a digital display is created
by coloring pixels on the screen between two pixel coordinates. Given the
points at the ends of a line, an algorithm calculates the pixel values that
must be colored in to create a straight line. This is not as straightforward as it
sounds, because the pixels can only have whole number coordinate values.
The Bresenham line algorithm was developed by Jack E. Bresenham in 1962
to effectively calculate the best pixels to color in to give the appearance of a
line. Therefore, the line that appears on a digital display can only ever be an
approximation to the real line, as shown in Figure 1.7.

Vector line

Bresenham
line

FIG 1.7 A real line and a Bresenham line.

9

The Art of Programming Mechanics

1.3.3 Shape
A shape refers not only to primitive geometrics such as circles, squares, and
triangles, but also to freeform and nonstandard formations. In computer
graphics, polygons are treated as they are in geometry: a series of points
called vertices connected by straight edges. By storing the coordinates of
the vertices, the edges can be reconstructed using straight-line algorithms.
A circle is often represented as a regular polygon with many edges. As the
number of edges increases, a regular polygon approaches the shape of a
circle.

Freeform objects involve the use of curves. To be stored and manipulated by
the computer efficiently, these need to be stored in a mathematical format.
Two common types of curves used include Bezier and non-uniform rational
basis spline (NURBS).

A Bezier curve is constructed from a number of control points. The first and
last points specify the start and end of the curve and the other points act as
attractors, drawing the line toward them and forming a curve, as shown in
Figure 1.8. A NURBS curve is similar to a Bezier curve in that it has a number of
control points; however, the control points can be weighted such that some
may attract more than others.

In computer graphics, a polygon is the basic building block for objects,
whether in two dimensions (2D) or three dimensions (3D). A single polygon
defines a flat surface onto which texture can be applied. The most efficient
way to define a flat surface is through the use of three points; therefore,
triangles are the polygon of choice for constructing models, although
sometimes you will find square polygons used in some software packages.
Fortunately for the artist, modeling software such as Autodesk’s 3DS Studio
Max and Blender do not require models to be handcrafted from triangles;
instead, they automatically construct any objects using triangles as a base,
as shown in Figure 1.9.

(a) (b)

P2

P2

P1 P1P4

P3
P3

P5
P6

P4

FIG 1.8 (a) A Bezier and (b) a NURBS curve.

10

Holistic Game Development with Unity

The wireframe model that represents a 3D object is called a mesh. The
number of polygons in a mesh is called the polycount. The higher the
polycount, the more triangles in the model and the more computer
processing power required to render and manipulate the model. For this
reason, computer game artists must find a balance between functionality
and visual quality, as a high-resolution model is too costly with respect to
making the game run slowly. The models must be dynamically processed
and rendered in real time. In contrast, animated movie models can
be of much higher quality, as they are not rendered in real time. Next
time you are playing a game, take a closer look at how the models are
constructed.

1.3.4 Direction
Direction is the orientation of a line. Depending on its treatment, it can
imply speed and motion. A line can sit horizontal, vertical, or oblique. In
computer graphics, physics, engineering, and mathematics, a Euclidean
vector is used to specify direction. A vector stores information about how
to get from one point in space to another in a straight line. Not only does
it represent a direction, but also a distance, otherwise called its magnitude.
The magnitude of a vector is taken from its length. Two vectors can point
in the same direction but have different magnitudes, as shown in Figure 1.10a.
In addition, two vectors can have the same magnitude but different
directions, as shown in Figure 1.10b. A vector with a magnitude of 1 is
normalized.

FIG 1.9 A 3D model constructed from triangles in Blender.

11

The Art of Programming Mechanics

Vectors are a fundamental element in 3D games as they describe the
direction in which objects are orientated, how they are moving, how they
are scaled, and even how they are textured and lit. The basics of vectors are
explored further in Chapter 2.

1.3.5 Size
Size is the relationship of the amount of space objects take up with respect
to each other. In art and design, it can be used to create balance, focal points,
or emphasis. In computer graphics, size is referred to as scale. An object can
be scaled uniformly in any direction. Figure 1.11 shows a 3D object (a) scaled
uniformly by 2 (b), vertically by 3 (c), horizontally by 0.5 (d), and vertically by −1 (e).

(a) (b)

FIG 1.10 (a) Vectors with the same direction but different magnitudes and (b) vectors with the same
magnitude but different directions.

(a) (b) (c) (d) (e)

FIG 1.11 A 3D object scaled in multiple ways (a) the original object, (b) scaled uniformly by 2, (c) scaled
vertically by 3, (d) scaled horizontally by 0.5, and (e) scaled vertically by −1.

12

Holistic Game Development with Unity

Note in Figure 1.11e how scaling by a negative value flips the object vertically.
This can also be achieved uniformly or horizontally using negative scaling values.

Depending on the coordinates of an object, scaling will also move it. For
example, if an object is centered around (0,0), it can be scaled remaining in
the same place. However, if the object is away from (0,0), it will move by an
amount proportional to the scale. This occurs as scaling values are multiplied
with vertex coordinates to resize objects. A vertex at (0,0) multiplied by 2,
for example, will remain at (0,0), whereas a vertex at (3,2) multiplied by 2 will
move to (6,4). This is illustrated in Figure 1.12.

1.3.6 Texture
In art and design, texture relates to the surface quality of a shape or object.
For example, the surface could be rough, smooth, or highly polished.
In computer games, texture refers not only to the quality, but also to any
photographs, colors, or patterns on the surface where the surface is defined
by a polygon.

In games, textures are created using image files called maps. They are created
in Adobe Photoshop or similar software. The image that gives an object
its color is called a texture map, color map, or diffuse coloring. All images are
mapped onto an object, polygon by polygon, using a technique called UV
mapping. This aligns points on an image with the vertices of each polygon.
The part of the image between the points is then stretched across the
polygon. This process is shown on a square polygon in Figure 1.13.

To add a tactile appearance to the surface of a polygon to enhance the base
texture, bump mapping is applied. This gives the object an appearance of
having bumps, lumps, and grooves without the actual model itself being
changed. Bump mapping is often applied to add more depth to an object

y

(a)

(b) x

FIG 1.12 How can scaling move an object? (a) When vertices of an object around the origin are scaled, negative
values become bigger negative values and the same with positive values. But the original center (0, 0) will remain
(0, 0) when scaled. (b) If the vertices are all positive, then scaling them up will just make them bigger. And the
final object moves location.

13

The Art of Programming Mechanics

with respect to the way light and shadow display on the surface. Figure 1.14
illustrates the application of a color and normal map on a soldier mesh taken
from Unity.

A variety of other effects also add further texture to a surface. For example,
specular lighting can make an object look glossy or dull, and shaders, small
programs that manipulate the textures on a surface, can add a plethora of
special effects from bubbling water to toon shading.

1.3.7 Color
In the theory of visual art involving pigments, color is taught as a set of
primary colors (red, yellow, and blue) from which all other colors can be
created. The color perceived by the human eye is the result of light being
reflected off the surface of the artwork. When all of the light is reflected, we
see white. When none of the light is reflected, we see black. The resulting
color of a mixture of primaries is caused by some of the light being absorbed
by the pigment. This is called a subtractive color model, as the pigments
subtract some of the original light source before reflecting the remainder.

The light from a digital display follows an additive color model. The display
emits different colors by combining the primary sources of red, green, and
blue light. For this reason, color is represented in computer graphics as a
three- or four-numbered value in the format (red, green, blue, and alpha).
In some formats, the alpha value is not used, making color a three-value
representation.

1
2

2
3

41

3
4

FIG 1.13 The UV mapping process. Vertices of a polygon on an object are mapped to locations on a 2D image.

14

Holistic Game Development with Unity

M
es

h

D
iff

us
e m

ap
 te

xt
ur

e
N

or
m

al
 m

ap
 te

xt
ur

e
D

et
ai

l w
ith

ou
t

no
rm

al
 m

ap
D

et
ai

l w
ith

no
rm

al
 m

ap

N
or

m
al

 m
ap

D
iff

us
e a

nd
 n

or
m

al
 m

ap
Co

lo
r (

di
ffu

se
) m

ap

FI
G

1.1
4

A s
old

ier
 m

es
h w

ith
 an

d w
ith

ou
t a

 co
lor

 m
ap

 an
d a

 no
rm

al
m

ap
.

15

The Art of Programming Mechanics

Alpha represents the transparency of a color. When a surface has a color
applied with an alpha of 0, it is fully transparent; when it has a value of 1,
it is totally opaque. A value of 0.5 makes it partially transparent. Values for
red, green, and blue also range between 0 and 1, where 0 indicates none
of the color and 1 indicates all of the color. Imagine the values indicate a
dial for each colored lamp. When the value is set to 0, the lamp is off and
when the value is set to 1, it is at full strength—any values in between give
partial brightness. For example, a color value of (1,0,0,1) will give the color
red. A color value of (1,1,0,1) will give the color yellow. The easy way to look
up values for a color is to use the color picker included with most software,
including MS Word and Adobe Photoshop. The color picker from Adobe
Photoshop is shown in Figure 1.15.

Also included with most color pickers is the ability to set the color
using different color models. The one shown in Figure 1.15 includes a
Hue, Saturation, and Brightness model, as well as a CMYK model. For
more information on these, check out http://en.wikipedia.org/wiki/
Color_model.

Red, Green, Blue
Some software specifies the values
between 0 and 255 in place of 0 and 1
respectively.

FIG 1.15 The Adobe Photoshop color picker.

 Note
An alternate way to set the value of a color is with values between 0
and 255 instead of between 0 and 1. It depends on the software you are
using. In programming, values are usually between 0 and 1, but more
commonly between 0 and 255 in color pickers.

16

Holistic Game Development with Unity

http://en.wikipedia.org/

1.4 How Game Engines Work
A game engine takes all the hard work out of creating a game. In the not so
distant past, game developers had to write each game from scratch or modify
older similar ones. Eventually game editor programs started to surface that allowed
developers to create games without having to write a lot of the underlying code.

The game engine takes care of things such as physics, sound, graphics
processing, and user input, allowing game developers to get on with the
creation of high-level game mechanics. For example, in Unity, physical
properties can be added to a ball with the click of a button to make it react
to gravity and bounce off hard surfaces. Driving these behaviors, embedded
in the engine, are millions of lines of complex code containing many
mathematical functions related to real-world physics. The game developer can
spend more time designing what the ball looks like and even selecting the type
of material it is made from without having a background in Newtonian physics.

1.4.1 A Generic Game Engine
To understand how a game engine works, we will first look at a simple
illustration of all its components. A conceptualization is shown in Figure 1.16.

The game engine is responsible for the running of a variety of components
that manage all the game resources and behaviors. The Physics Manager
handles how game objects interact with each other and the environments

Sound
manager

Physics
manager

Input
manager

Game
engine

Game
object Graphics

Sound

Physics

Al
Game
object

component

FIG 1.16 Parts of a generic game engine.

17

The Art of Programming Mechanics

by simulating real-world physics. The Input Manager looks after interactions
between the player and the game. It manages the drawing of graphical user
interfaces and the handling of mouse clicks and the like. The Sound Manager
is responsible for initializing and controlling how sound is delivered from the
game to the player. If 3D sound is called for, it will ensure that the right sound
at the right volume is sent to the correct computer speaker.

In addition to these managers are game objects. Game objects represent
all the assets placed in a game environment. These include the terrain, sky,
trees, weapons, rocks, nonplayer characters, rain, explosions, and so on.
Because game objects represent a very diverse set of elements, they can
also be customized through the addition of components that may include
elements of artificial intelligence (AI), sound, graphics, and physics. The
AI component determines how a game object will behave. For example, a
rock in a scene would not have an AI component, but an enemy computer-
controlled character would have AI to control how it attacks and pursues
the player. A sound component gives a game object a sound. For example,
an explosion would have a sound component whereas a tree may not. The
physics component allows a game object to act within the physics system of
the game. For example, physics added to a rock would see it roll down a hill
or bounce and break apart when it falls. The graphics component dictates
how the game object is drawn. This is the way in which it is presented to
players on the screen. Some game objects will be visible and some will not.
For example, a tree in a scene is a visible game object, whereas an autosave
checkpoint, which may be a location in a game level, is not.

1.4.2 The Main Loop
All games run in the same way, as illustrated in Figure 1.17. There is an
initialization stage in which computer memory is allocated, saved information is
retrieved, and graphics and peripheral devices are checked. This is followed by
the main game loop or main loop. The main loop runs continuously over and over
again until the player decides to quit the game. While in the main loop, the game
executes a cycle of functions that processes user input messages; checks through
all game objects and updates their state, including their position; updates the
environment with respect to game object positions, user interaction, and the
physics system; and finally renders the new scene to the screen.

Essentially each loop renders one frame of graphics on the screen. The faster
the loop executes, the smoother the animation of the game appears. The
more processing that needs to be performed during the main loop, the
slower it will execute. As the number of game objects increases, the amount
of work the main loop has to do also increases and therefore slows down the
time between frames being rendered on the screen. This time is called frames
per second (FPS).

Game developers strive for very high FPS, and for today’s computers and
consoles, FPS can extend beyond 600. In some circumstances, however,

18

Holistic Game Development with Unity

such as on mobile devices with less processing power, FPS can become very
low with only several game objects, and the animation will flicker, and user
controls will be nonresponsive. Having said this, beginner game developers
need to be aware of this issue, as even on a very powerful computer, adding
a lot of highly detailed game objects can soon bring the FPS to a grinding
halt. Anything below 25 FPS is considered unacceptable, and as it approaches
15 FPS the animation starts to flicker.

Initialize

Main loop

Process
user input

Update
game objects

Process components

Update state
G

am
e objects

Update
environment

Render
scene

Clean up

Process
all

game
objects

FIG 1.17 How a game runs.

 Unity Specifics
Game Objects
Game objects are the fundamental building blocks for Unity games. It
is through the addition, modification, and interaction of game objects
that you will create your own game. After adding a game object in Unity
(which you will do in the next section) a variety of components can be
added to give the game object different functionalities. In all, there
are seven components categories. These will be thoroughly explored
throughout this book. In short, they are Mesh, Particles, Physics, Audio,
Rendering, Miscellaneous, and Scripts as shown in Figure 1.18. A game
object can have all, none, or any combination of these components
added. The game object exemplified in Figure 1.18 has at least one of
each of these component types added.

19

The Art of Programming Mechanics

A Mesh component handles the drawing of an object. Without a Mesh
component, the game object is not visible. A Particles component
allows for a game object to have a particle system added. For
example, if the game object were a jet fighter, a particle system could
be added to give the effect of after burners. A Physics component
gives the game object real world physical properties so it can be
collided with and affected by gravity and other physics effects. An
Audio component adds sound or sound effects to a game object.
For example, if the game object were a car, the noise of a car engine
could be added. A Rendering component adds special effects to
a game object such as emitting light. Miscellaneous components
include a variety of affects for the game object that do not fit within
other categories. In Figure 1.18 the Wind Zone component is shown
as a type of miscellaneous component. In brief, this causes the game
object to become a source of wind for interaction within the physics

Rotate (script)

Wind zone

Light

Audio source

Box collider

Mesh particle emitter

Cube (mesh �lter)

Game
object

Game
object

component

Mesh

Scripts

Misc

Render

Audio

Physics
Particles

Iso

z

y
x

FIG 1.18 Components that can be added to a game object in Unity.

20

Holistic Game Development with Unity

 Unity Hands On
Getting to know the Unity3D development environment
Step 1: To begin, download Unity by visiting http://unity3D.com/
and clicking on Download. Unity has a free version that lacks some
functionality, but never expires. The free version is still quite powerful
and certainly enough for the first time game developer. Once you have
downloaded the software, follow the installation instructions to get Unity
up and running.
Step 2: Running Unity for the first time reveals the multi-windowed
editing environment shown in Figure 1.19. The tabs and windows can be
dragged around to suit your own preferences.

 On the Web
Navigating the Unity Editor Interface
Visit the website for a short video demonstrating some best practices for
finding your way around in the Unity Editor.

system. Last, Scripts are components that contain programming
code to alter the behavior of a game object. Scripts can be used for a
large variety of purposes and are fundamental to developing game
mechanics and tying an entire game together.

In Unity, scripts added to game objects can be written in C#.

In addition to this traditional method of game engine use, Unity has also
introduced (in 2019) methods to support multithreading and multicore
processing. It is called the Entity-Component System (ECS). Such methods
of programming depart heavily from the traditional object orientated
or procedural methods that better facilitate beginners starting out and
therefore will not be explored in this book. However, if you are interested
in what’s possible then check out the author’s YouTube tutorials for this
system at:

• https://youtu.be/Awf_Y4hBhBM
• https://youtu.be/Vg-V5G2JJNY

21

The Art of Programming Mechanics

http://unity3D.com/
https://youtu.be/
https://youtu.be/

Step 3: After starting Unity, create a new project by selecting File >
New Project. Note that the project name and directory used to save the
project are one and the same; by default, this is “New Unity Project.” The
dialog box for creating a new project will allow you to choose 3D or 2D.
For now select 3D.
Step 4: To create a simple scene, select GameObject > 3D Object > Cube
from the main menu. All objects added to the game scene are called
game objects in Unity. A cube will appear in the Hierarchy, Scene, Game,
and Inspector windows.

 Note
From this point in the text, these windows will be referenced just by their
capitalized names.

FIG 1.19 The Unity editing environment.

22

Holistic Game Development with Unity

Step 5: If the cube appears very small, place your mouse in the Scene
and use the scroll wheel to zoom in. You can also focus the scene
on the cube by double-clicking it in the Hierarchy or selecting it in
the Scene and pressing the F key. Note that your viewing position
and angle in the Scene do not affect the look of the final game
or change the attributes of any game objects. This initial Scene
is shown in Figure 1.20. The Inspector shows all the properties
of the cube. This includes its position, rotation, scale, the 3D
mesh representing it, and a physics collider. We will look at these
properties in more detail later.
Step 6: At this time, press the play button. As you have not added any
functionality at this stage when running, all the game will do is display a
static cube.

FIG 1.20 A single cube in a scene.

23

The Art of Programming Mechanics

Step 7: Although lighting is a subject usually delayed for more
advanced topics in game development, the author always likes to add
a light to scenes to give them more depth and bring them alive. In
the Scene, the cube is already shaded, as this is the default method of
drawing. However, in the Game, the cube is a lifeless, flat, gray square.
To add a light, select GameObject > Light > Directional Light from the
main menu. A light displaying as a little sun symbol will appear in the
Scene and the cube in the Game will become brighter.
Step 8: Now, because we are looking at the cube front on in the
Game, it still appears as a little square. Therefore, we need to
transform it for viewing. A transformation modifies the properties
of position, rotation, and scale of a game object. The specifics of
transformation are discussed later, but for now you can transform
the cube quickly using the W key for changing position, the E key
for rotating the objects, and the R key for scaling it. Before pressing
any of these keys, ensure that the cube is selected in the Hierarchy
window. When it is selected, it will have a green and blue wireframe
displayed on it.
Step 9: In W (position) mode, the cube will be overlaid with red, green, and
blue arrows. These represent the x, y, and z axes of the object. Clicking and
dragging from any of the arrowheads will move the object along that axis.
To move the object freely, click and drag from the central yellow box.
Step 10: In E (rotate) mode, the cube will have red, green, and blue circles
drawn around it. Click and drag any of these circles to rotate the cube in
the associated directions.
Step 11: In R (scale) mode, the red, green, and blue axes will include
small cubes on the ends. Clicking and dragging any of these will
change the scale of the object in the respective direction. You may
also click and drag the central small cube to resize the object in all
directions uniformly. Note that while you are moving, rotating, and

 Note
Unity allows you to edit your game as it is running. This is great if you
want to test out an idea to see how the game will react. Be careful though,
because any changes you make in the editor, while play is on, will revert
back to their previous value when you press stop. This can be very annoying
if you’ve made large changes not realizing you are in play mode, as they
will be wiped away as soon as you press stop. The only exceptions to this
are script files, because they are edited and saved externally to the editor.
Changes you make in script files are independent of the play button.

24

Holistic Game Development with Unity

scaling the cube, its appearance changes in the Game window. You
will also notice that values in the Transform part of the Inspector
change too. Move and scale the cube so that you can see it clearly in
the Game window.
Step 12: The color of a GameObject comes from an associated
material. To create a material, click on Create in the Project window
and select Material. New material will appear in the Project window
and, when selected, its properties in the Inspector are as shown in
Figure 1.21.
Step 13: To change the color of this material, click on the white box
next to Main Color in the Inspector. Select the color you want from the
Color Popup and then close it. The large sphere view of the material in the
Inspector will change to your chosen color. To change the name of the
material, click on New Material once in the Project window. Wait a moment
and then click on it again slowly. This will place you in editing mode for
the material name. Type in a new name and hit the Enter key.

FIG 1.21 Creating a new material.

25

The Art of Programming Mechanics

Step 14: To add material to the cube, drag and drop your material from
the Project window onto the cube in the Scene. Alternatively, you can
drag and drop the material from the Project window and drop it onto the
cube listed in the Hierarchy window. Both will achieve the same effect.
The cube will be colored.
Step 15: In the Project window, select Create and then C# Script. The C#
script created will be called NewbehaviorScript. Change this, by slowly
clicking on it, as you did with the material, to spin.

Step 16: Double-click on it and a code/text editor will open for entering
code. In the code editor type:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class spin : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {
 transform.Rotate(Vector3.up * 10);
 }
}

The code must be EXACTLY as it appears here. Ensure that you have the
correct spelling and capitalization; otherwise, it may not work. For large
spaces, for example, before the word transform, insert a tab. When you
are done, save your code in the text editor.

 Note
Naming C# Files
When you create a new C# Script, you only give it a name. Do not add .cs
on the end. Unity will do this for you automatically. However, in the
Project, spin.cs will only appear in the list as spin, without the .cs on
the end.

 Note
The code in Step 15 contains the Unity function Update(). Whatever code
you place inside Update() will be run once each main loop. Therefore the
code in Step 15 will run over and over again for the entire time the play
button is down.

26

Holistic Game Development with Unity

Step 17: Return to Unity and drag and drop the spin code from
the Project window onto the cube in the Hierarchy window. You
will notice that if you select the cube, the spin script will appear
as a component added to the cube in the Inspector, as shown in
Figure 1.22.
Step 18: Press the play button and watch as the cube spins.
Step 19: To save the application, select File > Save Scene from the
main menu. In the dialog that pops up, give the scene a name such as
spinningCube. Next, select File > Save Project from the main menu.

Each project you create can have multiple scenes. Scenes are saved inside
projects. For example, an entire game application would be a single project.
However, inside the game there would be multiple scenes, such as Main
Menu, Help Screen, Map View, and 3D View. Single scenes can also be
imported from one project to another.

1.5 A Scripting Primer
Hard-core programmers do not strictly consider scripting as programming,
as it is a much simpler way of writing a program. Scripting languages have
all the properties of programming languages; however, they tend to be
less verbose and require less code to get the job done. For example, the

FIG 1.22 The cube with the spin script attached.

27

The Art of Programming Mechanics

JavaScript and Java shown in Listings 1.4 and 1.5, respectively, demonstrate
how the scripting language JavaScript requires much less code to achieve
the same outcome as Java. The major difference between programming and
scripting is that programming languages are compiled (built into a program
by the computer) and then run afterward, and a scripting language is
interpreted by another program as it runs.

When a program is compiled, it is turned into machine code the computer
can understand. Compilation checks through the code for errors and then
builds it into a program. Do not worry if you get lots of errors when you start
programming. It is a normal part of the learning process. Some of the error
messages will also seem quite vague and ambiguous for what they are trying
to tell you. However, a quick search on Google will often reveal their true
meaning.

C# is used in this book as the primary means of programming. Its syntax and
constructs are closely related to C++, C, and Java; therefore, it is ideal to learn
as a beginning language. It also provides a very powerful and yet simple
way to develop game mechanics in Unity and many other game-editing
environments.

Several fundamental constructs in programming are required to fully
understand a programming language. These are variables, operations, arrays,
conditions, loops, functions, and objects. However, the most fundamental
and important concept that underlies everything is logic.

1.5.1 Logic
At the heart of all computers are the electronic switches on the circuit boards
that cause them to operate. The fact that electricity has two states, on or off,
is the underlying foundation on which programs are built. In simplistic terms,
switches (otherwise known as relays) are openings that can either be opened
or be closed, representing on and off, respectively. Imagine a basic circuit
illustrated as a battery, electric cable, light switch, and light bulb, as shown
in Figure 1.23.

When the switch is open, the circuit is broken, and the electricity is off. When
the switch is closed, the circuit is complete, and the electricity is on. This is
exactly how computer circuitry works. Slightly more complex switches called

On

Off

FIG 1.23 A very basic electric circuit.

28

Holistic Game Development with Unity

logic gates allow for the circuit to be opened or closed, depending on two
incoming electrical currents instead of the one from the previous example.

In all, there are seven logic gate configurations that take two currents as input
and a single current as output. These gates are called AND, OR, NOT, NAND,
NOR, XOR, and XNOR. The AND gate takes two input currents; if both currents
are on, the output current is on. If only one or none of the input currents is
on, the output is off. This is illustrated in Figure 1.24.

In computer science, mathematics, physics, and many more disciplines the
operation of combining two currents or signals into one is called Boolean
algebra (named after nineteenth-century mathematician George Boole) and
logic gate names (i.e., AND, OR) are called Boolean functions, although the
on signal in computer science is referred to as TRUE, or the value 1, and off is
FALSE, or 0. Using this terminology, all possible functions of the AND gate can
be represented in truth tables, as shown in Table 1.1. It should be noted from
Table 1.1 that truth tables can be written in a number of formats using 1s and
0s or TRUEs and FALSEs.

Each Boolean function has its own unique truth table. They work in the same
way as the AND function does. They have two input values of TRUE and/or
FALSE and one output value of TRUE or FALSE.

Off

Off

Off

Off

On

On

On

On

On

Off

Off

Off

FIG 1.24 A conceptualization of an AND logic gate.

29

The Art of Programming Mechanics

If you are just learning about programming for the first time right now, these
concepts may seem a bit abstract and disconnected from real programming.
However, as you learn more about programming, you will realize how
fundamental knowing these truth tables is to a holistic understanding. It will
become much clearer as you begin to write your own programs.

taBLe 1.1 Truth Table for the Boolean Function AND

Format 1 Format 2

Input Output Input Output

A B A AND B A B A AND B

1 1 1 TRUE TRUE TRUE

1 0 0 TRUE FALSE FALSE

0 1 0 FALSE TRUE FALSE

0 0 0 FALSE FALSE FALSE

 Quick Reference
Boolean Algebra

Function Boolean
Algebra Syntax

C# Truth Table

AND A • B A && B Input Output

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

OR A + B A | | B Input Output

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

NOT Ā !A Input Output

A NOT

0 1

1 0

30

Holistic Game Development with Unity

1.5.2 Comments
Comments are not actually programming code. They are, however, inserted
lines of freeform text totally ignored by the compiler. They allow you to insert
explanations about your code or little reminders of what your code does.

Function Boolean
Algebra Syntax

C# Truth Table

NAND A • B !(A && B) Input Output

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

NOR A+B !(A | | B) Input Output

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

XOR A ⊕ B (A && !B) ||
(!A && B)

Input Output

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

XNOR A ⊙ B (!A && !B) ||
(A && B)

Input Output Output

A B A XNOR B

0 0 1

0 1 0

1 0 0

1 1 1

 Quick Reference
Boolean Algebra (Continued)

 On the Website
Interactive Boolean Algebra Logic Gates
Navigate to the book’s website for an interactive Unity version of
Boolean Algebra.

31

The Art of Programming Mechanics

