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Preface

Empirical likelihood (EL) is a nonparametric likelihood approach that has 
been used frequently in recent statistical tool developments. The method 
tends to be more robust than purely parametric approaches and demon-
strates its applicability in many data analytical problems. As distributions 
of data in the real world are commonly unknown, data-driven approaches 
such as the EL method should be more competitive than purely parametric 
approaches, given the lack of the knowledge of true distributions. As the EL 
methods are often comparatively efficient when compared to other existing 
approaches (such as t-test-based schemes) even with normal underlying dis-
tribution cases, more active use of the methods seems warranted. However, 
the method may be unfamiliar to some statistical researchers and potential 
end-users for data analysis, and thus it is difficult to find applications of the 
method in publications related to practical areas such as medicine and epi-
demiological research. For a more active use of the method, researchers need 
to convince the utility, accuracy, and efficiency of the method. We hope that 
this book will be truly successful toward that endeavor.

This book can be used as a textbook for a one or two-semesters advanced 
graduate course. The material in the book can be appropriate for use both 
as a text and as a reference. We hope that the mathematical level and 
breadth of examples will recruit students and teachers not only from statis-
tics and biostatistics, but from a broad range of fields. We hope this book to 
be a  connecting dot that leads interested readers to some technical details 
of  subject areas more easily. The authors of this book have been work-
ing on the topics of the EL approaches to tackle problems related to clini-
cal and   epidemiological data. We believe that the research areas of EL are 
rich in yet-to-be-found applications and theoretical developments on many 
 statistical problems and often those findings could provide better solutions 
than existing approaches. However, the concept of the EL may be foreign 
to people who do not have exposures to the approach and that fact would 
make new researchers  hesitate considering EL for tool developments. In this 
regard, through this book, readers may be familiar with our developmen-
tal scheme of EL approach. Especially, Chapters 3 through 8 contain subject 
areas that the authors  heavily worked on, and their contents will provide 
analytical issues and motivational questions, theoretical developments, soft-
ware implementation, brief simulation results, and data applications, which 
pretty much sum up our procedures to develop new EL methods. For the 
 theoretical developments in those chapters, readers will find recurring formal 
patterns almost similar to a “ceremony.” In that patterns of developments, we 
tried to provide enough details of theoretical statements that cater the need of 
 prospective EL method developers.
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Chapter 1 offers the overview of statistical hypothesis tests and rational 
of using the EL approach. This chapter addresses the benefit of using the 
likelihood approach in details including the principal idea of the Neyman–
Pearson Lemma, likelihood ratio tests, and maximum likelihood. Then the 
EL is introduced as a data-driven likelihood function that is nonparametric 
and comparatively powerful. This chapter further discusses the EL’s benefits 
such as constructing efficient statistical tests using Bayesian methods in a 
similar manner to the parametric likelihood and setting up the EL statis-
tics as composite semi- or nonparametric likelihoods. Chapter 2 focuses on 
the performance of EL constructs relative to ordinary parametric likelihood 
ratio-based procedures in the context of clinical experiments. This chapter 
first offers an overview of the classical EL methods. It explains the similarity 
between EL functions and parametric likelihood functions, detailed expres-
sions of the Lagrange multipliers used in EL statements up to the fourth 
derivatives, and asymptotic properties of the EL likelihood functions. The 
chapter also touches the topics of extra estimating equation information, density-
based EL methods, building composite hypotheses tests, Bayesian approaches, 
Bartlett correction, interpretation of the EL as an empirical goodness-of-fit test, 
and some comparison with bootstrap methods. Chapter 3 discusses how to 
incorporate EL in the Bayesian framework by showing a novel approach for 
developing the nonparametric Bayesian posterior expectation, the nonpara-
metric analog of James–Stein estimation, and the nonparametric Bayesian 
confidence interval estimation. The chapter explains posterior expectations 
of general functionals. Chapter 4 discusses a general scheme to extend the 
conventional EL inference, considering the probability weighted moments 
(PWMs). The main task consists of forming constraints relevant to PWMs 
and showing that the developed EL test follows the classical asymptotic 
theories. The statistical test and confidence interval estimation of the PWMs 
are derived based on the proposed asymptotic proposition. Chapter 5 dis-
cusses methods to combine likelihood functions in parametric or empirical 
form in the setting of two-group comparison. It demonstrates an inference 
on incomplete bivariate data using a method that combines the parametric 
model and ELs. This chapter starts with discussions of two-group compari-
son of means where the EL ratio (ELR) test statistic carries out the mean-
specific comparisons unlike other available nonparametric tests. It discusses 
comparison of multivariate means as a simple extension of univariate two-
group comparison. Then, the likelihood ratio test based on the combined 
likelihood for the incomplete and complete data is developed to compare 
two treatment groups. Chapter 6 discusses the quantile estimation using the 
EL in the settings of testing one group and two groups. The Bahadur repre-
sentation of the maximum EL estimator (MELE) of the quantile function is 
presented. Testing methods consist of the conventional EL method and the 
plug-in method. Chapter 7 discusses the ELR test with the constraints in 
the form of U-statistics. It first provides a general explanation of U-statistics 
including the variance estimation. Then, it discusses the EL test statistic with 
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U-statistic type constraints. The chapter discusses EL approaches for uni-
variate and multivariate one-group and two-group U-statistics and provides 
some suitable examples including a multivariate rank statistic and an appli-
cation to crossover designs. Chapter 8 starts with the general introduction 
of the receiver operating characteristic (ROC) curves and then discusses the 
construction of the EL statistic for the nonparametric estimator of the whole 
or partial area under the ROC curve (AUC) that has a form of the U-statistic. 
It discusses the best combinations of multiple biomarkers using ROC curve 
analysis. An important task of constructing the EL statistic is to incorporate 
the correct variance estimate to the EL statistic as discussed in Chapter 7. 
The problem is that the typical variance formula for U-statistics is inaccurate 
to estimate the variability of the estimator as plug-in estimators of the quan-
tiles used. In this context, the chapter provides details of a correct variance 
estimation strategy. Finally, as an introductory manner, Chapter 9 presents 
several interesting topics that are discussed in the EL literature. This over-
view will demonstrate that the EL approach has a flexibility to be applied to 
various topics of interest as far as users can formulate a statistical question 
in a form of the estimating equations. Discussions of regression methods 
include incorporating validation data with error-prone covariates, analyz-
ing longitudinal data, handling incomplete membership information, and 
regression with surrogate covariates. Discussions of censored data analy-
ses include testing hazard functions, quantile function estimation, testing 
mean survival times, analyzing mean quality-adjusted lifetime (QAL) with 
censored data, and regression approach with censored data. Discussions of 
missing data include imputation, methods incorporating missing probabili-
ties, and handling missing covariates. The chapter concludes introducing a 
pseudo-EL approach in survey sampling. The chapter provides some details 
in terms of describing analytical issues, building the constraints and rele-
vant inferential results.

When we refer the Appendix in each chapter, it indicates the Appendix 
at the end of that chapter. In this book, we provide R codes that are readily 
usable and probably just enough to carry out the task we explained. We note 
that the software code mentioned in this book certainly can be improved, 
optimized, and extended.

As the statistical methodology has been continuously developed to tackle 
various data analytical issues, it is hard to cover all new developments; nev-
ertheless, we hope that this book is a helpful introduction to show versatility 
and applicability of the EL method.
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1
Preliminaries

1.1  Overview: From Statistical Hypotheses to Types of 
Information for Constructing Statistical Tests

Most experiments in biomedicine and other health-related sciences involve 
mathematically formalized comparisons, employing appropriate and effi-
cient statistical procedures in designing clinical studies and analyzing data. 
Decision making through formal rules based on mathematical strategies 
plays important roles in medical and epidemiological discovery, policy for-
mulation, and clinical practice. In this context, the statistical discipline is 
commonly required to be applied to make conclusions about populations on 
the basis of samples from the populations.

The aim of methodologies in decision making is to maximize quantified 
gains and at the same time minimize losses to reach a conclusion. For example, 
statements of clinical experiments can target gains such as accuracy of diag-
nosis of medical conditions, faster healing, and greater patient satisfaction, 
while they minimize losses such as efforts, durations of screening for disease, 
and side effects and costs of the experiments.

There are generally many constraints and desirable characteristics for con-
structing a statistical test. An essential part of the test development is that 
statistical hypotheses should be clearly and formally set up with respect to 
objectives of clinical studies. Oftentimes, statistical hypotheses and clinical 
hypotheses are associated but stated in different forms and orders. In most 
applications, we are interested in testing characteristics or distributions 
of one or more populations. In such cases, the statistical hypotheses must 
be carefully formulated, and formally stated, depicting, e.g., the nature of 
associations in terms of quantified characteristics or distributions of popula-
tions. The term Null Hypothesis, symbolized H0, commonly is used to point 
out our primary statistical hypothesis. For example, when one wants to test 
that a biomarker of oxidative stress has different circulating levels for patients 
with and without atherosclerosis (clinical hypothesis), the null hypothesis 
(statistical hypothesis) can be proposed corresponding to the assumption 
that levels of the biomarker in individuals with and without atherosclerosis 
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are distributed equally. Note that the clinical hypothesis points out that we 
want to show the discriminating power of the biomarker, whereas H0 says 
there are no significant associations between the disease and biomarker’s 
levels. The reason of such null hypothesis specification lies in the ability 
to formulate H0 clearly and unambiguously as well as to measure and cal-
culate expected errors in decision making. Probably, if the null hypothesis 
would be formed in a similar manner to the clinical hypothesis, we could 
not unambiguously determine which sort of links between the disease and 
biomarker’s levels should be tested.

The null hypothesis is usually a statement to be statistically tested. In the 
context of statistical testing that provides a formal test procedure and com-
pares mathematical strategies to make a decision, algorithms for monitoring 
statistical test characteristics associated with the probability to reject a correct 
hypothesis should be considered. While developing and applying test proce-
dures, the practical statistician faces a task to control the probability of the 
event that a test outcome rejects H0 when in fact H0 is correct, called a Type I 
error (TIE) rate.

Obviously, in order to construct statistical tests, we must review the cor-
responding clinical study, formalizing objectives of the experiments and 
making assumptions in hypothesis testing. A violation of the assumptions 
can pose incorrect results of the test and a vital malfunction of the TIE rate 
control procedure. Moreover, should the user verify that the assumptions are 
satisfied, errors of the verifications itself can affect the TIE rate control.

Interests of clinical investigators give rise to a mathematically express pro-
cedure or statistical decision rules that are based on sample from populations. 
When constructing decision rules, two additional information resources can 
be incorporated. The first is a defined function that consists of the explicit, 
quantified gains and losses and their relative weights to reach a conclusion. 
Frequently, this function defines the expected loss corresponding to each pos-
sible decision. This type of information can incorporate a loss function into the 
statistical decision-making process. The second information source is a prior 
knowledge. Commonly, in order to derive prior information, researches should 
consider past experiences about similar situations. The Bayesian methodology 
(e.g., Berger, 2010) formally provides clear technique manuals on how to con-
struct efficient statistical decision rules with prior information in various com-
plex problems related to clinical experiments, employing prior information.

1.2 Parametric Approach

In constructing decision rules, a statistician may use a sort of technical state-
ments relevant to observed data. Some information used for test construction 
can give rise to technical statements that oftentimes are called assumptions 
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regarding the distribution of data. The assumptions often define a fit of the 
data distribution to a functional form that is completely known or known up 
to parameters. A complete knowledge of the distribution of data can provide 
all the information that investigators need for efficient applications of statisti-
cal techniques. However, in many scenarios, the assumptions are reasonably 
guessed and very difficult to be proven or tested for their propriety. Widely 
used assumptions in biostatistics are that data derived via a clinical study 
follow one of the commonly used distribution functions such as the Normal, 
Lognormal, t, χ 2, Gamma, F, Binominal, Uniform, Wishart, and Poisson. The 
distribution function of the data can be defined including parameters. For 
example, the normal distribution N( , )µ σ 2  has the shape of the famous bell 
curve, where the parameters µ  and σ 2 representing a mean and variance of a 
population define the distribution. Values of the parameters may be assumed 
to be unknown. Mostly in such cases, assumed functional forms of the data dis-
tributions are involved to make statistical decision rules via the use of statistics 
from the sample, which we call Parametric Statistics. If certain key assumptions 
are met, parametric methods can yield very simple, efficient, and powerful 
inferences.

1.3  Warning—Parametric Approach and Detour: 
Nonparametric Approach

The statistical literature widely addresses an issue that parametric meth-
ods are often sensitive to moderate violations of parametric assumptions 
and hence are nonrobust (e.g., Freedman, 2009). In order to reduce a risk 
to apply an incorrect parametric approach, the parametric assumptions can 
be tested. In this case, statisticians can try to verify the assumptions while 
making decisions with respect to main objectives of the clinical study. This 
leads to complicated topics dealt with in multiple testing. Also, it turns out 
that a computation of an expected risk that may lead to a wrong decision 
strongly depends on errors that can be made by failing to reject the para-
metric assumptions. The complexity of this problem can increase when 
researchers examine various functional forms to fit the data distribution in 
order to apply parametric methods. A substantial theoretical and experi-
mental literature has discussions of the pitfalls of multiple testing that places 
blame squarely on the shoulders of the many clinical investigators who 
examine their data before deciding how to analyze it or neglecting to report 
the statistical tests that may not have supported their theses (e.g., Austin 
et al., 2006). In this context, one can present various cases, both hypotheti-
cal and actual, to get to the heart of issues arising especially in the health-
related sciences. Note also that in many situations, due to the wide variety 
and complex nature of problematic real data, e.g. incomplete data subject 
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to instrumental limitations of studies (e.g., Vexler et al., 2008a,b), statistical 
parametric assumptions are hardly satisfied, and their relevant formal tests 
are complicated or oftentimes are not readily available. Unfortunately, even 
clinical investigators trained in statistical methods do not always verify the 
corresponding parametric assumptions and do not attend to probabilistic 
errors of the corresponding verification, when they use well-known basic 
parametric statistical methods, e.g., the t-test.

It is known that when the key assumptions are not met the paramet-
ric approach may be extremely biased and inefficient when compared 
to their robust nonparametric counterparts. Statistical inference under 
the nonparametric regime offers decision-making procedures, avoiding 
or minimizing the use of the assumptions regarding functional forms 
of the data distributions. In general, the choice between nonparametric 
and parametric approaches can boil down to expected efficiency  versus 
robustness to assumptions. Thus, an important issue is to preserve 
 efficiency of statistical techniques through the use of robust nonpara-
metric likelihood methods, minimizing required assumptions about data 
distributions.

1.4 A Brief Ode to Likelihood

Testing statistical hypotheses based on the t-test or its modifications is one of 
the traditional instruments used in medical experiments and drug develop-
ment. Despite the fact that these tests are straightforward with respect to 
their applications to clinical and medical settings, it should be noted that 
there has been a huge literature on the criticism of t-test type statistical tools. 
One major issue, which has been widely recognized, is with respect to the 
significant loss of efficiency of these procedures under different distribu-
tional assumptions. The legitimacy of t-test type procedures also comes 
into question in the context of inflated TIEs when data distributions differ 
from normal and the number of available observations is limited. The recent 
biostatistical literature has addressed the arguments well that values of bio-
marker measurements tend to follow skewed distributions, e.g. a lognormal 
distribution (Limpert et al., 2001), and hence the use of t-test type techniques 
in this setting is suboptimal and accompanied by difficulties to control the 
corresponding TIE rates.

Consider the following example based on data from a study evaluating 
biomarkers related to atherosclerotic coronary heart disease (Schisterman 
et al., 2001). A cross-sectional population-based sample of randomly selected 
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residents (age 35–79) of Erie and Niagara counties of the state of New York, 
United States, was used for the analysis. The New York State Department of 
Motor Vehicles drivers’ license rolls were employed as the sampling frame for 
adults between the ages of 35 and 65, whereas the elderly sample (age 65–79) 
was randomly selected from the Health Care Financing Administration 
database. Participants provided a 12-hour fasting blood specimen for bio-
chemical analysis at baseline, and a number of characteristics were evaluated 
from fresh blood samples. Figure 1.1 depicts a screenshot, demonstrating the 
example though the use of R, a powerful and flexible statistical software lan-
guage (e.g., Crawley, 2012 for its introduction).

The samples X and Y present 50 measurements (mg/dL) of the bio-
marker high-density lipoprotein (HDL) cholesterol obtained from healthy 
patients. These measurements were divided into the two groups (i.e., X 
and Y). Although one can reasonably expect the samples are from the same 
population, the t-test shows a significant difference of their distributions. 
Perhaps, the following issues may be taken into account to explain reasons 
of this incorrect output of the t-test. The histograms displayed in Figure 1.1 
indicate that the distributions of the X and Y probably are skewed. In a 
non-asymptotic context, when the sample sizes are relatively small, one 
can show that the t-test-statistic is a product of likelihood ratio-type con-
siderations based on normally distributed observations (e.g., Lehmann and 
Romano, 2005). That is, the t-test is a parametric test and the parametric 
assumption seems to be violated, in this example.

Thus, in many settings, it may be reasonable to propose an approach for 
developing statistical tests, attending data distributions, to provide proce-
dures that are efficient as the t-test based on normally distributed observa-
tions. Toward this end the likelihood methodology can be employed.

FIGURE 1.1
R data analysis output for measurements of HDL cholesterol levels in healthy individuals.
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1.4.1 Likelihood Ratios and Optimality

Now we outline the likelihood principle. When the forms of data distribu-
tions are assumed to be known the likelihood principle is a central tenet 
for developing powerful statistical inference tools. The likelihood method or 
simply the likelihood is arguably the most important concept for inference 
in parametric modeling (Neyman and Pearson, 1992), and this fact equally 
applies when the underlying data are subjected to different problems 
and limitations related to medical and epidemiological studies, e.g. in the 
context of the analysis of survival data. Likelihood-based testing that we 
know was mainly found and formulated in a series of fundamental papers 
published in the period of 1928–1938 by Jerzy Neyman and Egon Pearson 
(Neyman and Pearson, 1928–1938). In 1928, the authors introduced the gen-
eralized likelihood ratio test and its association with chi-squared statistics. 
Five years later, the Neyman–Pearson Lemma (Neyman and Pearson, 1933) 
was introduced showing the optimality of the likelihood ratio test. These 
seminal works provided us with the familiar notions of simple and com-
posite hypotheses and errors of the first and second kind, thus defining 
formal decision-making rules for testing. Without loss of generality, the 
principle idea of the proof of the Neyman–Pearson Lemma can be shown 
by using the trivial inequality 

 A B I A B−( ) ≥{ }−( ) ≥δ 0, (1.1)

for any real numbers A, B, where δ ∈[ , ]0 1  and I{ }⋅  denote the indicator func-
tion. For example, suppose we would like to classify independent identically 
distributed (i.i.d.) biomarker measurements { , , , }X i ni = 1  corresponding to 
hypotheses of the form H0: X1 is from a density function f0 versus H1: X1 
is from a density function f1. In this context, to construct the likelihood 
ratio test statistic, we should consider the ratio between the joint density 
function of { , , }X Xn1   obtained under H1 and the joint density function of 
{ }X Xn1, ,  obtained under H0, and then define f X f Xii

n
ii

n
11 01( ) ( )= =∏ ∏  to be 

the likelihood ratio. In this case the likelihood ratio test is uniformly most 
powerful. This proposition directly follows from the expected value under 
H0 of the inequality (1.1), where we define A f X f Xi ii

n= =∏ 1 01 ( )/ ( ), B to be a 
test-threshold (i.e., the likelihood ratio test rejects H0 if and only if A B≥ ), 
and δ  is assumed to represent any decision rule based on { , , , }X i ni = 1 . The 
Appendix contains details of the proof. This simple proof-technique was 
used to show optimal aspects of different statistical decision-making poli-
cies based on the likelihood ratio concept applied in clinical experiments 
(e.g., Vexler, Wu, and Yu, 2008; Vexler and Wu, 2009; Vexler and Gurevich, 
2011).
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1.4.2  The Likelihood Ratio Based on the Likelihood Ratio 
Test Statistic Is the Likelihood Ratio Test Statistic

The Neyman–Pearson concept to test, fixing the probability of a TIE, comes 
under some criticism by epidemiologists. One of the critical points is related 
to the Type II error, the incorrect decision by failing to reject the null hypoth-
esis when the alternative hypothesis is true. For example, Freiman et  al. 
(1978) pointed out results of 71 clinical trials that reported no significant dif-
ferences between the compared treatments. The authors found that in the 
great majority of these trials the strong effects of new treatment are reason-
able. On  failing to reject the null hypothesis, the investigators in such tri-
als inappropriately accepted the null hypothesis as correct, which probably 
resulted in the Type II error. In the context of likelihood ratio-based tests, we 
present the following result that demonstrates an association between the 
probabilities of the Type I and II errors.

Suppose we would like to test for H0 versus H1, employing the likelihood 
ratio L f D f DH H= 1 0( )/ ( ) based on data D, where fHi  defines a density function 
that corresponds to the data distribution under the hypothesis Hi. Say, for 
simplicity, we reject H0 if L C> , where C is a presumed threshold. In this 
case, one can then show that 

 f u u f uH
L

H
L

1 0( ) ( ),=   (1.2)

where f uH
L( ) is the density function of the test statistic L under the 

hypothesis H  and u > 0. Details of the proof of this fact are shown in 
the Appendix. Thus, we can obtain the probability of a Type II error in 
the form of

 
Pr the test does not reject is true Pr is tr0 1 1      H H L C H| |{ } = ≤ uue

0

{ }

= ( ) = ( )∫ ∫f u duH
L

H1
0 0

u du uf
C

L
C

.
 

Now, if the density function f uH
L

0 ( ) is assumed to be known to control the TIE 
rate, then the probability of the Type II error can be easily computed.

The likelihood ratio property f u f u uH
L

H
L

1 0( )/ ( ) =  can be applied to solve dif-
ferent issues related to performances of the likelihood ratio test. For example, 
in a term of the bias of the test, one can request to find a value of the thresh-
old C  that maximizes 

 Pr | Pr |the test rejects  is true the test rejects 0 1 0H H H H{ } − 00  is true{ } , 
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where the probability Pr{ | }the test rejects  is true0 1H H  depicts the power of 
the test. This equation can be expressed as 

 
Pr | Pr |L C H L C H f u duH

L
C

>{ }− >{ } = − ( )







∫1 0 is true  is true 1 1

0

−− − ( )







∫1 0

0
f u duH

L
C

.

 

Let the derivative of this notation equal zero and solve the equation: 
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 = − (∫ ∫ )) + ( ) =f CH

L
0 0. 

By virtue of property (1.2), this implies − + =Cf C f CH
L

H
L

0 0 0( ) ( )  and then C = 1 
that provides the maximum discrimination between the power and the 
probability of a TIE of the likelihood ratio test.

In words, an interesting fact is that the likelihood ratio f fH
L

H
L

1 0/  based on the likeli-
hood ratio L f fH H= 1 0/  becomes to be the likelihood ratio, that is, f L f L LH

L
H
L

1 0( )/ ( ) = . We 
leave interpretations of this statement, may be in terms of information, to the reader’s 
imagination.

1.5 Maximum Likelihood: Is It the Likelihood?

Various real-world data problems require considerations of statistical hypotheses 
with structures, which depend on unknown parameters. In this case, the maximum 
likelihood method proposes to approximate the most powerful likelihood ratio, 
employing a proportion of the maximum likelihoods, where the maximizations are 
over values of the unknown parameters belonging to distributions of observations 
under the corresponding hypotheses. We shall assume the existence of essential 
maximum likelihood estimators. The influential theorem of Wilks (1938) provides 
the basic rational as to why the maximum likelihood ratio approach has had tre-
mendous success in statistical applications. Wilks showed that under regularity 
conditions, asymptotic null distributions of maximum likelihood ratio test statistics 
are independent of nuisance parameters. That is, the TIE rates of the maximum 
likelihood ratio tests can be controlled asymptotically and approximations of the 
corresponding p-values can also be computed.

Thus, if certain key assumptions are met one can show that parametric like-
lihood methods are very powerful and efficient statistical tools. We should 
emphasize that the discovery related to the likelihood ratio methodology 
in statistical developments may be comparable with the development of the 
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assembly line technique of mass production. The likelihood ratio principle 
gives clear instructions and technique manuals on how to construct effi-
cient statistical decision rules in various complex problems related to clinical 
experiments. For example, Vexler et al. (2011c) developed a maximum likeli-
hood ratio test for comparing populations based on incomplete longitudinal 
data subjected to instrumental limitations.

Although many statistical publications continue to contribute to the likeli-
hood paradigm and are very important in the statistical discipline (an excel-
lent account can be found in Lehmann and Romano, 2005), several significant 
questions arise naturally about the general applicability of the maximum 
likelihood approach. Conceptually, there is an issue specific to classifying 
maximum likelihoods in terms of likelihoods that are given by joint den-
sity (or probability) functions based on data. Integrated likelihood functions, 
with respect to arguments related to data points, are equal to one; however, 
accordingly integrated maximum likelihood functions often have values that 
are indefinite. Thus, although likelihoods present full information regarding 
the data, the maximum likelihoods might lose information conditional on 
the observed data. Consider the simple example: Suppose we observe X1, that 
is assumed to be from a normal distribution N( , )µ 1   with mean parameter µ.  
In this case the likelihood has the form ( ) exp( ( ) / ).2 20 5

1
2π µ− − −X  and corre-

spondingly ( ) exp( ( ) ).2 2 10 5
1

2
1π µ− − − =∫ X dX/ , whereas the maximum like-

lihood, i.e., the likelihood evaluated at estimated µ µ,  =X1, is ( ) ,.2 0 5π −  which 
clearly does not represent the data and is not a proper density. This demon-
strates that as the Neyman–Pearson lemma is fundamentally found on the use 
of the density-based constitutions of likelihood ratios, maximum likelihood 
ratios cannot be optimal in general. That is, the likelihood ratio principle is 
in general not robust when the hypothesis tests have corresponding nuisance 
parameters to consider, e.g. testing a hypothesized mean given an unknown 
variance. An additional inherent difficulty of the likelihood ratio test occurs 
when a clinical experiment is associated with an infinite-dimensional prob-
lem with the number of unknown parameters being relatively large. In this 
case, Wilks theorem should be re-evaluated and nonparametric approaches 
can be considered in the contexts of reasonable alternatives to the parametric 
likelihood methodology (e.g., Fan et al., 2001).

The ideas of likelihood and maximum likelihood ratio testing may not 
be fiducial and applicable in general nonparametric function estimation/
testing settings. It is also well known that when key assumptions are not 
met, parametric approaches may be suboptimal or biased as compared to 
their robust counterparts across the many features of statistical inferences. 
For example, in a biomedical application, Ghosh (1995) proved that the 
maximum likelihood estimators for the Rasch model are inconsistent as 
the number of nuisance parameters increases to infinity (Rasch models are 
often utilized in clinical trials that deal with psychological measurements, 
e.g., abilities, attitudes, personality traits). Due to the structure of likelihood 
functions based on products of densities or conditional density functions, 
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relatively nonsignificant errors of classifications of data distributions can 
lead to vital problems related to applications of likelihood ratio-type tests 
(e.g., Gurevich and Vexler, 2010). Moreover, one can note that given the wide 
variety and complex nature of biomedical data, e.g. incomplete data subject 
to instrumental limitations or complex correlation structures, parametric 
assumptions are rarely satisfied. The respective formal tests are complicated 
or oftentimes are not readily available.

1.6 Empirical Likelihood

The empirical likelihood (EL) approach is based on a data-driven likelihood 
function, thus is intrinsically nonparametric and comparatively powerful 
(Lazar and Mykland, 1998). An advantage of using the EL method is that it 
does not require the distribution assumption. The EL is able to incorporate 
known constraints on parameters in an inferential setting under both the null 
and alternative hypotheses. EL hypothesis tests maintain a prespecified TIE 
rate relatively well with various underlying distributions. In two group com-
parisons, they offer robust testing procedures under violations of the exchange-
ability assumptions (e.g., Yu et al., 2011). Historically the EL method was first 
introduced for the analysis of censored data (Thomas and Grunkemeier, 1975; 
Owen, 1991). Owen (1988) introduced the empirical likelihood ratio (ELR) 
approach to construct confidence intervals. Since being introduced into the 
statistical literature, the EL approach has demonstrated its practical applica-
bility via extensions to a variety of statistical problems (e.g., Yang and Zhao, 
2007; Vexler and Gurevich, 2010; Wang et al., 2010). The EL method incorporates 
information or assumptions regarding the parameters and translates those to 
the distribution-free likelihood estimation; thus the method can be used to 
combine additional information about parameters of interest (Qin and Lawless, 
1994).

In comparison with classical testing methods based on normal approxima-
tions, the EL ratio test statistic does not rely on symmetric rejection regions, 
thus giving rise to more accurate tests (Hall and La Scala, 1990). Owen 
(1990) showed that the EL ratio provides confidence intervals less affected 
by the skewness of distribution comparing with methods based on the cen-
tral limit theorem. DiCiccio et al. (1991) demonstrated that the EL method 
can achieve an excellent coverage rate for confidence intervals by applying 
some parametric techniques such as the Bartlett correction. The EL method 
for constructing confidence regions for parameters has comparable sampling 
properties of the bootstrap. Although the bootstrap uses resampling, the EL 
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method computes the profile likelihood of a general multinomial distribu-
tion based on data points. The property that EL produces regions that reflect 
emphasis in the observed dataset and involves no predetermined assump-
tions about the shape has considerable potential in the construction of con-
fidence bands for curve estimators. Chen (1994) compared the powers of EL 
ratios and bootstrap tests for a mean parameter against a series of local alter-
native hypotheses (see Chapter 2 for details). It is shown that the EL ratio test 
can be more powerful than the bootstrap test depending on the population 
skewness parameter.

Versatility of the EL method is demonstrated in many different data ana-
lytical settings. Researchers have worked in the area specifically related to 
quantiles using the EL method; e.g., Chen and Hall (1993) used a smoothed 
EL approach to estimate confidence intervals for quantiles using kernel 
functions. They showed that the coverage accuracy may be improved 
from order n−1 2/  to order n−1 by appropriately smoothing the EL method. 
The improvement is available for a wide range of choices of the smooth-
ing parameter so that accurate choice of an optimal value of the parameter 
is not necessary. Chen and Chen (2000) investigated the properties of EL 
quantile estimation in large samples; Zhou and Jing (2003a) proposed an 
alternative smoothed EL approach where the EL ratio has an explicit form 
based on the concept of the M-estimators; and Lopez et al. (2009) investi-
gated testing general parameters that are determined by the expectation 
of non-smooth functions. No distributional assumptions of EL allow the 
method to be used for analyzing data with complicated underlying distri-
butions. The EL provides better performance with the confidence interval 
for the mean of a population with many zeros comparing with the method 
using parametric likelihood, whereas overall coverage properties are simi-
lar for both methods under various distribution assumptions (Chen et al., 
2003; Kang et al., 2010). Qin and Leung (2005) used a semiparametric like-
lihood approach to estimate the distribution of the malaria parasite level, 
which is a mixture distribution where a component of the mixture distribu-
tion was again the mixture of discrete and continuous distributions. Qin 
(2000) showed an inference on incomplete bivariate data using a method 
that combines the parametric model and ELs. His work was extended to 
the group comparison using the EL by Yu et al. (2010). The EL method also 
incorporates auxiliary information of variables in a form of constraints, 
which can be obtained from reliable resources such as census reports (e.g., 
Qin and Lawless, 1994; Chen and Qin, 1993).

We conclude this section emphasizing the following important aspects: (1) 
The EL concept can provide efficiently nonparametric approximations to opti-
mal (e.g., most powerful) parametric statistical schemes; (2) the EL methodol-
ogy yields robust algorithms to solve a variety of complex problems related 
to clinical trials; (3) EL functions can be easily combined with parametric and 
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semiparametric likelihood functions to develop statistical procedures that 
demonstrate attractive properties in complicated model  settings. These fac-
tors adduce evidence that EL techniques have great potentials to be adopted 
as primary statistical tools employed by clinical investigators.

1.7 Why Empirical Likelihood?

1.7.1 The Necessity and Danger of Testing Statistical Hypothesis

The ubiquitous use of statistical decision-making procedures in the current 
medical literature displays the vital role that statistical hypothesis testing 
plays in different branches of biomedical sciences. The benefits and fruits 
of statistical tests based on mathematical-probabilistic techniques, in epide-
miology or other health-related disciplines, strongly depend on successful 
formal presentations of statements of problems and a description of nature. 
Oftentimes, certain assumptions about the observations used for the tests 
provide the probability statements that are required for the statistical tests. 
These assumptions do not come for free and ignoring their appropriateness 
can cause serious bias or inconsistency of statistical inferences, even when 
the test procedures thyself are carried out without mistakes. The sensitivity 
of the probabilistic properties of a test to the assumptions is referred to as the 
lack of robustness of the test (e.g., Wilcox, 1998).

Various statistical techniques require parametric assumptions that are to 
define forms of data distributions to be known up to parameters’ values. For 
example, in the conventional t-test, the assumptions are that the observations 
of different individuals are realizations of independent, normally distributed, 
random variables, with the same expected value and variance for all indi-
viduals within the investigated group. Such assumptions are not automati-
cally satisfied, and for some assumptions it may be doubted whether they 
are ever satisfied exactly. The null hypothesis H0 and alternative hypothesis 
H1 are statements which, strictly speaking, imply these assumptions, and 
which therefore are not each other’s complement. There is a possibility that 
the assumptions are invalid, and neither H0 nor H1 is true. Thus, we can reject 
a statement related to clinical trials’ interests just because the assumptions 
are not met. This issue is an impetus to departure from parametric families 
of data distributions, employing nonparametric test strategies.

One of the advantages of EL techniques lies in their generality and an 
assessment of their performance lies under conditions that are commonly 
unrestricted by parametric assumptions.
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1.7.2  The Three Sources That Support the Empirical 
Likelihood Methodology for Applying in Practice

When in doubt about the best strategy to make statistical decision rules, the 
following arguments can be accepted in favor of EL methods: 

 1. The EL methodology employs the likelihood concept in a simple non-
parametric fashion to approximate optimal parametric procedures. 
The benefit of using this approach is that the EL techniques are often 
robust and highly efficient. In this context, we also may apply EL 
functions to replace parametric likelihood functions in known and 
well-developed constructions. Consider the following example. The 
statistical literature widely suggests applying Bayesian methods 
for various tasks of clinical experiments, for example, when data 
are subjected to complex missing data problems, e.g. parts of data 
are not manifested as numerical scores (Daniels and Hogan, 2008). 
Commonly, to apply a Bayesian approach, one needs to assume 
functional forms corresponding to the distribution of the under-
lying data and parameters of interest. Lazar (2003) demonstrated 
potentials of constructing nonparametric Bayesian inference based 
on ELs that take the role of model-based likelihoods. This research 
demonstrated that the EL is a valid function for Bayesian inference. 
Vexler et al. (2013a) recommended applying EL functions to create 
Bayes Factor (BF)-type nonparametric procedures. The BF, a practi-
cal tool of applied biostatistics, has been dealt with extensively in 
the literature in the context of hypothesis testing (e.g., Carlin and 
Louis, 2000). The EL concept was shown to be very efficient when it 
is employed for modifying BF-type procedures to the nonparamet-
ric setting.

 2. Similar to the parametric likelihood concept including Bayesian 
approaches, the EL methodology gives relatively simple system-
atic directions for constructing efficient statistical tests that can be 
applied in various complex clinical experiments.

 3. Perhaps, the extreme generality of EL methods and their wide 
scope of usefulness partly follow on abilities to easily set up 
EL statistics as components of composite parametric/semi- and 
nonparametric likelihood-based systems, efficiently attend-
ing any observed data and relevant information. Parametric, 
 semiparametric, and EL methods play roles complementary to 
one another, providing powerful statistical procedures for com-
plicated practical problems.


