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Preface to the First Edition

This book is a result of the experience accumulated during several years of working
for an agricultural biotechnology company. As a genomic database curator, I gave
support to staff scientists with a broad range of bioinformatics needs. Some of them
just wanted to automate the same procedure they were already doing by hand, while
others would come to me with biological problems to ask if there were bioinformat-
ics solutions. Most cases had one thing in common: Programming knowledge was
necessary for finding a solution to the problem. The main purpose of this book is to
help those scientists who want to solve their biological problems by helping them
to understand the basics of programming. To this end, I have attempted to avoid
taking for granted any programming-related concepts. The chosen language for this
task is Python.

Python is an easy-to-learn computer language that is gaining traction among
scientists. This is likely because it is easy to use, yet powerful enough to accomplish
most programming goals. With Python the reader can start doing real programming
very quickly. Journals such as Computing in Science and Engineering, Briefings
in Bioinformatics, and PLOS Computational Biology have published introductory
articles about Python. Scientists are using Python for molecular visualization, ge-
nomic annotation, data manipulation, and countless other applications.

In the particular case of the life sciences, the development of Python has been
very important; the best exponent is the Biopython package. For this reason, Section
II is devoted to Biopython. Anyhow, I don’t claim that Biopython is the solution to
every biology problem in the world. Sometimes a simple custom-made solution may
better fit the problem at hand. There are other packages like BioNEB and CoreBio
that the reader may want to try.

The book begins from the very basic, with Section I (“Programming”), teaching
the reader the principles of programming. From the very beginning, I place a special
emphasis on practice, since I believe that programming is something that is best
learned by doing. That is why there are code fragments spread over the book. The
reader is expected to experiment with them, and attempt to internalize them. There
are also some spare comparisons with other languages; they are included only when
doing so enlightens the current topic. I believe that most language comparisons do
more harm than good when teaching a new language. They introduce information
that is incomprehensible and irrelevant for most readers.

In an attempt to keep the interest of the reader, most examples are somehow
related to biology. In spite of that, these examples can be followed even if the reader
doesn’t have any specific knowledge in that field.

To reinforce the practical nature of this book, and also to use as reference
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material, Section IV is called “Python Recipes with Commented Source Code.”
These programs can be used as is, but are intended to be used as a basis for other
projects. Readers may find that some examples are very simple; they do their job
without too many bells and whistles. This is intentional. The main reason for this
is to illustrate a particular aspect of the application without distracting the reader
with unnecessary features, as well as to avoid discouraging the reader with complex
programs. There will always be time to add features and customizations once the
basics have been learned.

The title of Section III (“Advanced Topics”) may seem intimidating, but in
this case, advanced doesn’t necessarily mean difficult. Eventually, everyone will
use the chapters in this section [especially relational database management system
—RDBMS— and XML]. An important part of the bioinformatics work is building
and querying databases, which is why I consider knowing a RDBMS like MySQL
to be a relevant part of the bioinformatics skill set. Integrating data from different
sources is one of tasks most frequently performed in bioinformatics. The tool of
choice for this task is XML. This standard is becoming a widely used platform for
data interchange between applications. Python has several XML parsers and we
explain most of them in this book.

Appendix B, “Selected Papers,” provides introductory level papers on Python.
Although there is some overlapping of subjects, this was done to show several points
of view of the same subject.

Researchers are not the only ones for whom this book will be beneficial. It has
also been structured to be used as a university textbook. Students can use it for
programming classes, especially in the new bioinformatics majors.
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Edition

The first edition of Python for Bioinformatics was written in 2008 and published
in 2009. Even after eight years, the lessons in this book are still valuable. This is
quite an accomplishment in a field that evolves at such a fast pace. In spite of its
usefulness, the book is showing its age and would greatly benefit from a second
edition.

The predominant Python version is 3.6, although Python 2.7 is still in use in
production systems. Since there are incompatibilities between these versions, lot of
effort was made to make all code in the book Python 3 compatible.

Not only has the software changed in these past eight years, but enterprise atti-
tude and support toward Open Source Software in general and Python in particular
has changed dramatically. There are also new computing paradigms that can’t be
ignored such as collaborative development and cloud computing.

In the original book, Chapter 14 was called “Collaborative Development: Version
Control” and was based on Bazaar, a software that follows the currently used
distributed development workflow but is not what is being used by most developers
today. By far the most software development is done with Git at GitHub. This
chapter was rewritten to focus on current practices.

Web development is another area that changed significantly. Although this is
not a book about web development, the chapter “Web Applications” now reflects
current usage of long-running processes and frameworks instead of CGI/WSGI and
middleware-based applications. Frameworks were discussed as a side note in this
chapter, but now the chapter is based around a framework (Bottle) and leave the
old method as a historical footnote.

In databases, the NoSQL gained lot of traction, from being a bullet point in
the first edition, now has its own section using MongoDB, and a Python recipe
was changed to use this NoSQL database.

Graphical libraries have improved since 2009, and there are great quality com-
peting graphic libraries available for Python. There is a whole chapter devoted to
Bokeh, a free interactive visualization library.

Another change that is reflected in this book is the usage of Anaconda and
Jupyter Notebooks (with all code in a cloud notebook provided by Microsoft
Azure1).

1See https://notebooks.azure.com/py4bio/libraries/py3.us
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Regarding source code, there is a GitHub repository at https://github.com/
Serulab/Py4Bio where you can download all the code and sample files used in this
book.

There are corrections in every chapter. Sometimes there were actual mistakes,
but most of the corrections were related to the Python 3 upgrade and in keeping
with current good practices. Regarding corrections, I expect that this book may
need corrections, so I made a web page where the readers can get updates. Please
take a look at http://py3.us and subscribe to the low volume mailing list while
at it.

Apart from software evolution and paradigms shifts, I also gained development
experience and changed my views on pedagogical matters. During these years I
worked in a genome sequencing project at an international consortium and as a
senior software developer in an NYSE listed company (Globant). In the last 5 years
I worked for several well-known clients such as Salesforce and National Geographic.
I am currently working at PLOS (Public Library of Science).

By request of MATLAB, I include their contact information:
MATLAB ® is a registered trademark of The MathWorks, Inc. For product

information please contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA,
01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 E-mail: info@mathworks.com
Web: www.mathworks.com

Regarding the logo of Biopython, that is used in the cover, here it is usage
license (this covers all Biopython files, including its logo):

Biopython is currently released under the "Biopython License Agreement"
(given in full below). Unless stated otherwise in individual file headers, all Biopy-
thon’s files are under the "Biopython License Agreement".

Some files are explicitly dual licensed under your choice of the "Biopython Li-
cense Agreement" or the "BSD 3-Clause License" (both given in full below). This
is with the intention of later offering all of Biopython under this dual licensing
approach.

Biopython License Agreement

Permission to use, copy, modify, and distribute this software and its documenta-
tion with or without modifications and for any purpose and without fee is hereby
granted, provided that any copyright notices appear in all copies and that both
those copyright notices and this permission notice appear in supporting documen-
tation, and that the names of the contributors or copyright holders not be used in
advertising or publicity pertaining to distribution of the software without specific
prior permission.

THE CONTRIBUTORS AND COPYRIGHT HOLDERS OF THIS SOFT-
WARE DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL THE CONTRIBUTORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

https://github.com
https://github.com
http://py3.us
mailto:7001E-mail:info@mathworks.com
http://www.mathworks.com


Preface to the Second Edition � xxix

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

BSD 3-Clause License

Copyright (c) 1999-2017, The Biopython Contributors All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer. Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution. Nei-
ther the name of the copyright holder nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-
RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
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The most effective way to do it, is to do it.

Amelia Earhart

1.1 WHO SHOULD READ THIS BOOK

This book is for the life science researcher who wants to learn how to program.
He/she may have previous exposure to computer programming, but this is not
necessary to understand this book (although it surely helps).

This book is designed to be useful to several separate but related audiences,
students, graduates, postdocs, and staff scientists, since all of them can benefit
from knowing how to program.

3
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Exposing students to programming at early stages in their career helps to boost
their creativity and logical thinking, and both skills can be applied in research. In
order to ease the learning process for students, all subjects are introduced with the
minimal prerequisites. There are also questions at the end of each chapter. They
can be used for self-assessing how much you’ve learned. The answers are available
to teachers in a separate guide.

Graduates and staff scientists having actual programming needs should find its
several real-world examples and abundant reference material extremely valuable.

1.1.1 What the Reader Should Already Know

Since this book is called Python for Bioinformatics, it has been written with the
following assumptions in mind:

• No programming knowledge is assumed, but the reader is required to have
minimum computer proficiency to be able to use a text editor and handle basic
tasks in your operating system (OS). Since Python is multi-platform, most
instructions from this book will apply to the most common operating systems
(Windows, macOS and Linux); when there is a command or a procedure that
applies only to a specific OS, it will be clearly noted.

• The reader should be working (or at least planning to work) with bioinfor-
matics tools. Even low-scale handmade jobs, such as using the NCBI BLAST
to ID a sequence, aligning proteins, primer searching, or estimating a phy-
logenetic tree will be useful to follow the examples. The more familiar the
reader is with bioinformatics, the better he will be able to apply the concepts
learned in this book.

1.2 USING THIS BOOK

1.2.1 Typographical Conventions

There are some typographical conventions I have tried to use in a uniform way
throughout the book. They should aid readability and were chosen to tell apart
user-made names (or variables) from language keywords. This comes in handy when
learning a new computer language.

Bold: Objects provided by Python and by third-party modules. With this no-
tation it should be clear that round is part of the language and not a user-defined
name. Bold is also used to highlight parts of the text. There is no way to confuse
one bold usage with the other.

Mono-spaced font: User declared variables, code, and filenames. For example:
sequence = ’MRVLLVALALLALAASATS’.

Italics: In commands, it is used to denote a variable that can take different
values. For example, in len(iterable), “iterable” can take different values. Used in
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text, it marks a new word or concept. For example “One such fundamental data
structure is a dictionary.”

The content of lines starting with $ (dollar sign) are meant to be typed in your
operating system console (also called command prompt in Windows or terminal
in macOS).
←֓ : Break line. Some lines are longer than the available space in a printed

page, so this symbol is inserted to mean that what is on the next line in the page
represents the same line on the computer screen. Inside code, the symbol used is
<=.

1.2.2 Python Versions

The current version of Python at this moment is 3.6.1. There is a 2.7.12 version that
is maintained1 because there are still a sizable number of applications in production
using the 2.7 branch. Versions 3.x and 2.x are slightly different, at the point of
being incompatible. Python 3 is more efficient than Python 2 in many aspects.
Large websites such as Instagram migrated from Python 2.7 to Python 3.6 to save
in CPU and memory consumption by up to 30%. This book uses Python 3.6.

The only scenario where you may need to use Python 2.7, apart from mainte-
nance of old code, is when there is no availability of a specific library for Python
3. In this case, before starting a project in Python 2.7, try to search for a replace-
ment library. For example, you want to connect with a MySQL database and you
are told to use MySQLdb, since this package is not Python 3 compatible; instead
of using Python 2.7, use mysqlclient or mysql-connector-python, both works
with Python 3.

1.2.3 Code Style

Python source code that appears in this book is presented as listings. Each line of
these listings is numbered. These numbers are not intended to be typed; they are
used to reference each line in the text. You don’t need to copy the code from the
book, since it can be downloaded from the GitHub repository at https://github.
com/Serulab/Py4Bio.

Code can be formatted in several ways and still be valid to the Python inter-
preter. This following code is syntactically correct:

def GetAverage(X):

avG=sum(X)/len(X)

" Calculate the average "

return avG

Also this one:

1Python 2.7.x has an end-of-life date in 2020. There will be no Python 2.8. For more information
see https://www.python.org/dev/peps/pep-0373/.

https://github.com
https://github.com
https://www.python.org
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def get_average(items):

""" Calculate the average

"""

average = sum(items) / len(items)

return average

The former code sample follows most accepted coding styles for Python.2

Throughout the book you will find mostly code formatted as the second sample.
Some code in the book will not follow accepted coding styles for the following
reasons:

• There are some instances where the most didactic way to show a particular
piece of code conflicts with the style guide. On those few occasions, I choose
to deviate from the style guide in favor of clarity.

• Due to size limitation in a printed book, some names were shortened and
other minor drifts from the coding styles have been introduced.

• To show that there is more than one way to write the same code. Coding
style is a guideline, and enforcement is not made at a language level, so some
programmers don’t follow it thoroughly. You should be able to read “bad”
code, since sooner or later you will have to read other people’s code.

1.2.4 Get the Most from This Book without Reading It All

• If you want to learn how to program, read the first section, from Chapter
1 to Chapter 8. The Regular Expressions (REGEX) chapter (Chapter 13) can
be skipped if you don’t need to deal with REGEX.

• If you know Python and just want to know about Biopython, read first
Chapter 9 (from page 158 to page 209). It is about Biopython modules and
functions. Then try to follow programs found in Section III (from page 315
to page 369).

• There are three appendixes that can be read in an independent way. Appendix
A (Collaborative Development: Version Control with GitHub) reproduces a
paper called “A Quick Introduction to Version Control with Git and GitHub.”
Appendix B shows how to install a web application using Python Anywhere.
Appendix C is a reference material that can be used as a cheat sheet when
you need a quick answer without having to read a chapter.

2The official Python style guide is located at https://www.python.org/dev/peps/pep-0008,
and a more easy-to-read style guide is located at http://docs.python-guide.org/en/latest/

writing/style.

https://www.python.org
http://docs.python-guide.org
http://docs.python-guide.org
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1.2.5 Online Resources Related to This Book

The book website is at http://py3.us. In this site you will find errata, a mail-
ing list to keep updated about Python and links to source code repositories. Re-
garding source code, the official source code repository of this book is at GitHub
(https://github.com/Serulab/Py4Bio). From this site you can inspect online
or download all the code used in this book. To download all scripts, go to the
“Clone or download” green button and press it. If you have Git installed in
your machine (and know how to use it3), clone the repository using this ad-
dress: git@github.com:Serulab/Py4Bio.git. Another alternative is to click on
“Download ZIP”. Once you have the repository in your machine, go to the code

folder, where there are a set of folders, each one has the scripts related to the
chapter. Each script in the book has a name and this corresponds with the file-
name. There is another folder called notebooks, and it contains Jupyter note-
books that can be run locally. For more information on how to run a Jupyter
notebook, please see http://jupyter-notebook-beginner-guide.readthedocs.

io/en/latest/execute.html.
Another online resource are the Jupyter Notebooks available at Microsoft Azure

Notebook website (https://notebooks.azure.com/py4bio/libraries/py3.us).
The same notebooks that are in the book repository, can be used online in this site.

1.3 WHY LEARN TO PROGRAM?

Many of the tasks that a researcher performs with his or her computer are repetitive:
Collect data from a Web page, convert files from one format to another, execute or
interpret hundreds of BLAST results, primer design, look for restriction enzymes,
etc. In many cases it is evident that these are tasks that can be performed with a
computer, with less effort on our part and without the possibility of errors caused
by tiredness or distractions.

An important consideration when you’re evaluating whether or not to create a
program is the apparent time lost in the definition and formulation of the problem,
implementing it with code, and then debugging it (correcting errors). It is incorrect
to consider problem definition and evaluation as a waste of time. It is generally at
this precise point in the process where we understand thoroughly the problem that
we face. It is common that during the attempt to formulate a problem, we realize
that many of our initial assumptions were mistaken. It also helps us to detect when
it is necessary to restart the planning process. When this happens, it is better that
it happens at the planning stage than when we are in the middle of the project. In
these cases, the planning of the program represents time saved. Another advantage
to take into account is that the time that is invested to create a program once is
compensated by the speed with which the tasks are performed every time we run
it.

3In Appendix A there is a tutorial on how to use GitHub

http://py3.us
https://github.com
http://jupyter-notebook-beginner-guide.readthedocs.io
http://jupyter-notebook-beginner-guide.readthedocs.io
https://notebooks.azure.com
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Not only can it automate the procedures that we do manually, but it will also
be able to do things that would otherwise not be possible.

Sometimes it is not very clear if a particular task can be done by a program.
Reading a book such as this one (including the examples) will help you identify
which tasks are feasible to automate with software and which ones are better done
manually.

1.4 BASIC PROGRAMMING CONCEPTS

Before installing Python, let’s review some programming fundamentals. If you have
some previous programming experience, you may want to skip this section and jump
straight to Chapter 2 “Installing Python.” This section introduces basic concepts
such as instructions, data types, variables, and some other related terminology that
is used throughout this book.

1.4.1 What Is a Program?

Computers only know what you tell them. The way to tell them to do something
is by a program. A program is a set of ordered instructions designed to command
the computer to do something. The word “ordered” is there because is not enough
to declare what to do, but the actual order of directions should also be stated.4

A program is often characterized as a recipe. A typical recipe consists of a
list of ingredients followed by step-by-step instructions on how to prepare a dish.
This analogy is reflected in several programming websites and tutorials with the
words “recipe” and “cookbook.” A laboratory protocol is another useful analogy. A
protocol is defined as a “predefined written procedural method in the design and
implementation of experiments.”

Here is a typical protocol, followed almost every day in several molecular labo-
ratories:

Listing 1.1: Protocol for Lambda DNA digestion

Restriction Digestion of Lambda DNA

Materials

5.0 mcL Lambda DNA (0.1 g/L)

2.5 mcL 10x buffer

16.5 mcL H2O

1.0 mcL EcoRI

4There are declarative languages that state what the program should accomplish, rather than
describing how to accomplish it. Most computer languages (Python included) are imperative instead
of declarative.
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Procedure

Incubate the reagents at 37°C for 1 hr.

Add 2.5 mcL loading dye and incubate for another 15 minutes.

Load 20 mcL of the digestion mixture onto a minigel

There are at least two components of a protocol: materials or ingredients, and
procedures. A procedure provides specific order like incubate, add, mix, load and
many others. The same goes for a computer program. The programmer gives specific
order to the computer: print, read, write, add, multiply, round, and others.

While protocol procedures correlate with program instructions, materials are
the data. In protocols, procedures are applied to materials: Mix 2.5 µL of buffer
with 5 µL of Lambda DNA and 16.5 µL of H20, load 20 µL onto a minigel. In a
program, instructions are applied to data: print the text string “Hello”, add two
integer numbers, round a float number.

As a protocol can we written in different languages (like English, Spanish, or
French), there are different languages to program a computer. In science, English is
the de facto language. Due to historical, commercial and practical reasons, there is
no such equivalent in computer science. There are several languages, each with its
own strong points and weakness. For reasons that will make sense shortly, Python
was the computer language chosen for this book.

Let’s see a simple Python program:

Listing 1.2: sample.py: Sample Python Program

1 seq_1 = ’Hello,’

2 seq_2 = ’ you!’

3 total = seq_1 + seq_2

4 seq_size = len(total)

5 print(seq_size)

Note: The numbers at the beginning of the each line are for reference only,
they are not meant to be typed.

This small program can be read as “Name the string Hello, as seq_1. Name
the string you! as seq_2. Add the strings named seq_1 and seq_2 and call the
result as total. Get the length of the string called total and name this value as
seq_size. Print the value of seq_size.” This program prints the number 11.

As shown, there are different types of data (often called “data types” or just
“types”). Numbers (integers or float), text string, and other data types are covered
in Chapter 3. In print(seq_size), the instruction is print and seq_size is the
name of the data. Data is often represented as variables. A variable is a name
that stands for a value that may vary during program execution. With variables,
a programmer can represent a generic command like “round n” instead of “round
2.9.” This way he can take into account a non-fixed (hence variable) value. When
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the program is executed, “n” should take a specific value since there is no way to
“round n.” This can be done by assigning a value to a variable or by binding a name
to a value.5 The difference between “assign a value to a variable” and “bind a name
to a value” is explained in detail in Chapter 3 (from page 64). In any case, it is
expressed as:

variable_name = value

Note that this is not an equality as seen in mathematics. In an equality,
terms can be interchanged, but in programming, the term on the right (value)
takes the name of the term on the left (variable_name). For example,

seq_1 = ’Hello’

After this assignment, the variable seq_1 can be used, like,

print(seq_1)

This is translated as “print out the value called seq_1”. This command returns
“Hello” because this is the value of this variable.

1.5 WHY PYTHON?

Let’s have a look at some Python features worth pointing out.

1.5.1 Main Features of Python

• Readability: When we talk about readability, we refer as much to the original
programmer as any other person interested in understanding the code. It is
not an uncommon occurrence for someone to write some code then return
to it a month later and find it difficult to understand. Sometimes Python is
called a “human-readable language.”

• Built-in features: Python comes with “batteries included.” It has a rich and
versatile standard library that is immediately available, without the user hav-
ing to download separate packages. With Python you can, with few lines, read
and write XML and JSON files, parse and generate email messages, extract
files from a zip archive, open a URL as if were a file, and many other possi-
bilities that in other languages, it would require a third-party library.

• Availability of third-party modules for a broad spectrum of activities. Data
visualization6 and plotting, PDF generation, bioinformatics analysis,7 image

5In Python the latter form is used.
6MatPlotLib (http://matplotlib.org/) and Bokeh http://bokeh.pydata.org/en/latest/

are the most used.
7Biopython library to make your own bioinformatics applications (http://biopython.org/).

http://matplotlib.org
http://bokeh.pydata.org
http://biopython.org
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processing,8 machine learning,9 game development, interface with popular
databases,10 and application software are only a handful of examples of mod-
ules that can be installed to extend Python functionality.

• High-level built-in data structures: Dictionaries, sets, lists, tuples, and others.
These are very useful to model real-world data. Third-party modules such as
NumPy and SciPy can also extend the structures to kd-trees, n-dimensional
arrays, matrix operations, time-series, image objects, and more.

• Multiparadigm: Python can be used as a “classic” procedural language or as
“modern” object-oriented programming (OOP) language. Most programmers
start writing code in a procedural way and when they need to, they upgrade
to OOP. Python doesn’t force programmers to write OOP code when they
just want to write a simple script.

• Extensibility: If the built-in methods and available third-party modules are
not enough for your needs, you can easily extend Python, even in other pro-
gramming languages. There are some applications written mostly in Python
but with a processor demanding routine in C or FORTRAN. Python can also
be extended by connecting it to specialized high-level languages like R or
MATLAB11.

• Open source: Python has a liberal open source license that makes it freely
usable and distributable, even for commercial use.

• Cross platform: A program made in Python can be run under any computer
that has a Python interpreter. This way, a program made under Windows 10
can run unmodified in Linux or OSX. Python interpreters are available for
most computer and operating systems, and even some devices with embedded
computers like the Raspberry Pi.

• Thriving community: Python is nowadays the programming language to use
for scientists and researchers.12 This translates into more libraries for your
projects and people you can go to for support.

1.5.2 Comparing Python with Other Languages

You may be wondering why you should use Python, and not more well-known
languages like Java, PHP, or C++. It is a good question. A programming language

8Scikit-image paper: http://peerj.com/articles/453
9scikit-learn website: http://scikit-learn.org/stable/

10https://wiki.python.org/moin/DatabaseProgramming
11MATLAB® is a registered trademark of The MathWorks, Inc. For product information please

contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA, 01760-2098 USA. Tel: 508-647-7000.
Fax: 508-647-7001. E-mail: info@mathworks.com. Web: www.mathworks.com.

12http://www.nature.com/news/programming-pick-up-python-1.16833

http://peerj.com
http://scikit-learn.org
https://wiki.python.org
mailto:E-mail:info@mathworks.com
http://www.mathworks.com
http://www.nature.com
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can be regarded as a tool, and choosing the best tool for the job makes a lot of
sense.

Readability

Nonprofessional programmers tend to value the learning curve as much as the leg-
ibility of the code (both aspects are tightly related).

A simple “hello world” program in Python looks like this:

print("Hello world!")

Compare it with the equivalent code in Java:

public class Hello

{

public static void main(String[] args) {

System.out.printf("Hello world!");

}

}

Let’s see a code sample in C language. The following program reads a file
(input.txt) and copies its contents into another file (output.txt):

#include <stdio.h>

int main(int argc, char **argv) {

FILE *in, *out;

int c;

in = fopen("input.txt", "r");

out = fopen("output.txt", "w");

while ((c = fgetc(in)) != EOF) {

fputc(c, out);

}

fclose(out);

fclose(in);

}

The same program in Python is shorter and easier to read:

with open("input.txt") as input_file:

with open("output.txt") as output_file:

output_file.writelines(in)

Let’s see a Perl program that calculates the average of a series of numbers:
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sub avg(@_) {

$sum += $_ foreach @_;

return $sum / @_ unless @_ == 0;

return 0;

}

print avg((1..5))."\n";

The equivalent program in Python is:

def avg(data):

if len(data)==0:

return 0

else:

return sum(data)/len(data)

print(avg([1,2,3,4,5]))

The purpose of this Python program could be almost fully understood by just
knowing English.

Python is designed to be a highly readable language.13 The use of English key-
words, and the use of spaces to limit code blocks and its internal logic (indentation),
contribute to this end. It’s possible to write hard-to-read code in Python, but it
requires a deliberate effort to obfuscate the code.14

Speed

Another criterion to consider when choosing a programming language is execution
speed. In the early days of computer programming, computers were so slow that
some differences due to language implementation were very significant. It could take
a week for a program to be executed in an interpreted language, while the same
code in a compiled language could be executed in a day. This performance difference
between interpreted and compiled languages still has the same proportion, but it
is less relevant. This is because a program that took a week to run, now takes less
than ten seconds, while the compiled one takes about one second. Although the
difference seems important (at least one order of magnitude), it is not so relevant
if we consider the time it takes to develop it.

This does not mean that execution speed does not need to be considered. A 10X
speed difference can be crucial in some high-performance computing operations.
Sometimes a lot of improvements can be achieved by writing optimized code. If the
code is written with speed optimization in mind, it is possible to obtain results quite

13Other languages are regarded as “write only,” since once written it is very difficult to understand
it.

14A simple print(’Hello World’) program could be written, if you are so inclined, as
print(”.join([chr((L>=65 and L<=122) and (((((L>=97) and (L-96) or (L-64))-
1)+13)%26+((L>=97) and 97 or 65)) or L) for L in [ ord(C) for C in ’Uryyb Jbeyq!’]]))
(https://goo.gl/r5sm9j).

https://goo.gl
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similar to the ones that could be obtained in a compiled language. In the cases where
the programmer is not satisfied with the speed obtained by Python, it is possible
to link to an external library written in another language (like C or Fortran). This
way, we can get the best of both worlds: the ease of Python programming with the
speed of a compiled language.

1.5.3 How Is It Used?

Python has a wide range of applications. From cell phones to web servers, there
are thousands of Python applications in the most diverse fields. There is Python
code powering Wikipedia robots, helping design next generation special effects at
Industrial Light & Magic,15 embedded in D-link modems and routers,16 and it is
the scripting language of the OpenOffice suite17.

Some languages are strong in one niche (like PHP for web applications, Java for
desktop programs), but Python can’t be typecast easily.

With a single code base, Python desktop applications run with a native look
and feel on multiple platforms. Well-known examples of this category include the
BitTorrent p2p client/server, Calibre, an Ebook manager, Sage Math (a math-
ematics software system), the Dropbox client, and more.

As a language for building web applications, Python can be found in high traffic
sites like Reddit, NationalGeographic, Instagram, and NASA. There are specialized
software for building web sites (called webframeworks) in Python like Django,
Web2Py, Pyramid, Flask, and Bottle.

From system administration to data analysis, Python provides a broad range of
tools to this end:

• Generic Operating System Services (os, io, time, curses)

• File and Directory Access (os.path, glob, tempfile, shutil)

• Data Compression and Archiving (zipfile, gzip, bz2)

• Interprocess Communication and Networking (subprocess, socket, ssl)

• Internet (email, mimetools, rfc822, cgi, urllib)

• String Services (string, re, codecs, unicodedata)

Python is gaining momentum as the default computer language for the scien-
tific community. There are several libraries oriented toward scientific users, such as
SciPy18 and Anaconda.19 Both distributions integrate modules for linear algebra,

15https://www.python.org/about/success/ilm/
16https://www.python.org/about/success/dlink/
17http://wiki.services.openoffice.org/wiki/Python
18https://www.scipy.org
19https://www.continuum.io/anaconda-overview

https://www.python.org
https://www.python.org
http://wiki.services.openoffice.org
https://www.scipy.org
https://www.continuum.io

