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Introduction and Remarks

INTRODUCTION

This book tries to answer the question, “How is the processor structured?”
This question leads to a second question: “How does the processor function
in a general-purpose computer?”

The answers to these questions can be quite complex and quite involved,
but the answers to these questions do not need to be all that complex. The
complexity of the answers to these questions should be appropriate for the
audience to which the responses are addressed. If you are addressing a pro-
cessor designer, of course the answers must be very detailed. However, if you
are addressing a layman, the answers would be fairly simple and abstract.

This book is intended to be used in a computer science curriculum. So,
our audience is assumed to be computer science undergraduates, or lower-
level graduate students. As such, the answers we supply to our motivating
questions do not have to be nearly as detailed as the answers we would give
to a potential processor designer, nor should they be as simple as the answers
given to a layman.

The pedagogical question that drives the content of this book is, “What is
the simplest explanation of a processor you can give to a student of computer
science; an explanation that will not overpower the student with information,
during the learning process, and yet is sufficiently complete so as to serve the
student in their career?” In this book, we believe that we have found the sweet
spot between too much, and too little information.

Our choice of topics and depth of coverage in this book are based on a couple
of decades of teaching experience. Having taught computer organization, and
architecture, over the years we have settled on a set of topics that, we believe,
is the essence of the field. The set of topics is small enough so that all of the
topics can be taught in a single semester course.

xvii
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WHY STUDY COMPUTER ORGANIZATION AND ARCHITEC-
TURE?

There are two topics that are often taught as part of the computer science
curriculum: computer organization and computer architecture. Collectively,
we will refer to these two topics as computer systems. Computer systems is
a little out of line with most other computer science topics, which are mostly
concerned with software.

Usually, the job of describing computer hardware is split into two levels.
Computer organization concerns itself with low-level circuity, or, as we might
say, how the computer computes. Computer architecture concerns itself with
higher-level devices, and how these are manipulated by software, or, as we
might say, what the computer is capable of computing.

This book concerns itself with both computer organization and computer
architecture, with an emphasis on computer organization. We cover some com-
puter architecture with our material on machine language programming.

Often enough, we are asked by students, and sometimes colleagues, what
relevance computer system courses have to computer science. This question
usually comes from a view that computer science is the study of software
only, and that learning how the computer works on a hardware level is irrele-
vant. But, there are at least two responses to this question that establish the
importance of computer systems in the computer science curriculum.

The first response takes issue with the view of computer science as concerned
with software only. There are several fields that are embraced by the computer
science field that work on the frontier between hardware and software, and in
which the worker must have an understanding of hardware function, as well
as software skills: robotics, embedded systems, and even operating systems.

The second response takes issue with the perception that if you work only
with software, hardware knowledge is irrelevant. Imagine that you are hiring a
computer scientist for software work. If faced with two candidates, the question
is which would you view as preferable: a candidate with a solid understand-
ing of how to program a computer, as well as an in-depth understanding of
how the computer behaves, or a candidate with only software experience? You
would probably view the more in-depth knowledge as an asset. Knowing how
a computer functions does help, immensely, in software development. Many of
what would seem unexplainable software behaviors often become clear with
hardware knowledge, giving the worker an advantage in the testing and ver-
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ification of software. Also, notice that knowing how hardware functions can
often also lead to smarter design decisions when building software systems.

USING THE BOOK

This book has been designed as a teaching aid, to be used in a one-semester
course on computer systems. It covers most of the essential topics in computer
organization, and few topics in computer architecture.

The course with which this book would be used, would be aimed at students
at an undergraduate level. The course for which we use this book is taught for
graduate students. The course in which we teach this curriculum is used to
insure that incoming graduate students all have exposure to a common core,
of which this course is one component.

To use the book for a single-semester course, it is possible to cover almost all
material in the book. You can start with Chapter 1, which gives the student
perspective on the interaction between hardware and software. This chapter
takes the reader through the process of getting a program to run. It starts with
creating the software, compiling and assembling the software, loading it into
memory, and running it. It then briefly explains how executing instructions
results in operations in digital circuitry. After this overview, we start detailing
the processes described.

Chapter 2 presents the mathematical basics required in the rest of the book.
In particular, we present material on Boolean algebra and the binary number
system.

In Chapter 3, the basics of digital circuitry are discussed. We are taken
through the basics of combinational circuits. Then, we examine sequential
circuits. This is followed by Chapters 4 and 5. In Chapter 4 we talk about
the bus communication architecture, used in many computer systems. A brief
discussion on interfacing with peripheral devices is included. Chapter 5 talks
about the RTL level of circuity. In this material we describe the building
blocks of the processor.

Chapter 6 is a discussion of machine language, that finishes off the prepa-
ration for processor design. We talk about the different processor architec-
tures, in terms of the number of operands in the machine instructions, from
0-operand stack machines to 3-operand register machines.
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It is possible to cover Chapters 1 through 4, and most of Chapter 5, by
half-way through the semester. This gives the student a good understanding
of the preliminary information required to understand processor design.

In the second half of the semester, you could cover Chapters 7 through 9. In
Chapter 7 we design a processor. The processor is designed as an algorithmic
circuit, starting with the data path, and finishing with the control unit. A
relatively simple register-implicit machine is designed; simple enough so that
details do not lead to confusion, yet with enough complexity so that the reader
will see it as useful.

In Chapter 8, we talk about ALSU design and computer arithmetic. The
usual operations of addition, subtraction, multiplication, and division are cov-
ered, for both integer types and floating-point.

Chapter 9 discusses micro-controlled processors. We redesign the control
unit for the same processor covered in Chapter 7.

Chapter 9 concludes what we would think of as fundamental computer
systems information. In Chapter 10, we briefly consider several more advanced
topics. When we teach this material, this information is presented at the very
end of the semester, as time allows. Usually we end up giving a short overview
of these topics only.

OUTSIDE RESOURCES

There are a couple of resources available to the student and instructor for
enhancing the material presented here.

• The solutions manual. This is available to the instructor, through the
publisher. It includes answers to all exercises in the book.

• The BRIM Simulator. The machine language BRIM (Basic Register Im-
plicit Machine) is used throughout the book, as the interface to the main
architecture presented. A simulator for the machine level of this machine
is available. It includes an assembler and an emulator. An executable
build exists for the Linux and Windows platforms. It can be run on the
Macintosh, by creating a build from the source Python scripts.

There are other tools that can be used with the book, when exploring some
of the topics. In particular, when working with digital circuitry, it is often use-
ful to use a circuit simulator. With the ready availability of circuit simulators,
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we invite you to choose your favorite one, and use it in your instruction. Our
favorite is Logisim.

Our approach is to do digital circuitry in simulation, but you could opt
for something more substantial, like a hardware lab. Or, as we do in our
undergraduate course, you could run an FPGA lab. We include a small section
on Verilog programming, which can enable the reader to program for a variety
of RTL simulators, such as Modelsim, or program for synthesizers.

If instructors wish to introduce a group project into the course, they could
ask the students to build the BRIM machine as a class project. With a whole
class working on the processor, this project could be completed in Verilog or
VHDL, in a semester’s time.
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Often students begin their training in the field of computation by learning to
program a computer. In this experience the student learns how to construct
a program in some high-level language. The student learns how the syntax
of the language, and the semantics, work together to form a description of a
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computation. The student also learns that this description can be run on a
computer to perform the computation. Many of us then start wondering what
kind of magical machine is capable of performing our computation, given only
a simple description.

The truth of the matter is that computers are indeed magical, in the sense
that they can do amazing things. However, they are less than magical, al-
though still amazing, when we examine how they work. Two areas that ex-
amine the operation of the computer are called computer organization and
computer architecture. The distinction between computer organization and
computer architecture is probably best described in terms of two other con-
cepts: implementation and interface. Computer organization is the study of
the implementation of a computer. That is to say, the hardware and circuitry
out of which the computing system is built. Computer architecture studies the
structure presented to a program, that can be used to perform a computation.

Computers are made up of many separate devices. To understand how a
computer performs a computation, probably the most interesting device to
examine is the central processing unit (CPU), which is often simply called
the processor . This is the device that actually executes a program, and is the
focus of this book. In this section we directly examine the question of how a
program performs a computation, by giving an overview of the structure of
the computer system. In this discussion the structure is presented as a set of
layers, one built on top of another. We begin our discussion at the top level,
the high-level language program which has been written, and work our way
down to the bottom level, which consists of digital circuitry.

1.1 HIGH-LEVEL, ASSEMBLY, AND MACHINE LANGUAGES

So, a user writes a program in a high-level language, with the intent of running
the program on a computer. Let us analyze that statement. We begin by
discussing what is meant by a high-level language.

1.1.1 High-Level Languages

Programming languages are used to describe a computation that is to be
executed on a computer. Languages are classified by level. The idea is that
low-level languages are closer to the hardware of the computer, and high-level
languages are further from the hardware, and more abstract. That is to say,
a low-level description of a computation would describe the computation in
terms of the various hardware devices that constitute the computer system.
A high-level description might describe the computation as the manipulation
of some abstract data structure, like an array, which is a data structure that
would normally not be implemented directly in hardware.
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There are many high-level languages, some at a higher level than others.
They support several different computational models. As an example, the
language C++ supports a computational model usually called the object-
oriented model. Haskell supports a paradigm called the functional model of
computation. The problem with all high-level languages is that they support
computational models which are not implemented directly by the computer
hardware. Because of this, any program written in a high-level language, like
C++, cannot be executed directly by a computer. In order for a program to
be executable it must be written in a language that has a format that can be
interpreted by the computer, and it must describe the desired computation
in terms of the hardware available on the computer. This is what low-level
languages do, and in particular, this is what is done by machine language, the
lowest-level programming language.

1.1.2 Machine Language

Machine language describes a computation in terms of hardware, and, as
such, is hardware dependent. That is to say that every processor model, for
a general-purpose computer, has a different machine language, and these ma-
chine languages are non-portable. Another interesting fact about computers,
for those used to interacting with them in a high-level language, is that com-
puters only work with numbers. This is interesting because a program in C++
is written using words, like if, void, and cout, rather than just numbers. In
fact, the user of C++ might well wonder what a numeric language would look
like.

To illustrate what machine language looks like, let us examine an example.
Consider the following C++ code fragment.

x = 5 + y * 3; (1.1)

How might this appear in a numeric machine language? Consider the following
machine code segment.

1, 1, 2, 3

14, 1, 1, 5
(1.2)

This segment might do the same computation as the C++ segment. To un-
derstand it, we must know something about the format of a machine language
program.

The machine language we are using is fictitious, but similar to several actual
machine languages. A machine language program is a sequence of instructions,
written one per line. Each instruction, in this language, consists of four num-
ber, or fields. For our fictitious example, the fields have the following names.

op-code, destination, source, constant
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Each instruction performs an operation on operands, and produces a result.
Operations must be specified numerically in machine language, and so each
possible operation the processor can perform is assigned a number to repre-
sent it, called its op-code. In the above example, the op-codes used are 1 for
multiply, and 14 for add.

The op-code is followed by three operands. The operands in the C++ code
are the variables x and y. Variables are a high-level concept. The corresponding
concept at the hardware level is the register, which is a device that can store a
number. A processor typically has a set of general-purpose registers available
to the programmer, and they are often numbered. Each variable in the C++
program might be assigned a register, which is used in the machine language
version of the code. In the above example, Register 1 (R1) is used to represent
x, and R2 is used to represent y.

The instructions in Example 1.2 each specify two operands: the source
operand, which is always a register, and a constant operand, which is always a
constant value. The operation specified by the op-code is performed on these
two operands, and the result is left in the destination register. If we were to
write the above machine language fragment in a more human-readable form,
we might produce something like the following.

R1 = R2 * 3

R1 = R1 + 5
(1.3)

The first instruction multiplies R2 by 3, and stores the result in R1. The
second instruction then adds 5 to R1, storing the result in R1.

We now can see the full scale of the problem of writing a program in a
high-level language. In order to execute a C++ program, the C++ code must
be rewritten, or translated, into this style of machine code.

1.1.3 Assembly Language

When the modern computer was first being developed, in the middle of the
twentieth century, the only language available for programming a computer
was machine language. As can be imagined, this was a difficult language for
human programmers to use. Just reading through a program was difficult, re-
quiring a mental translation between numbers and operations and operands.
Mentally, this required the programmer to do what we did in the previous
section, where we translated from numeric machine code to a notation that
resembles assignment statements, which describes the semantics of the oper-
ations in symbolic form. These symbolic machine instructions are, essentially,
assembly code. That is to say, assembly language is a symbolic form of machine
code.
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Assembly languages, like the one we used in the previous section, were de-
veloped to aid programmers of early computers. They are still useful today for
several purposes, including as the target language of a compiler. The assembly
example, Example 1.3, is, however, a little unusual in its notation. A more
standard notation for the same code fragment might appear more as follows.

mult R1, R2, #3

add R1, R1, #5

This notation follows the format of the machine language instruction, starting
with a symbolic op-code, a symbolic destination register, a symbolic source
register, and ending with the constant.

1.2 COMPILERS AND ASSEMBLY LANGUAGE

The problem of translating from a high-level source language to a low-level
machine language is a complex one. This is due to the fact that high-level lan-
guages typically have non-trivial syntax, and their semantics are much more
involved than the semantics of machine language. As a consequence transla-
tion from a high-level language to machine language is typically done in stages,
rather than all at once. First, the source code is translated to a middle-level
language, which is often assembly language. In further stages the assembly lan-
guage is translated into lower-level languages, eventually producing machine
language as the result of the process. The idea is that splitting the translation
process into stages spreads the complexity of the translation process over the
stages, making each translation stage simpler.

1.2.1 Assembly Language Translation

In the first translation stage, a program called a compiler takes as input a
source program in a high-level language like C++, and translates it into a
program in a target language, which is at a lower level. The target language
is typically assembly language.

We now have a reasonable idea of the form of both the source and target
languages of a compiler. Although it is beyond the scope of this book to
examine the translation done by the compiler in detail, it is worthwhile saying
a little on the subject. A compiler inputs a source program and writes a new
program in target code. The target program is the equivalent of the source
program, meaning that the two programs do exactly the same thing. Given
the same input, the target program will produce the same output as the source
program.
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FIGURE 1.1 AST for Example 1.1.

1.2.2 The Translation Process

The translation of the source program is the result of a sequence of passes
made through the source code. Two of the more important passes are parsing
and code generation. Parsing is the task of deciphering the meaning of the
statements of a program. This is done by building a structure out of the
statements of the program, that is more machine readable than just simple
text. As an example, a compiler might build what is called an abstract syntax
tree (AST). For the example C++ code given in the previous section, Example
1.1, the AST might appear as in Figure 1.1. In this tree, intermediate nodes
are operators, and leaf nodes are operands. The top intermediate node uses
the assignment operator to assign a value computed by the right child to the
variable x. The computation is calculated using an addition operator, and a
multiplication operator.

Once the AST has been constructed, target code can be generated from
the tree. This is done by traversing the AST, and at each intermediate node,
outputting instructions that perform the specified operation. This code gener-
ation process, although complex, in its basics, is just printing out the contents
of a tree, much as we might learn how to do in a course on data structures.
The output of the code generator, however, follows a particular format; namely
that the content is printed in the form of assembly instructions. Also, variable
names must be replaced by their assigned registers, during the traversal.
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1.3 THE ASSEMBLER AND OBJECT CODE

The compiler translates a high-level program into an assembly language pro-
gram. The program must still be translated from assembly language to ma-
chine code. This is the job of another translation program called the assembler.
However, technically, the assembler does not translate all of the way down to
machine language, but rather into a format called object code. Object code
can be thought of as incomplete machine code. A good analogy is a form,
or boilerplate. A boilerplate is a complete document, except that it contains
blanks that must be filled in with specific information. In the same way, object
code can be thought of as machine code with blanks. The reason why such
code would be produced, as opposed to complete machine code, is what we
explain now.

1.3.1 External References

Larger programs in high level languages are typically split into modules. These
modules are submitted to the compiler as separate files. So, for instance, you
could have a C++ program composed of two modules: the module Q, and
the module Driver. Splitting the program into modules, in this fashion, is
an organizational aid for the programmer. Splitting the code also allows the
programmer to work on one part of the code without touching other parts,
and running the risk of inadvertently damaging them.

The compiler compiles only one module at a time. It produces assembly
language versions of each module. These files are then submitted to the as-
sembler, one at a time. The important point to remember in the following
discussion is that the assembler sees only one module at a time, and while
analyzing and translating, the module has no information about the other
modules.

Modules may contain what are called external references. Consider the fol-
lowing lines that might be contained in the module Q.

extern int x;

x = 5;

The module Q is changing the value of a variable x. But the keyword ex-
tern declares that the variable is not in the module Q, but rather in another
module. Continuing with the example, the module Driver might contain the
following code.

int x ;

The assembly language versions of the two modules would contain instruc-
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tions to mimic the C++ code. That is to say, the module Q would contain
the following code.

store x, #5 (1.4)

This instruction writes the constant 5 to a memory location, designated as x.

The module Driver would contain a definition of the variable x. In assembly
language, variables are typically stored in memory. A memory unit is an array
of storage devices, called words. When referring to a particular word in the
memory unit, in assembly language you would give that word a name, much
as in the following definition that you might find in the module Driver.

x: .word

This declaration allocates a word in memory for the variable, and associates
the symbol x with it. This is equivalent to a variable declaration in C++.

In machine code, variables do not exist. When a program is executing, it
is located in the computer’s memory. As mentioned, memory consists of an
array of words. In machine language, words are identified by their index. The
indexes of the memory locations are called addresses. So, we might refer to
the word at Address, or Location, 50, often written as M[50].

The instructions, as well as the variables of the program are stored in dif-
ferent words of the memory unit. In machine language, the variable x of our
example, is simply a word in memory that has been allocated for the storage
of data. That word is known only by its address. As a consequence, the store
assembly instruction, in Example 1.4, might be translated into the following
machine code.

19, 50, 5 (1.5)

The assumption is that the store instruction has op-code 19, and that the
variable x has been allocated the location M[50].

Here now is the problem with external references. In this example, the as-
sembler attempts to write a machine instruction corresponding to the store
assembly instruction. It knows what op-code to write, and it sees the constant
value, 5, both from the assembly instruction. However it does not know the
address of the variable x. The address of x is calculated when the module
Driver is assembled, and since the assembler has no information about the
module Driver when assembling the module Q, the assembler does not know
the address of the variable x. Because of this, the assembler ends up writing
out an instruction that looks something like the following.

19, x?, 5
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This is an incomplete instruction. It contains a blank, indicated by the ques-
tion mark, to be filled in later by some program that knows the location of
the variable x. The blank contains a note indicating that the value to be filled
in is the location of x.

These types of instructions, being generated by the assembler, are in fact the
object code. As can be seen, these instructions can be thought of as machine
instructions, but with blanks left in them. The reason that these blanks are
required is mostly due to the inevitable presence of external references when
programs are split into modules.

1.3.2 Compiler versus Assembler

As a final topic in this section, it is instructive to compare the assembler with
the compiler. Both of these programs are translators. This is their similarity.
There is, however, a significant difference between the two programs, in terms
of the process they use to do the translation. The compiler’s job is complex.
The syntactic analysis, which ends up building the AST, is complex, and
the code generation is also complex, often requiring that several assembly
instructions be written for each node in the AST. The translation process for
the assembler, however, is not all that complex.

Syntactic analysis is fairly simple for the assembler. An assembly instruction
is, essentially, just a small sequence of symbols, as opposed to the highly
structured form of high-level statements that the compiler deals with. And,
once an assembly instruction has been decomposed into separate symbols, the
code generation process is equally simple.

The process of writing out a machine instruction is referred to as assembling
the instruction. This term captures the idea that the machine instruction is
being built by connecting sub-parts of the instruction. The sub-parts of the
instruction are derived from the symbols of the assembly instruction. Each
symbol in the assembly instruction corresponds to a numeric value. For the
example we give in Examples 1.4, and 1.5, the symbol store corresponds to
the numeric value 19. The assembler could easily maintain the bindings be-
tween symbols and their numeric values in a table. To translate an assembly
instruction into a machine instruction, then, simply requires that the assem-
bler looks up the symbols of the assembly code in the table, procures their
numeric values, and assembles the numeric values into machine instruction,
following the format rules for the machine instruction.

Since the object code is incomplete, we still do not have an executable
program. In order to fill in the blanks in the object code, all of the modules
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of the program must be examined simultaneously. This, then requires another
step in our translation process.

1.4 THE LINKER AND EXECUTABLE CODE

The linker is a program that inputs a set of object code files representing a
program, and outputs what is called executable code. Executable code, usually,
is complete machine code. The executable code is written to a mass storage
unit such as disk or flash memory, as a file. In order to do this, the linker
must resolve all unresolved external references. Including this job, the linker
has three primary jobs.

• Resolving external references.

• Library searches.

• Relocation of module code.

We start our discussion of the linker with the resolution of external references.

1.4.1 Resolving External References

The input to the linker consists of all of the object files for the whole program.
For our example, the linker would examine both the object file for the module
Q, as well as the object file for the module Driver. The linker would notice that
the module Q contains a blank to be filled in with the address of the variable
x. It would then examine the module Driver, and determine the address of x.
The blank in the instruction in Module Q would then be replaced with the
correct address. This is a basic description of the procedure used by the linker
to perform its most important job: resolution of external references.

1.4.2 Searching Libraries

The linker’s second job is performing library searches. Suppose that the mod-
ule Driver contains the following C++ code fragment.

z = sqrt(y); (1.6)

What this code does is to call a function sqrt, pass it an argument y, and place
the return value into the variable z.

To implement the function call of Example 1.6 in machine language, a
method for passing arguments to a function, and passing a return value back
from the function, must be agreed upon. Every processor supports some such
method, called the calling conventions of the processor. For our simple pro-
cessor, we have assumed that arguments are passed to the function by loading
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them into special-purpose argument registers, whose names begin with the let-
ter A, as opposed to the letter R, to distinguish them from the general-purpose
registers of the processor. To access the arguments, the function simply ac-
cesses the argument registers. When the function is ready to return a value, it
loads its return value into another special-purpose register, called the return
value (RV) register. This register is then accessed by the calling program, to
receive the return value. The registers associated with the calling conventions
are called special-purpose registers, because the programmer would only use
them for function calls, as opposed to general-purpose registers whose use is
unrestricted.

When translated into assembly language, the sequence from Example 1.6
might resemble the following.

load A0, y

call sqrt

store z, RV

(1.7)

In Example 1.7, the assembly fragment first fetches the operand y from
memory, and loads it into the argument register A0. Then a call instruction
is executed, which causes the processor to jump to the address sqrt. When the
sqrt function executes a return instruction, the processor jumps back to the
store instruction following the call. At this point the return value is transferred
from the RV register into the memory location at address z.

The call to the function sqrt constitutes an external reference. Clearly sqrt
is not defined in the module Driver. But, it is also not defined in the module
Q. Most C++ programmers know that the function sqrt is, in fact, defined in
the C++ library, which is a collection of modules, in object code format. Sqrt
is defined in the module math. In order to allow a program to use code con-
tained in library modules, we must alter our procedure for external reference
resolution to include library search. That is to say, when the linker encounters
an unresolved reference, it first looks for resolution in the actual modules of
the program. If the linker does not find a definition for the reference, then
it searches all of the modules in all of the libraries it can find. If the linker
finds a definition for the reference in a library module, that module is added
to the other modules of the program. If the reference is still unresolved after
this rather exhaustive search, a linker error occurs, and linking is aborted.

1.4.3 Relocation

We now turn our attention to the last job of the linker: relocation of modules.
In the beginning of our discussion of the linker, we said that when resolving
the external reference to the variable x, the address of the variable is calculated
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by examining the module Driver, which contains the variables definition. It
was, however, not explain clearly how addresses are calculated.

Addresses inside a module are relatively easy to calculate. The module has a
base, or beginning, address. The objects in the module are either instructions
or data allocation declarations. The number of words taken by each instruction
is known, and the data declaration explicitly provides the number of words
being allocated. It is easy to run through a module from top to bottom, and
track the number of words written out at any particular point in the module
code. In this way the address of any object can be calculated by using the
current word count as an offset, which is added to the base address. This job
is readily performed by the assembler.

The situation is complicated by the fact that our program is not a single
module. However, when the linker finishes its work, it must produce a single
monolithic program, occupying a solid, contiguous block of memory. In other
words, it must combine the different modules into one block. To do this, the
linker must order the modules in the memory block. For our example, the
linker might decide to place the module Driver first in the machine language
program, and then follow it with the module Q.

In term of addressing, the module Driver would be assigned the base address
0. Let us assume that Driver contains 3,000 words of machine code, and that
Q contains 2,000 words. Then the base address of Q would be 3,000, and it
would end at address 4,999, which is one subtracted from the sum of 3,000
and 2,000. The upshot of this calculation is that, if each module has been
assembled, assuming a base address of 0, all addresses in the module Q must
be adjusted by adding 3,000 to them. This process of adjusting addresses,
after deciding on module order, is the process of module relocation.

1.5 THE LOADER

As discussed, the linker produces executable code, that is saved to mass stor-
age. Although the code produced is executable, it is not yet running. The
program that starts the executable code running is the loader. What does it
take to start a program running? Firstly, the program must be loaded into
memory from mass storage. This process is often termed program relocation.
Notice that the linker and the loader both do relocation. The difference is that
the linker is relocating modules, or pieces of a program. The loader, on the
other hand, relocates whole programs in memory.
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1.5.1 Processes and Workspaces

The modern computer is typically a multi-process system. This means that
the operating system is often running several processes, or programs, simul-
taneously. Technically, this is impossible, since the processor can only do one
thing at a time. Technically, the processor is only making it appear that it is
running several programs simultaneously. In reality it is sharing time between
the different running processes, working one process for a small amount of
time, then switching to another process for a small amount of time, then on
to another process, and continuing this procedure, executing small pieces of
code from each program. Because the amount of time spent on each program,
called the quantum, is so small, and the processor returns to the same process
in such a short time, it appears to a human observing a particular process
that the processor is working on that process without interruption. To the
human observer, it appears that the processor is working on several processes,
each one uninterrupted, although this is not actually true. Perhaps a more
accurate statement would be that, in the modern processor, several processes
are active at the same time.

Each process that is active is assigned a part of memory to work with,
often referred to as the process’s workspace. The workspace is allocated to the
process by the operating system when the process is started.

Our discussion of the process workspace is leading into an explanation of
why loading a program into memory requires relocation. Let us reconsider our
continuing example. We wish to run the Driver program. It has been compiled,
assembled, and linked, and is now in the form of an executable file on disk.
To run it, the operating system starts a new process, and assigns a block of
memory, its workspace, to the process. Now the loader reads the executable
file from disk, and writes the code to the workspace. The problem that the
loader has, is that the workspace may be located anywhere in memory. This is
a problem because when the linker previously wrote out the executable code,
it did not know what the base address of the program would be. What it did
is the equivalent of writing code that starts at memory location 0. This is
almost certainly not going to be the case.

When the loader loads the program into the workspace, if there is any hope
of the program running correctly, all addresses in the program must be altered
from using a base address of 0 to using the base address of the workspace.
There are several ways of performing the alteration. Often the alteration does
not require an explicit change to every address in the program. Often the
changes can be made simply by initializing a special-purpose base address
register to the base address of the workspace. Whatever the method used, the
point is that somehow the executable code must be made to execute at the
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location where it is loaded into the workspace. This process, which we have
already mentioned is called relocation, is performed by the loader.

1.5.2 Initializing Registers

So, now the Driver program is loaded into the workspace. The next job of the
loader is to initialize the processor in preparation for executing the program.
Many of the registers in the processor must be initialized. This is truer of the
registers that are used by the processor for specific purposes. In particular,
one such register in the processor is often called the program counter (PC).
The job of the PC is to keep track of where in the program the processor is
currently executing. The PC always contains the address in memory of the
next instruction to be executed. Every time the processor finishes executing
an instruction, it fetches the instruction indicated by the PC from memory,
and begins executing that instruction. The PC is also updated to point to a
new, next instruction, usually by incrementing it.

PC
2350

2000
workspace

Current Instruction
2349

Memory

FIGURE 1.2 The PC and memory.

The role of the PC is illustrated in Figure 1.2. The diagram shows the
process workspace in memory. The base address of the workspace is 2000.
The PC contains the address 2350. The instruction currently being executed
would then be at address 2349. When this instruction has been completed,
the machine instruction at 2350 would be loaded into the processor to be
executed, and the PC would be incremented to 2351.

It should be clear that the PC must be initialized to the base address of
the workspace, when the program begins execution. This then is one example
of several special-purpose registers which the loader must correctly initialize
before the program begins execution. Actually, the initialization of the PC is
done as the last register initialization. The reason for this is that if the loader
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changes the PC to point to the starting instruction of the Driver program, the
next instruction executed will be the first instruction in the Driver program. In
other words, the loader has jumped to the start of our program, and started
it up. This is the last action of the loader; after loading the program, and
initializing registers, it starts the program running.

1.6 SUMMARY OF THE TRANSLATION PROCESS

We now have some sort of understanding of the answer to our original question
as to how a C++ program is executed. The process of getting the program
to run is actually fairly sophisticated, and involves several steps. These steps
are summarized in Figure 1.3.

FIGURE 1.3 Workstream for source code translation and execution.

Figure 1.3 shows the compiler first translating the source code program
into assembly language. The assembler then translates the program down into
object code. The linker links the object modules together, and adds in any
required library object modules. The output of the linker is executable code,
which is loaded into memory by the loader.

1.7 THE PROCESSOR

We have now partially answered the question as to how a C++ program exe-
cutes on a computer. We have examined the translation process that produces
and starts machine code. But if we dig deeper, we discover that this is only
part of the answer. We know how to get the program to run, but not how the
processor actual executes the instructions. To answer that part of the ques-
tion, we must examine what sort of machine the processor is, and how it is
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designed. This is the point at which we must start looking at the circuitry in
the processor. We stop talking about the software used, like the compiler and
linker, and start talking about the hardware device from which the processor
is built.

When we discussed the software tools used to translate a program, we did so
by describing language levels. We use this same level approach when discussing
hardware. We have two major levels of abstraction used when specifying pro-
cessor design.

• The register transfer level (RTL), or behavioral level.

• The gate level, or structural level.

The RTL level is the higher level of abstraction, and the gate level is the lower
level. As with the software, we will be examining the two levels from the top
down, starting with the RTL level.

1.7.1 Processor Behavior

To begin our discussion of the RTL level, we examine the functioning of the
processor. A processor is a device that fetches instructions stored in memory,
and executes them. This is a slight simplification of the functioning of the
processor, but not much of one. The processor performs a sequence of steps,
over and over, as long as it is supplied with electrical power. This sequence of
steps is called the machine cycle, or instruction cycle. The instruction cycle
is a three-step procedure.

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Execute the instruction.

In Step 1 the processor reads the next instruction to be executed, as indicated
by the PC register, and brings it into the processor. The processor also in-
crements the PC at this time. In Step 2 the processor splits the instruction
into fields. By so doing it discovers what operation is being performed, and
on what operands.

In Step 3 the appropriate circuitry in the processor is activated to execute
the operation on the operands. The result of the operation is then written
back to the destination operand. The cycle is then repeated, to execute the
next instruction.
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1.7.2 Processor Structure

We now have described what the processor does. Let us now look at the struc-
ture of the processor. The processor is a machine composed of several devices.
For instance, we have already discussed the fact that the processor contains
a set of both general-purpose and special-purpose registers. These registers,
collectively, form a device called the register file. Another device called the
arithmetic-logic unit (ALU) performers arithmetic and logic machine opera-
tions.

All of the devices in the processor must be connected, in order to communi-
cate with each other. How the devices are connected is called the data-path of
the processor. The different devices must also be told when to perform their
function and often which of several functions to perform. The circuit that
controls the devices, in this fashion, is called the control unit.

1.7.2.1 The Data Path, Registers, and Computational Units

The best way to explain a data path is with an example. We will be building
an example that contains just two registers. The circuit will perform just two
operations, as follows.

R1← R1 +R2
R2← 0

(1.8)

In the first operation of Example 1.8, the contents of the registers R1 and
R2 are added, and the result is placed into the register R1. In the second
operation, the register R0 is set to 0.

R1

R2

+

0

FIGURE 1.4 Example data path for Example 1.8.

The data path of this device is the circuitry that allows these two opera-
tions to be performed. This data path would include two major components:
registers, and for each register, a computational unit. A computational unit
computes the new value of a register, resulting from an operation. In our ex-
ample, we would have one computational unit to compute the new value of
R1, as the sum of R1 and R2, and another that computes the new value of R2
when it is cleared. All computational units and registers must be connected


