

Deep Learning in
Computer Vision

Digital Imaging and Computer Vision Series

Series Editor
Rastislav Lukac

Foveon, Inc./Sigma Corporation San Jose, California, U.S.A.

Dermoscopy Image Analysis
by M. Emre Celebi, Teresa Mendonça, and Jorge S. Marques

Semantic Multimedia Analysis and Processing
by Evaggelos Spyrou, Dimitris Iakovidis, and Phivos Mylonas

Microarray Image and Data Analysis: Theory and Practice
by Luis Rueda

Perceptual Digital Imaging: Methods and Applications
by Rastislav Lukac

Image Restoration: Fundamentals and Advances
by Bahadir Kursat Gunturk and Xin Li

Image Processing and Analysis with Graphs: Theory and Practice
by Olivier Lézoray and Leo Grady

Visual Cryptography and Secret Image Sharing
by Stelvio Cimato and Ching-Nung Yang

Digital Imaging for Cultural Heritage Preservation: Analysis,
Restoration, and Reconstruction of Ancient Artworks
by Filippo Stanco, Sebastiano Battiato, and Giovanni Gallo

Computational Photography: Methods and Applications
by Rastislav Lukac

Super-Resolution Imaging
by Peyman Milanfar

Deep Learning in
Computer Vision

Principles and Applications

Edited by

Mahmoud Hassaballah and Ali Ismail Awad

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-54442-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have
been made to publish reliable data and information, but the author and publisher cannot assume responsibility
for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not been acknowledged
please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microflming, and recording, or in any information storage or retrieval system, with-
out written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-proft organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identifcation and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Hassaballah, Mahmoud, editor. | Awad, Ali Ismail, editor.
Title: Deep learning in computer vision : principles and applications /
 edited by M. Hassaballah and Ali Ismail Awad.
Description: First edition. | Boca Raton, FL : CRC Press/Taylor and
 Francis, 2020. | Series: Digital imaging and computer vision | Includes
 bibliographical references and index.
Identifers: LCCN 2019057832 (print) | LCCN 2019057833 (ebook) | ISBN
 9781138544420 (hardback ; acid-free paper) | ISBN 9781351003827 (ebook)
Subjects: LCSH: Computer vision. | Machine learning.
Classifcation: LCC TA1634 .D437 2020 (print) | LCC TA1634 (ebook) | DDC
 006.3/7--dc23
LC record available at https://lccn.loc.gov/2019057832
LC ebook record available at https://lccn.loc.gov/2019057833

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2019057832
https://lccn.loc.gov/2019057833
http://www.taylorandfrancis.com
http://www.crcpress.com

v

Contents
Foreword ..vii
Preface...ix
Editors Bio ... xiii
Contributors ...xv

Chapter 1 Accelerating the CNN Inference on FPGAs..1

Kamel Abdelouahab, Maxime Pelcat, and François Berry

Chapter 2 Object Detection with Convolutional Neural Networks..................... 41

Kaidong Li, Wenchi Ma, Usman Sajid, Yuanwei Wu, and
Guanghui Wang

Chapter 3 Effcient Convolutional Neural Networks for Fire Detection in
Surveillance Applications .. 63

Khan Muhammad, Salman Khan, and Sung Wook Baik

Chapter 4 A Multi-biometric Face Recognition System Based on
Multimodal Deep Learning Representations..................................... 89

Alaa S. Al-Waisy, Shumoos Al-Fahdawi, and Rami Qahwaji

Chapter 5 Deep LSTM-Based Sequence Learning Approaches for Action
and Activity Recognition.. 127

Amin Ullah, Khan Muhammad, Tanveer Hussain,
Miyoung Lee, and Sung Wook Baik

Chapter 6 Deep Semantic Segmentation in Autonomous Driving 151

Hazem Rashed, Senthil Yogamani, Ahmad El-Sallab,
Mahmoud Hassaballah, and Mohamed ElHelw

Chapter 7 Aerial Imagery Registration Using Deep Learning for
UAV Geolocalization ... 183

Ahmed Nassar, and Mohamed ElHelw

Chapter 8 Applications of Deep Learning in Robot Vision.............................. 211

Javier Ruiz-del-Solar and Patricio Loncomilla

vi Contents

Chapter 9 Deep Convolutional Neural Networks: Foundations and
Applications in Medical Imaging... 233

Mahmoud Khaled Abd-Ellah, Ali Ismail Awad,
Ashraf A. M. Khalaf, and Hesham F. A. Hamed

Chapter 10 Lossless Full-Resolution Deep Learning Convolutional
Networks for Skin Lesion Boundary Segmentation......................... 261

Mohammed A. Al-masni, Mugahed A. Al-antari, and Tae-Seong Kim

Chapter 11 Skin Melanoma Classifcation Using Deep Convolutional
Neural Networks .. 291

Khalid M. Hosny, Mohamed A. Kassem, and Mohamed M. Foaud

Index.. 315

vii

Foreword
Deep learning, while it has multiple defnitions in the literature, can be defned as
“inference of model parameters for decision making in a process mimicking the
understanding process in the human brain”; or, in short: “brain-like model iden-
tifcation”. We can say that deep learning is a way of data inference in machine
learning, and the two together are among the main tools of modern artifcial intel-
ligence. Novel technologies away from traditional academic research have fueled
R&D in convolutional neural networks (CNNs); companies like Google, Microsoft,
and Facebook ignited the “art” of data manipulation, and the term “deep learning”
became almost synonymous with decision making.

Various CNN structures have been introduced and invoked in many computer
vision-related applications, with greatest success in face recognition, autonomous
driving, and text processing. The reality is: deep learning is an art, not a science.
This state of affairs will remain until its developers develop the theory behind its
functionality, which would lead to “cracking its code” and explaining why it works,
and how it can be structured as a function of the information gained with data. In
fact, with deep learning, there is good and bad news. The good news is that the indus-
try—not necessarily academia—has adopted it and is pushing its envelope. The bad
news is that the industry does not share its secrets. Indeed, industries are never inter-
ested in procedural and textbook-style descriptions of knowledge.

This book, Deep Learning in Computer Vision: Principles and Applications—as
a journey in the progress made through deep learning by academia—confnes itself
to deep learning for computer vision, a domain that studies sensory information
used by computers for decision making, and has had its impacts and drawbacks for
nearly 60 years. Computer vision has been and continues to be a system: sensors,
computer, analysis, decision making, and action. This system takes various forms
and the fow of information within its components, not necessarily in tandem. The
linkages between computer vision and machine learning, and between it and arti-
fcial intelligence, are very fuzzy, as is the linkage between computer vision and
deep learning. Computer vision has moved forward, showing amazing progress in
its short history. During the sixties and seventies, computer vision dealt mainly with
capturing and interpreting optical data. In the eighties and nineties, geometric com-
puter vision added science (geometry plus algorithms) to computer vision. During
the frst decade of the new millennium, modern computing contributed to the evolu-
tion of object modeling using multimodality and multiple imaging. By the end of
that decade, a lot of data became available, and so the term “deep learning” crept
into computer vision, as it did into machine learning, artifcial intelligence, and other
domains.

This book shows that traditional applications in computer vision can be solved
through invoking deep learning. The applications addressed and described in the
eleven different chapters have been selected in order to demonstrate the capabilities
of deep learning algorithms to solve various issues in computer vision. The content
of this book has been organized such that each chapter can be read independently

 viii Foreword

of the others. Chapters of the book cover the following topics: accelerating the CNN
inference on feld-programmable gate arrays, fre detection in surveillance applica-
tions, face recognition, action and activity recognition, semantic segmentation for
autonomous driving, aerial imagery registration, robot vision, tumor detection, and
skin lesion segmentation as well as skin melanoma classifcation.

From the assortment of approaches and applications in the eleven chapters, the
common thread is that deep learning for identifcation of CNN provides accuracy
over traditional approaches. This accuracy is attributed to the fexibility of CNN
and the availability of large data to enable identifcation through the deep learning
strategy. I would expect that the content of this book to be welcomed worldwide by
graduate and postgraduate students and workers in computer vision, including prac-
titioners in academia and industry. Additionally, professionals who want to explore
the advances in concepts and implementation of deep learning algorithms applied to
computer vision may fnd in this book an excellent guide for such purpose. Finally,
I hope that readers would fnd the presented chapters in the book interesting and
inspiring to future research, from both theoretical and practical viewpoints, to spur
further advances in discovering the secrets of deep learning.

Prof Aly Farag, PhD, Life Fellow, IEEE, Fellow, IAPR
Professor of Electrical and Computer Engineering

University of Louisville, Kentucky

ix

Preface
Simply put, computer vision is an interdisciplinary feld of artifcial intelligence that
aims to guide computers and machines toward understanding the contents of digital
data (i.e., images or video). According to computer vision achievements, the future
generation of computers may understand human actions, behaviors, and languages
similarly to humans, carry out some missions on their behalf, or even communicate
with them in an intelligent manner. One aspect of computer vision that makes it
such an interesting topic of study and active research feld is the amazing diversity
of daily-life applications such as pedestrian protection systems, autonomous driving,
biometric systems, the movie industry, driver assistance systems, video surveillance,
and robotics as well as medical diagnostics and other healthcare applications. For
instance, in healthcare, computer vision algorithms may assist healthcare profession-
als to precisely classify illnesses and cases; this can potentially save patients’ lives
through excluding inaccurate medical diagnoses and avoiding erroneous treatment.
With this wide variety of applications, there is a signifcant overlap between com-
puter vision and other felds such as machine vision and image processing. Scarcely
a month passes where we do not hear from the research and industry communities
with an announcement of some new technological breakthrough in the areas of intel-
ligent systems related to the computer vision feld.

With the recent rapid progress on deep convolutional neural networks, deep learn-
ing has achieved remarkable performance in various felds. In particular, it has brought
a revolution to the computer vision community, introducing non-traditional and eff-
cient solutions to several problems that had long remained unsolved. Due to this prom-
ising performance, it is gaining more and more attention and is being applied widely in
computer vision for several tasks such as object detection and recognition, object seg-
mentation, pedestrian detection, aerial imagery registration, video processing, scene
classifcation, autonomous driving, and robot localization as well as medical image-
related applications. If the phrase “deep learning for computer vision” is searched in
Google, millions of search results will be obtained. Under these circumstances, a book
entitled Deep Learning in Computer Vision that covers recent progress and achieve-
ments in utilizing deep learning for computer vision tasks will be extremely useful.

The purpose of this contributed volume is to fll the existing gap in the literature
for the applications of deep learning in computer vision and to provide a bird’s eye
view of recent state-of-the-art models designed for practical problems in computer
vision. The book presents a collection of eleven high-quality chapters written by
renowned experts in the feld. Each chapter provides the principles and fundamentals
of a specifc topic, introduces reviews of up-to-date techniques, presents outcomes,
and points out challenges and future directions. In each chapter, fgures, tables,
and examples are used to improve the presentation and analysis of covered topics.
Furthermore, bibliographic references are included in each chapter, providing a good
starting point for deeper research and further exploration of the topics considered in
this book. Further, this book is structured such that each chapter can be read inde-
pendently from the others as follows:

x Preface

Chapter 1 presents a state-of-the-art of CNN inference accelerators over FPGAs.
Computational workloads, parallelism opportunities, and the involved memory
accesses are analyzed. At the level of neurons, optimizations of the convolutional and
fully connected layers are explained and the performances of the different methods
compared, while at the network level, approximate computing and data-path optimi-
zation methods are covered and state-of-the-art approaches compared. The methods
and tools investigated in this chapter represent the recent trends in FPGA CNN infer-
ence accelerators and will fuel future advances in effcient hardware deep learning.

Chapter 2 concentrates on object detection problem using deep CNN (DCNN): the
recent developments of several classical CNN-based object detectors are discussed.
These detectors signifcantly improve detection performance either through employ-
ing new architectures or through solving practical issues like degradation, gradi-
ent vanishing, and class imbalance. Detailed background information is provided to
show the progress and improvements of different models. Some evaluation results
and comparisons are reported on three datasets with distinctive characteristics.

Chapter 3 proposes three methods for fre detection using CNNs. The frst method
focuses on early fre detection with an adaptive prioritization mechanism for surveil-
lance cameras. The second CNN-assisted method improves fre detection accuracy with
a main focus on reducing false alarms. The third method uses an effcient deep CNN
for fre detection. For localization of fre regions, a feature map selection algorithm that
intelligently selects appropriate feature maps sensitive to fre areas is proposed.

Chapter 4 presents an accurate and real-time multi-biometric system for identi-
fying a person’s identity using a combination of two discriminative deep learning
approaches to address the problem of unconstrained face recognition: CNN and deep
belief network (DBN). The proposed system is tested on four large-scale challenging
datasets with high diversity in the facial expressions—SDUMLA-HMT, FRGC V
2.0, UFI, and LFW—and new state-of-the-art recognition rates on all the employed
datasets are achieved.

Chapter 5 introduces a study of the concept of sequence learning using RNN,
LSTM, and its variants such as multilayer LSTM and bidirectional LSTM for action
and activity recognition problems. The chapter concludes with major issues of
sequence learning for action and activity recognition and highlights recommenda-
tions for future research.

Chapter 6 discuses semantic segmentation in autonomous driving applications,
where it focuses on constructing effcient and simple architectures to demonstrate
the beneft of fow and depth augmentation to CNN-based semantic segmentation
networks. The impact of both motion and depth information on semantic segmenta-
tion is experimentally studied using four simple network architectures. Results of
experiments on two public datasets—Virtual-KITTI and CityScapes—show reason-
able improvement in overall accuracy.

Chapter 7 presents a method based on deep learning for geolocalizing drones
using only onboard cameras. A pipeline has been implemented that makes use of the
availability of satellite imagery and traditional computer vision feature detectors and
descriptors, along with renowned deep learning methods (semantic segmentation), to
be able to locate the aerial image captured from the drone within the satellite imag-
ery. The method enables the drone to be autonomously aware of its surroundings and
navigate without using GPS.

xi Preface

Chapter 8 is intended to be a guide for the developers of robot vision systems,
focusing on the practical aspects of the use of deep neural networks rather than on
theoretical issues.

The last three chapters are devoted to deep learning in medical applications.
Chapter 9 covers basic information about CNNs in medical applications. CNN
developments are discussed from different perspectives, specifcally, CNN design,
activation function, loss function, regularization, optimization, normalization, and
network depth. Also, a deep convolutional neural network (DCNN) is designed for
brain tumor detection using MRI images. The proposed DCNN architecture is eval-
uated on the RIDER dataset, achieving accurate detection accuracy within a time of
0.24 seconds per MRI image.

Chapter 10 discusses automatic segmentation of skin lesion boundaries from sur-
rounding tissue and presents a novel deep learning segmentation methodology via
full-resolution convolutional network (FrCN). Experimental results show the great
promise of the FrCN method compared to state-of-the-art deep learning segmenta-
tion approaches such as fully convolutional networks (FCN), U-Net, and SegNet
with overall segmentation.

Chapter 11 is about the automatic classifcation of color skin images, where a
highly accurate method is proposed for skin melanoma classifcation utilizing two
modifed deep convolutional neural networks and consisting of three main steps.
The proposed method is tested using the well-known MED-NODE and DermIS &
DermQuest datasets.

It is very necessary to mention here that the book is a small piece in the puzzle
of computer vision and its applications. We hope that our readers fnd the presented
chapters in the book interesting and that the chapters will inspire future research
both from theoretical and practical viewpoints to spur further advances in the com-
puter vision feld.

The editors would like to take this opportunity to express their sincere grati-
tude to the contributors for extending their wholehearted support in sharing some
of their latest results and fndings. Without their signifcant contribution, this
book could not have fulflled its mission. The reviewers deserve our thanks for
their constructive and timely input. Special profound thanks go to Prof Aly Farag,
Professor of Electrical and Computer Engineering, University of Louisville,
Kentucky for writing the Foreword for this book. Finally, the editors acknowledge
the efforts of the CRC Press Taylor & Francis for giving us the opportunity to edit
a book on deep learning for computer vision. In particular, we would like to thank
Dr Rastislav Lukac, the editor of the Digital Imaging and Computer Vision book
series, and Nora Konopka for initiating this project. Really, the editorial staff
at CRC Press has done a meticulous job, and working with them was a pleasant
experience.

Mahmoud Hassaballah
Qena, Egypt

Ali Ismail Awad
Luleå, Sweden

http://taylorandfrancis.com

xiii

Editors Bio
Mahmoud Hassaballah was born in 1974, Qena, Egypt. He
received his BSc degree in Mathematics in 1997 and his MSc
degree in Computer Science in 2003, both from South Valley
University, Egypt, and his Doctor of Engineering (D Eng) in
computer science from Ehime University, Japan in 2011. He
was a visiting scholar with the department of computer &
communication science, Wakayama University, Japan in
2013 and GREAH laboratory, Le Havre Normandie

University, France in 2019. He is currently an associate professor of computer sci-
ence at the faculty of computers and information, South Valley University, Egypt. He
served as a reviewer for several journals such as IEEE Transactions on Image
Processing, IEEE Transactions on Fuzzy Systems, Pattern Recognition, Pattern
Recognition Letters, IET Image Processing, IET Computer Vision, IET Biometrics,
Journal of Real-Time Image Processing, and Journal of Electronic Imaging. He has
published over 50 research papers in refereed international journals and conferences.
His research interests include feature extraction, object detection/recognition, artif-
cial intelligence, biometrics, image processing, computer vision, machine learning,
and data hiding.

Ali Ismail Awad (SMIEEE, PhD, PhD, MSc, BSc) is cur-
rently an Associate Professor (Docent) with the Department
of Computer Science, Electrical, and Space Engineering,
Luleå University of Technology, Luleå, Sweden, where
he also serves as a Coordinator of the Master Programme
in Information Security. He is a Visiting Researcher with
the University of Plymouth, United Kingdom. He is also
an Associate Professor with the Electrical Engineering

Department, Faculty of Engineering, Al-Azhar University at Qena, Qena, Egypt. His
research interests include information security, Internet-of-Things security, image
analysis with applications in biometrics and medical imaging, and network security.
He has edited or co-edited fve books and authored or co-authored several journal
articles and conference papers in these areas. He is an Editorial Board Member of the
following journals: Future Generation Computer Systems, Computers & Security,
Internet of Things: Engineering Cyber Physical Human Systems, and Health
Information Science and Systems. Dr Awad is currently an IEEE senior member.

http://taylorandfrancis.com

xv

Contributors
Ahmad El Sallab
Valeo Company
Cairo, Egypt

Ahmed Nassar
IRISA Institute
Rennes, France

Alaa S. Al-Waisy
University of Bradford
Bradford, UK

Ali Ismail Awad
Luleå University of Technology
Luleå, Sweden
and
Al-Azhar University
Qena, Egypt

Amin Ullah
Sejong University
Seoul, South Korea

Ashraf A. M. Khalaf
Minia University
Minia, Egypt

François Berry
University Clermont Auvergne
Clermont-Ferrand, France

Guanghui Wang
University of Kansas
Kansas City, Kansas

Hazem Rashed
Valeo Company
Cairo, Egypt

Hesham F.A. Hamed
Egyptian Russian University
Cairo, Egypt
and
Minia University
Minia, Egypt

Javier Ruiz-Del-Solar
University of Chile
Santiago, Chile

Kaidong Li
University of Kansas
Kansas City, Kansas

Kamel Abdelouahab
Clermont Auvergne University
Clermont-Ferrand, France

Khalid M. Hosny
Zagazig University
Zagazig, Egypt

Khan Muhammad
Sejong University
Seoul, South Korea

Mahmoud Hassaballah
South Valley University
Qena, Egypt

Mahmoud Khaled Abd-Ellah
Al-Madina Higher Institute for

Engineering and Technology
Giza, Egypt

Maxime Pelcat
University of Rennes
Rennes, France

xvi Contributors﻿

Miyoung Lee
Sejong University
Seoul, South Korea

Mohamed A. Kassem
Kafr El Sheikh University
Kafr El Sheikh, Egypt

Mohamed Elhelw
Nile University
Giza, Egypt

Mohamed M. Foaud
Zagazig University
Zagazig, Egypt

Mohammed A. Al-Masni
Kyung Hee University
Seoul, South Korea
and
Yonsei University
Seoul, South Korea

Mugahed A. Al-Antari
Kyung Hee University
Seoul, South Korea
and
Sana’a Community College
Sana’a, Republic of Yemen

Patricio Loncomilla
University of Chile
Santiago, Chile

Rami Qahwaji
University of Bradford
Bradford, UK

Salman Khan
Sejong University
Seoul, South Korea

Senthil Yogamani
Valeo Company
Galway, Ireland

Shumoos Al-Fahdawi
University of Bradford
Bradford, UK

Sung Wook Baik
Sejong University
Seoul, South Korea

Tae-Seong Kim
Kyung Hee University
Seoul, South Korea

Tanveer Hussain
Sejong University
Seoul, South Korea

Usman Sajid
University of Kansas
Kansas City, Kansas

Wenchi Ma
University of Kansas
Kansas City, Kansas

Yuanwei Wu
University of Kansas
Kansas City, Kansas

1

1 Accelerating the CNN
Inference on FPGAs

Kamel Abdelouahab, Maxime Pelcat,
and François Berry

CONTENTS

1.1 Introduction ..2
1.2 Background on CNNs and Their Computational Workload3

1.2.1 General Overview...3
1.2.2 Inference versus Training ...3
1.2.3 Inference, Layers, and CNN Models ..3
1.2.4 Workloads and Computations...6

1.2.4.1 Computational Workload...6
1.2.4.2 Parallelism in CNNs ..8
1.2.4.3 Memory Accesses ..9
1.2.4.4 Hardware, Libraries, and Frameworks 10

1.3 FPGA-Based Deep Learning.. 11
1.4 Computational Transforms ... 12

1.4.1 The im2col Transformation .. 13
1.4.2 Winograd Transform .. 14
1.4.3 Fast Fourier Transform ... 16

1.5 Data-Path Optimizations .. 16
1.5.1 Systolic Arrays.. 16
1.5.2 Loop Optimization in Spatial Architectures 18

Loop Unrolling ... 19
Loop Tiling ...20

1.5.3 Design Space Exploration... 21
1.5.4 FPGA Implementations ..22

1.6 Approximate Computing of CNN Models ...23
1.6.1 Approximate Arithmetic for CNNs..23

1.6.1.1 Fixed-Point Arithmetic ..23
1.6.1.2 Dynamic Fixed Point for CNNs...28
1.6.1.3 FPGA Implementations ...29
1.6.1.4 Extreme Quantization and Binary Networks.......................29

1.6.2 Reduced Computations...30
1.6.2.1 Weight Pruning .. 31
1.6.2.2 Low Rank Approximation ... 31
1.6.2.3 FPGA Implementations ... 32

2 Deep Learning in Computer Vision

1.7 Conclusions... 32
Bibliography .. 33

1.1 INTRODUCTION

The exponential growth of big data during the last decade motivates for innovative
methods to extract high semantic information from raw sensor data such as videos,
images, and speech sequences. Among the proposed methods, convolutional neural
networks (CNNs) [1] have become the de facto standard by delivering near-human
accuracy in many applications related to machine vision (e.g., classifcation [2],
detection [3], segmentation [4]) and speech recognition [5].

This performance comes at the price of a large computational cost as CNNs
require up to 38 GOPs to classify a single frame [6]. As a result, dedicated hard-
ware is required to accelerate their execution. Graphics processing units GPUs
are the most widely used platform to implement CNNs as they offer the best per-
formance in terms of pure computational throughput, reaching up 11 TFLOPs
[7]. Nevertheless, in terms of power consumption, feld-programmable gate array
(FPGA) solutions are known to be more energy effcient (vs. GPU). While GPU
implementations have demonstrated state-of-the-art computational performance,
CNN acceleration will soon be moving towards FPGAs for two reasons. First,
recent improvements in FPGA technology put FPGA performance within striking
distance of GPUs with a reported performance of 9.2 TFLOPs for the latter [8].
Second, recent trends in CNN development increase the sparsity of CNNs and
use extremely compact data types. These trends favor FPGA devices, which are
designed to handle irregular parallelism and custom data types. As a result, next-
generation CNN accelerators are expected to deliver up to 5.4× better computa-
tional throughput than GPUs [7].

As an infection point in the development of CNN accelerators might be near, we
conduct a survey on FPGA-based CNN accelerators. While a similar survey can be
found in [9], we focus in this chapter on the recent techniques that were not covered
in the previous works. In addition to this chapter, we refer the reader to the works
of Venieris et al. [10], which review the toolfows automating the CNN mapping
process, and to the works of Sze et al., which focus on ASICs for deep learning
acceleration.

The amount and diversity of research on the subject of CNN FPGA acceleration
within the last 3 years demonstrate the tremendous industrial and academic interest.
This chapter presents a state-of-the-art review of CNN inference accelerators over
FPGAs. The computational workloads, their parallelism, and the involved memory
accesses are analyzed. At the level of neurons, optimizations of the convolutional
and fully connected (FC) layers are explained and the performances of the differ-
ent methods compared. At the network level, approximate computing and data-path
optimization methods are covered and state-of-the-art approaches compared. The
methods and tools investigated in this survey represent the recent trends in FPGA
CNN inference accelerators and will fuel the future advances on effcient hardware
deep learning.

3 Accelerating the CNN Inference on FPGAs

1.2 BACKGROUND ON CNNS AND THEIR
COMPUTATIONAL WORKLOAD

In this frst section, we overview the main features of CNNs, mainly focusing on the
computations and parallelism patterns involved during their inference.

1.2.1 GENERAL OVERVIEW

Deep* CNNs are feed-forward†, sparsely connected‡ neural networks. A typical
CNN structure consists of a pipeline of layers. Each layer inputs a set of data, known
as a feature map (FM), and produces a new set of FMs with higher-level semantics.

1.2.2 INFERENCE VERSUS TRAINING

As typical machine learning algorithms, CNNs are deployed in two phases. First,
the training stage works on a known set of annotated data samples to create a model
with a modeling power (which semantics extrapolates to natural data outside the
training set). This phase implements the back-propagation algorithm [11], which
iteratively updates CNN parameters such as convolution weights to improve the pre-
dictive power of the model. A special case of CNN training is fne-tuning. When
fne-tuning a model, weights of a previously trained network are used to initialize the
parameters of a new training. These weights are then adjusted for a new constraint,
such as a different dataset or a reduced precision.

The second phase, known as inference, uses the learned model to classify new data
samples (i.e., inputs that were not previously seen by the model). In a typical setup, CNNs
are trained/fne-tuned only once, on large clusters of GPUs. By contrast, the inference
is implemented each time a new data sample has to be classifed. As a consequence,
the literature mostly focuses on accelerating the inference phase. As a result, our dis-
cussion overviews the main methods employed to accelerate the inference. Moreover,
since most of the CNN accelerators benchmark their performance on models trained for
image classifcation, we focus our chapter on this application. Nonetheless, the methods
detailed in this survey can be employed to accelerate CNNs for other applications such
object detection, image segmentation, and speech recognition.

1.2.3 INFERENCE, LAYERS, AND CNN MODELS

CNN inference refers to the feed-forward propagation of B input images across L
layers. This section details the computations involved in the major types of these
layers. A common practice is to manipulate layers, parameters, and FMs as multidi-
mensional arrays, as listed in Table 1.1. Note that when it will be relevant, the type
of the layer will be denoted with superscript, and the position of the layer will be
denoted with subscript.

* Includes a large number of layer, typically above three.
† The information fows from the neurons of a layer ˜ towards the neurons of a layer. ˜ + 1
‡ CNNs implement the weight sharing technique, applying a small number of weights across all the

input pixels (i.e., image convolution).

Q

4 Deep Learning in Computer Vision

TABLE 1.1
Tensors Involved in the Inference of a Given Layer ˜ with Their Dimensions

X Input FMs B × C × H × W B Batch size (Number of input frames)

Y Output FMs B × N × V × U W/H/C Width/Height/Depth of Input FMs

Θ Learned Filters N × C × J × K U/V/N Width/Height/Depth of Output FMs

β Learned biases N K/J Horizontal/Vertical Kernel size

A convolutional layer (conv) carries out the feature extraction process by applying – as
illustrated in Figure 1.1 – a set of three-dimensional convolution flters Θconv to a set
of B input volumes Xconv. Each input volume has a depth C and can be a color image
(in the case of the frst conv layer), or an output generated by previous layers in the
network. Applying a three-dimensional flter to three-dimensional input results in
a 2D (FM). Thus, applying N three-dimensional flters in a layer results in a three-
dimensional output with a depth N.

In some CNN models, a learned offset βconv – called a bias – is added to processed
feature maps. However, this practice has been discarded in recent models [6]. The
computations involved in feed-forward propagation of conv layers are detailed in
Equation 1.1.

˜{b n u v} ̋ [1, B] × [1, N] × [], , , 1,V] × [1,U

conv convY [,b n v u] = b, , []n

C J K (1.1)
conv Qconv[,åååX [,b c v j u k, + , + ×] , ,+ n c j k]

c=1 j=1 k=1

One may note that applying a depth convolution to a 3D input boils down to applying
a mainstream 2D convolution to each of the 2D channels of the input, then, at each
point, summing the results across all the channels, as shown in Equation 1.2.

FIGURE 1.1 Feed-forward propagation in conv, act, and pool layers (batch size B =1, bias
β omitted).

5 Accelerating the CNN Inference on FPGAs

˜ ° 1, Nn []
C

conv conv conv convY n[] = b [n] +åconv2D(X[]c ,Q[]c) (1.2)
c=1

Each conv layer of a CNN is usually followed by an activation layer that applies a
nonlinear function to all the values of FMs. Early CNNs were trained with TanH
or Sigmoid functions, but recent models employ the rectifed linear unit (ReLU)
function, which grants faster training times and less computational complexity, as
highlighted in Krizhevsky et al. [12].

˜{ , , , } ̋ [1, B] × [1, N] × [1,V] × [1,U]b n u v

act actY [, , ,] = act(X [, , ,]) | act:=TanH, Sigmoid, ReLU… (1.3) b n h w b n h w

The convolutional and activation parts of a CNN are directly inspired by the
cells of visual cortex in neuroscience [13]. This is also the case with pooling
layers, which are periodically inserted in between successive conv layers. As
shown in Equation 1.4, pooling sub-samples each channel of the input FM by
selecting either the average, or, more commonly, the maximum of a given neigh-
borhood K. As a result, the dimensionality of an FM is reduced, as illustrated
in Figure 1.1.

˜{ , , , } ̋ [, B] × [1, N] × [1,V] × []b n u v 1 1,U

pool poolY [,b n v u, ,] = max (X [,b n v, + p u, + q]) (1.4)
, [1:K]p q˜

When deployed for classifcation purposes, the CNN pipeline is often terminated
by FC layers. In contrast with convolutional layers, FC layers do not implement
weight sharing and involve as much weight as input data (i.e., W = K, H= J,U = V= 1).
Moreover, in a similar way as conv layers, a nonlinear function is applied to the
outputs of FC layers.

˜{b n, } ̋ [1, B] × [1, N]
C H W

fc fc fc fcY [,b n] = b []n + X [,b c h w, ,] ×Q [n c h w, , ,] (1.5) ååå
c=1 h=1 w=1

6 Deep Learning in Computer Vision

The Softmax function is a generalization of the Sigmoid function, and “squashes”
a N-dimensional vector X to Sigmoid(X) where each output is in the range [0,1].
The Softmax function is used in various multi-class classifcation methods, espe-
cially in CNNs. In this case, the Softmax layer is placed at the end of the net-
work and the dimension of vector it operates on (i.e., N) represents the number of
classes in the considered dataset. Thus, the input of the Softmax is the data gener-
ated by the last fully connected layer, and the output is the probability predicted
for each class.

˜{b n, } ̋ [1, B] × [1, N]
exp([X b n,])

Softmax(X[,b n]) = N
(1.6)

° exp([X b c,])
c=1

Batch normalization was introduced [14] to speed up training by linearly shifting
and scaling the distribution of a given batch of inputs B to have zero mean and unit
variance. These layers fnd also their interest when implementing binary neural net-
works (BNNs) as they reduce the quantization error compared to an arbitrary input
distribution, as highlighted in Hubara et al. [15]. Equation 1.7 details the processing
of batch norm layers, where the mean μ and the variance σ are statistics collected
during the training, α and γ are parameters learned during the training, and ϵ is a
hyper-parameter set empirically for numerical stability purposes (i.e., avoiding divi-
sion by zero).

˜{b n u v} ̋ [1, B] × [1, N] × [1,V] × [], , , 1,U

BN XBN b n u v − m (1.7) [, , ,]
Y [, , ,] = +b n v u g a

s2 + ̃

1.2.4 WORKLOADS AND COMPUTATIONS

The accuracy of CNN models has been increasing since their breakthrough in 2012
[12]. However, this accuracy comes at a high computational cost. The main challenge
that faces CNN developers is to improve classifcation accuracy while maintain-
ing a tolerable computational workload. As shown in Table 1.2, this challenge was
successfully addressed by Inception [16] and ResNet models [17], with their use of
bottleneck 1 × 1 convolutions that reduce both model size and computations while
increasing depth and accuracy.

1.2.4.1 Computational Workload
As shown in Equations 1.1 and 1.5, the processing of CNN involves an intensive use
of Multiply Accumulate (MAC) operation. All these MAC operations take place at
conv and FC layers, while the remaining parts of network are element-wise trans-
formations that can be generally implemented with low-complexity computational
requirements.

7 Accelerating the CNN Inference on FPGAs

TABLE 1.2
Popular CNN Models with Their Computational Workload*

Model
AlexNet

[12]
GoogleNet

[16]
VGG16

[6]
VGG19

[6]
ResNet101

[17]
ResNet-152

[17]

Top1 err (%)

Top5 err (%)

42.9%

19.80%

31.3%

10.07%

28.1%

9.90%

27.3%

9.00%

23.6% %

7.1%

23.0%

6.7%

Lc 5 57 13 16 104 155

666 M 1.58 G 15.3 G 19.5 G 7.57 G 11.3 G˜ Lc
Cconv

˜
˜=1

2.33 M 5.97 M 14.7 M 20 M 42.4 M 58 M˜ Lc
W conv

˜
˜=1

Act ReLU

Pool 3 14 5 5 2 2

Lf 3 1 3 3 1 1

58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M˜ L f
C fc

˜
˜=1

L f fc 58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M˜ W̃
˜=1

C 724 M 1.58 G 15.5 G 19.6 G 7.57 G 11.3 G

W 61 M 6.99 M 138 M 144 M 44.4 M 60 M

* Accuracy Measured on Single-Crops of ImageNet Test-Set

In this chapter, the computational workload C of a given CNN corresponds to the
number of MACs it involves during inference*. The number of these MACs mainly
depends on the topology of the network, and more particularly on the number of
conv and FC layers and their dimensions. Thus, the computational workload can be
expressed as in Equation 1.8, where Lc is the number of conv (fully connected) lay-

convers, and C˜ (C˜
fc) is the number of MACs occurring on a given convolution (fully

connected) layer ˜.

Lc L f

˜ conv + ˜ fcC = C˜ C˜ (1.8)
˜=1 ˜=1

convC˜ = N˜ × C˜ × J˜ × K˜ × U˜ × V˜ (1.9)

C˜
fc = N˜ × C˜ × W˜ × H˜ (1.10)

* Batch size is set to 1 for clarity purposes.

8 Deep Learning in Computer Vision

In a similar way, the number of weights, and consequently the size of a given CNN
model, can be expressed as follows:

Lc L f

conv + ˜ fcW = ˜W̃ W̃ (1.11)
˜=1 ˜=1

W̃
conv = N˜ × C˜ × J˜ × K˜ (1.12)

W̃
fc = N˜ × C˜ × W˜ × H˜ (1.13)

For state-of-the-art CNN models, Lc, N˜, and C˜ can be quite large. This makes
CNNs computationally and memory intensive, where for instance, the classifcation
of a single frame using the VGG19 network requires 19.5 billion MAC operations.

It can be observed in the same table that most of the MACs occur on the convolu-
tion parts, and consequently, 90% of the execution time of a typical inference is spent
on conv layers [18]. By contrast, FC layers marginalize most of the weights and thus
the size of a given CNN model.

1.2.4.2 Parallelism in CNNs
The high computational workload of CNNs makes their inference a challenging task,
especially on low-energy embedded devices. The key solution to this challenge is to
leverage on the extensive concurrency they exhibit. These parallelism opportunities
can be formalized as follows:

• Batch Parallelism: CNN implementations can simultaneously classify
multiple frames grouped as a batch B in order to reuse the flters in each
layer, minimizing the number the memory accesses. However, and as
shown in [10], batch parallelism quickly reaches its limits. This is due to the
fact that most of the memory transactions result from storing intermediate
results and not loading CNN parameters. Consequently, reusing the flters
only slightly impacts the overall processing time per image.

• Inter-layer Pipeline Parallelism: CNNs have a feed-forward hierarchical
structure consisting of a succession of data-dependent layers. These layers
can be executed in a pipelined fashion by launching layer ()˜ before ending
the execution of layer (˜ −1). This pipelining costs latency but increases
throughput.

Moreover, the execution of the most computationally intensive parts (i.e., conv lay-
ers), exhibits the four following types of concurrency:

• Inter-FM Parallelism: Each two-dimensional plane of an FM can be pro-
cessed separately from the others, meaning that PN elements of Yconv can be
computed in parallel (0 < PN < N).

9 Accelerating the CNN Inference on FPGAs

• Intra-FM Parallelism: In a similar way, pixels of a single output FM plane
are data-independent and can thus be processed concurrently by evaluating
PV × PU values of Yconv[n] (0 < PV × PU < V × U).

• Inter-convolution Parallelism: Depth convolutions occurring in conv lay-
ers can be expressed as a sum of 2D convolutions, as shown in Equation
1.2. These 2D convolutions can be evaluated simultaneously by computing
concurrently Pc elements (0 < Pc < C).

• Intra-convolution Parallelism: The 2D convolutions involved in the pro-
cessing of conv layers can be implemented in a pipelined fashion such as
in [76]. In this case PJ × PK multiplications are implemented concurrently
(0 < PJ × PK < J × K).

1.2.4.3 Memory Accesses
As a consequence of the previous discussion, the inference of a CNN shows large vec-
torization opportunities that can be exploited by allocating multiple computational
resources to concurrently process multiple features. However, this parallelization
can not accelerate the execution of a CNN if no datacaching strategy is implemented.
In fact, memory bandwidth is often the bottleneck when processing CNNs.

In FC parts, the execution can be memory-bounded because of the high number
of weights that these layers contain, and consequently, the high number of memory
reads required.

This is expressed in Equation 1.14, where M˜
fc refers to the number of memory

accesses occurring in an FC layer ˜. This number can be written as the sum of
memory accesses reading the inputs X˜

fc, the memory accesses reading the weights

(q˜
fc), and the number of memory accesses writing the results (Y˜

fc).

fc fc fc fcM˜ = MemRd(X˜) + MemRd(q˜) + MemWr(Y˜) (1.14)

= C H W˜ ˜ + N C H˜ W˜ + N (1.15) ˜ ˜ ˜ ˜

˜ N C H W (1.16) ˜ ˜ ˜ ˜

Note that the fully connected parts of state-of-the-art models involve large values
of N˜ and C˜ , making the memory reading of weights the most impacting factor,
as formulated in Equation 1.16. In this context, batch parallelism can signifcantly
accelerate the execution of CNNs with a large number of FC layers.

In the conv parts, the high number of MAC operations results in a high number
of memory accesses, as each MAC requires at least 2 memory reads and 1 memory
write*. This number of memory accesses accumulates with the high dimensions of
data manipulated by conv layers, as shown in Equation 1.18. If all these accesses are
towards external memory (for instance, DRAM), throughput and energy consumption

* This is the best-case scenario of a fully pipelined MAC, where intermediate results do not need to be
loaded.

10 Deep Learning in Computer Vision

will be highly impacted, because DRAM access engenders high latency and energy
consumption, even more than the computation itself [21].

conv conv conv convM˜ = MemRd(X˜) + MemRd(q˜) + MemWr(Y˜) (1.17)

= C H W + N C J K˜ ˜ ˜ ˜ (1.18) ˜ ˜ ˜ + N˜ ˜ ˜U V

The number of these DRAM accesses, and thus latency and energy consumption, can
be reduced by implementing a memory-caching hierarchy using on-chip memories.
As discussed in the next sections, state-of-the-art CNN accelerators employ register
fles as well as several levels of caches. The former, being the fastest, is implemented
at the nearest of the computational capabilities. The latency and energy consumption
resulting from these caches is lower by several orders of magnitude than external
memory accesses, as pointed out in Sze et al. [22].

1.2.4.4 Hardware, Libraries, and Frameworks
In order to catch the parallelism of CNNs, dedicated hardware accelerators are
developed. Most of them are based on GPUs, which are known to perform well
on regular parallelism patterns thanks to simd and simt execution models, a dense
collection of foating-point computing elements that peak at 12 TFLOPs, and high
capacity/bandwidth on/off-chip memories [23]. To support these hardware accel-
erators, specialized libraries for deep learning are developed to provide the neces-
sary programming abstraction, such as CudNN on Nvidia GPU [24]. Built upon
these libraries, dedicated frameworks for deep learning are proposed to improve
productivity of conceiving, training, and deploying CNNs, such as Caffe [25] and
TensorFlow [26].

Beside GPU implementations, numerous FPGA accelerators for CNNs have been
proposed. FPGAs are fne-grained programmable devices that can catch the CNN
parallelism patterns with no memory bottleneck, thanks to the following:

1. A high density of hard-wired digital signal processor (DSP) blocks that are
able to achieve up to 20 (8 TFLOPs) TMACs [8].

2. A collection of in situ on-chip memories, located next to DSPs, that can be
exploited to signifcantly reduce the number of external memory accesses.

As a consequence, CNNs can beneft from a signifcant acceleration when running
on reconfgurable hardware. This has caused numerous research efforts to study
FPGA-based CNN acceleration, targeting both high performance computing (HPC)
applications [27] and embedded devices [28].

In the remaining parts of this chapter, we conduct a survey on methods and hard-
ware architectures to accelerate the execution of CNN on FPGA. The next section
lists the evaluation metrics used, then Sections 1.4 and 1.5 respectively study the
computational transforms and the data-path optimization involved in recent CNN
accelerators. Finally, the last section of this chapter details how approximate com-
puting is a key in FPGA-based deep learning, and overviews the main contributions
implementing these techniques.

11 Accelerating the CNN Inference on FPGAs

1.3 FPGA-BASED DEEP LEARNING

Accelerating a CNN on an FPGA-powered platform can be seen as an optimization
effort that focuses on one or several of the following criteria:

• Computational Throughput (): A large number of the works studied T
in this chapter focus on reducing the CNN execution times on the FPGA
(i.e., the computation latency), by improving the computational throughput
of the accelerator. This throughput is usually expressed as the number of
MACs an accelerator performs per second. While this metric is relevant in
the case of HPC workloads, we prefer to report the throughput as the num-
ber of frames an accelerator processes per second (fps), which better suits
the embedded vision context. The two metrics can be directly related using
Equation 1.19, where C is defned in Equation 1.8, and refers to the number
of computations a CNN involve in order to process a single frame:

T(MACS)T(FPS) = (1.19)
C(MAC)

• Classifcation/Detection Perf. ()A : Another way to reduce CNN execution
times is to trade some of their modeling performance in favor of faster exe-
cution timings. For this reason, the classifcation and detection metrics are
reported, especially when dealing with approximate computing methods.
Classifcation performance is usually reported as top-1 and top-5 accura-
cies, and detection performance is reported using the mAP50 and mAP75
metrics.

• Energy and Power Consumption ()P : Numerous FPGA-based accelera-
tion methods can be categorized as either latency-driven or energy-driven.
While the former focus on improving the computational throughput, the
latter considers the power consumption of the accelerator, reported in watts.
Alternatively, numerous latency-driven accelerators can be ported to low-
power-range FPGAs and perform well under strict power consumption
requirements.

• Resource Utilization ()R : When it comes to FPGA acceleration, the utili-
zation of the available resources (lut, DSP blocks, sram blocks) is always
considered. Note that the resource utilization can be correlated to the power
consumption*, but improving the ratio between the two is a technological
problem that clearly exceeds the scope of this chapter. For this reason, both
power consumption and resources utilization metrics will be reported when
available.

An FPGA implementation of a CNN has to satisfy to the former requirements. In this
perspective, the literature provides three main approaches to address the problem

* At a similar number of memory accesses. These accesses typically play the most dominant role in the
power consumption of an accelerator.

12 Deep Learning in Computer Vision

FIGURE 1.2 Main approaches to accelerate CNN inference on FPGAs.

of FPGA-based deep learning. These approaches mainly consists of computational
transforms, data-path optimization, and approximate computing techniques, as illus-
trated in Figure 1.2.

1.4 COMPUTATIONAL TRANSFORMS

In order to accelerate the execution of conv and FC layers, numerous implementa-
tions rely on computational transforms. These transforms, which operate on the FM
and weight arrays, aim at vectorizing the implementations and reducing the number
of operations occurring during inference.

Three main transforms can be distinguished. The im2col method reshapes the
feature and weight arrays in a way to transform depth convolutions into matrix mul-
tiplications. The FFT method operates on the frequency domain, transforming con-
volutions into multiplications. Finally, in Winograd fltering, convolutions boil down
to element-wise matrix multiplications thanks to a tiling and a linear transformation
of data.

These computational transforms mainly appear in temporal architectures and are
implemented by means of variety of linear algebra libraries such OpenBLAS for
CPUs* or cuBLAS for GPUs†. Besides this, various implementations make use of
these transforms to effciently map CNNs on FPGAs.

This section discusses the three former methods, highlighting their use-cases and
computational improvements. For a better understanding, we recall that for each
layer ˜:

• The input feature map is represented as four-dimensional array X, in which
the dimensions B × C × H × W respectively refer to the batch size, the num-
ber of input channels, the height, and the width.

* https://www.openblas.net/
† https://developer.nvidia.com/cublas

https://www.openblas.net/
https://developer.nvidia.com/

13 Accelerating the CNN Inference on FPGAs

• The weights are represented as four-dimensional array Θ, in which the
dimensions N × C × J × K respectively refer to the depth of the output fea-
ture map, the depth of the input feature map, the vertical, and the horizontal
kernel size.

1.4.1 THE IM2COL TRANSFORMATION

In CPUs and GPUs, a common way to process CNNs is to map conv and FC layers
as general matrix multiplications (GEMMs). A number of studies generalize this
approach to FPGA-based implementations.

For FC layers, in which the processing boils down to a matrix-vector multiplica-
tion problem, the GEMM-based implementations fnd their interest when processing
a batch of FMs. As mentioned in Section 1.2.4.1, most of the weights of CNNs are
employed in the FC parts. Instead of loading these weights multiple times to clas-
sify multiple inputs, features extracted from a batch of inputs are concatenated onto
a CHW × B matrix. In this case, the weights are loaded only one time per batch,
as depicted in Figure 1.3a. As a consequence, the former Equation 1.16 – which
expressed the number of memory accesses occurring on FC layers – becomes the
following:

fc fc fc fcM˜ = MemRd(q˜) + MemRd(X˜) + MemWr(Y˜) (1.20)

= N C W H + BC H W + BN (1.21) ˜ ˜ ˜ ˜ ˜ ˜ ˜ ̃

˜ N C H W (1.22) ˜ ˜ ˜ ˜

As detailed in Section 1.2.4.2, the vectorization of FC layers is often employed in
GPU implementations to increase the computational throughput while maintaining
a constant memory bandwidth utilization. The same concept holds true for FPGA
implementations [31, 48, 49], which batch the FC layers to map them as GEMMs.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

BN

H

C
W

CHW

N

x

CHW

= N

B

Input FMs XfcFC Weights ˜fc

Output
 FMs
Yfc
~

1

1

1

1

1

1

1

1

1

1

1

1

=

˜

(a) (b) B

FIGURE 1.3 GEMM-based processing of FC layers (a) and conv layers (b).

14 Deep Learning in Computer Vision

3D convolutions can also be mapped as GEMMs using the so-called im2col
method introduced in [30]. First, this method fattens all the weights of a given conv

layer onto an N × CKJ matrix ˜̃ . Second, it rearranges the input feature maps onto a

CKJ × UV matrix X̃ , squashing each feature map to a column*. With these reshaped

data, the output feature maps Ỹ are computed by multiplying of two former matrices,
as illustrated in Figure 1.3b.

˜ conv ˜ conv ˜ convY = ˜ × X (1.23)

Suda et al. [29] and more recently, Zhang et al. [50] and Guan et al. [51] leverage on
im2col to derive OpenCL-based FPGA accelerators for CNN. However, this method
introduces redundant data in the input FM matrix, which can lead to either ineff-
ciency in storage or complex memory access patterns. As a result, and as pointed out
in [22], other strategies to map convolutions have to be considered.

1.4.2 WINOGRAD TRANSFORM

Winograd minimal fltering algorithm, introduced in [52], is a computational trans-
form that can be applied to process convolutions with a stride of 1, which is very
common in CNN topologies.

This algorithm is particularly effcient when processing small convolutions
(where K ≤ 3), as advocated in [53]. In this work, authors outperformed the through-
put of the conventional im2col method by a factor of ×7.2 when executing VGG16
on a TitanX GPU.

In Winograd fltering (Figure 1.4), data is processed by blocks, referred to as tiles,
as follows:

T1. An input FM tile x of size (u × u) is pre-processed: x̃ = A Ax
2. In a similar way, θ, the flter tile of size (k × k), is transformed into

˜ ˜ Tq q: = xB B

~

~ ~

Input FM Xconv

W

H

w

w k
k

conv kernel ˜conv

J

K
x

x ˜

Winograd
transform

= y

w+k-1 w+k-1

u
u

Output FM Yconv

U

˜ y

EWMM

V

FIGURE 1.4 Winograd fltering F(u × u, k × k).

* That’s what the im2col name refers to: fattening an image to a column.

15 Accelerating the CNN Inference on FPGAs

3. Winograd fltering algorithm, denoted F(u × u, k × k), outputs a tile y of size
(u × u) that is computed according to Equation 1.24

y = CT

°̃ q̃ ̃ x̃ ˛̋ C (1.24)

where A, B, C are transformation matrices defned in the Winograd algorithm [52]
and ˜ denotes the Hadamard product also known as EWMM.

While a standard fltering requires u2 × k2 multiplications, Winograd algorithm,
denoted F(u × u, k × k), requires (u + k − 1)2 multiplications [52]. In the case of tiles
of a size u = 2 and kernels of size k = 3, this corresponds to an arithmetic complex-
ity reduction of ×2.25 [53], and in this case, transform matrices can be written as
follows:

1 0 −1 0 ˙°
˝
˝
˝
˝

ˇ
ˇ
ˇ
ˇ
ˆ0 1 0 −1

° ˙1 1 1 0 0 1 1 0
AT = ; BT =˝

˛
ˇ
ˆ− −1 −0 1 1 0 1 1 0

˛

° ˙
˝
˝
˝
˝

1 0 0

1 / 2 ˇ
ˇ
ˇ
ˇ

1 / 2 1 / 2
C = (1.25)

−1 / 2 1 / 2

0 0 1

1 / 2

˛ ˆ

Beside this complexity reduction, implementing Winograd fltering in FPGA-based
CNN accelerators has two advantages. First, transformation matrices A, B, C can be
evaluated offine once u and k are determined. As a result, these transforms become
multiplications with the constants that can be implemented by means of lut and shift
registers, as proposed in [54].

Second, Winograd fltering can employ the loop optimization techniques dis-
cussed in Section 1.5.2 to vectorize the implementation. On one hand, the computa-
tional throughput is increased when unrolling the computation of the ewmm parts
over multiple DSP blocks. On the other hand, memory bandwidth is optimized using
loop tiling to determine the size of the FM tiles and flter buffers.

First, utilization of Winograd fltering in FPGA-based CNN accelerators is inves-
tigated in [32] and delivers a computational throughput of 46 GOPs when executing
AlexNet convolutional layers. This performance is signifcantly improved by a factor
of ×42 in [31] when optimizing the data path to support Winograd convolutions (by
employing loop unrolling and tiling strategies), and storing the intermediate FM in
on-chip buffers (cf Section 1.4).

The same method is employed in [54] to derive a CNN accelerator on a Xilinx
ZCU102 device that delivers a throughput of 2.94 TOPs on VGG convolutional lay-
ers. The reported throughput corresponds to half of the performance of a TitanX
device, with 5.7× less power consumption [23]*.

* Implementation in the TitanX GPU employs Winograd algorithm and 32-bit foating point arithmetic.

16 Deep Learning in Computer Vision

1.4.3 FAST FOURIER TRANSFORM

Fast Fourier Transform (FFT) is a well known algorithm to transform the 2D convo-
lutions into ewmm in the frequency domain, as shown in Equation 1.26:

conv2D([X c],˜[,]) = IFFT FFT([X c]) ̃ FFT ˜ ,n c (([n c])) (1.26)

Using FFT to process 2D convolutions reduces the complexity from O(W2 × K2) to
O(W2log2(W)), which is exploited to derive FPGA-based accelerators and to infer
CNN [34]. When compared to standard fltering and Winograd algorithm, FFT fnds
its interest in convolutions with large kernel size (K > 5), as demonstrated in [53,
55]. The computational complexity of FFT convolutions can be further reduced to
O(Wlog2(K)) using the overlap-and-add method [56], which can be applied when
the signal size is much larger than the flter size, which is typically the case in conv
layers (W >> K). Works in [33, 57] leverage on the overlap-and-add to implement
frequency domain acceleration for conv layers on FPGA, which results in a compu-
tational throughput of 83 GOPs for AlexNet (Table 1.3).

1.5 DATA-PATH OPTIMIZATIONS

As highlighted in Section 2.4.2, the execution of CNN exhibits numerous sources
of parallelism. However, due to the resource limitations of FPGA devices, it might
be impossible to fully exploit all the concurrency patterns, especially with the
sheer volume of operations involved in deep topologies. In other words, the execu-
tion of recent CNN models cannot fully be unrolled sometimes, not even for a
single conv layer.

To address this problem, the general approach, advocated in state-of-the-art
implementations, is to map a limited number of processing elements (PEs) on the
FPGA. These PEs are then reused by temporally iterating data through them.

1.5.1 SYSTOLIC ARRAYS

Early FPGA-based accelerators for CNN implemented systolic arrays to accelerate
the 2D fltering in convolutions layers [58—61]. As illustrated in Figure 1.5a, systolic
arrays employ a static collection of PE, typically arranged in a 2-dimensional grid.
These PE operate as a co-processor under the control of a central processing unit.
The confguration of systolic arrays is agnostic to the CNN model, making them
ineffcient to process large-scale networks for the following three reasons:

First, the static collection of PE can support convolutions only up to a given flter
size Km, where typical values of Km range from 7 in [59] to 10 in [61]. Therefore, in
convolutional layer ()˜ , K˜ > Km is not supported by the accelerator. Second, systolic
arrays suffer from under-utilization when processing layers in which the kernel size
K˜ is much smaller then Km. This is for instance the case in [61], where the process-
ing of 3 × 3 convolutions uses only 9% of DSP blocks, while the processing of these
layers can be further parallelized and thus accelerated. Third and fnally, PE in sys-
tolic arrays do not usually include memory caches and have to fetch their inputs from

17

TA
B

LE
 1

.3

A
cc

el
er

at
or

s
Em

pl
oy

in
g

C
om

pu
ta

ti
on

al
 T

ra
ns

fo
rm

s

C
om

p
Pa

ra
m

s
Fr

eq

Th
ro

ug
h

Po
w

er

LU
T

M
em

or
y

M
et

ho
d

En
tr

y
N

et
w

or
k

(G
O

P)

(M
)

B
it

-w
id

th

D
es

c.

D
ev

ic
e

(M
H

z)

(G
O

Ps
)

(W
)

(K
)

D
SP

(M

B
)

W
in

og
ra

d
[3

3]

A
le

xN
et

-C

1.
3

2.
3

Fl
oa

t 3
2

O
pe

nC
L

V

ir
te

x7
 V

X
69

0T

20
0

46

–
50

5
36

83

56
.3

[3
2]

A

le
xN

et
-C

1.

3
2.

3
Fl

oa
t1

6
O

pe
nC

L

A
rr

ia
10

 G
X

11
50

30

3
13

82

44
.3

24

6
15

76

49
.7

[5
5]

V

G
G

16
-C

30

.7

14
.7

Fi

xe
d

16

H
L

S
Z

yn
q

Z
U

9E
G

20

0
30

45

23
.6

60

0
25

20

32
.8

[5
5]

A

le
xN

et
-C

1.

3
2.

3
Fi

xe
d

16

H
L

S
Z

yn
q

Z
U

9E
G

20

0
85

5
23

.6

60
0

25
20

32

.8

FF
T

[3

4]

A
le

xN
et

-C

1.
3

2.
3

Fl
oa

t 3
2

–
St

ra
tix

5
Q

PI

20
0

83

13
.2

20

1
22

4
4.

0

[3
4]

V

G
G

19
-C

30

.6

14
.7

Fl

oa
t 3

2
–

St
ra

tix
5

Q
PI

20

0
12

3
13

.2

20
1

22
4

4.
0

G
E

M
M

[3

0]

A
le

xN
et

-C

1.
3

2.
3

Fi
xe

d
16

O

pe
nC

L

St
ra

tix
5

G
X

A
7

19
4

66

33
.9

22

8
25

6
37

.9

[5
0]

V

G
G

16
-F

31

.1

13
8.

0
Fi

xe
d

16

H
L

S
K

in
te

x
K

U
06

0
20

0
36

5
25

.0

15
0

10
58

14

.1

[5
0]

V

G
G

16
-F

31

.1

13
8.

0
Fi

xe
d

16

H
L

S
V

ir
te

x7
 V

X
96

0T

15
0

35
4

26
.0

35

1
28

33

22
.5

[5
1]

V

G
G

16
-F

31

.1

13
8.

0
Fi

xe
d

16

O
pe

nC
L

A

rr
ia

10
 G

X
11

50

37
0

86
6

41
.7

43

7
13

20

25
.0

[5
1]

V

G
G

16
-F

31

.1

13
8.

0
Fl

oa
t 3

2
O

pe
nC

L

A
rr

ia
10

 G
X

11
50

38

5
17

90

37
.5

–

27
56

29

.0

Accelerating the CNN Inference on FPGAs

