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Introduction

Aim of the book

Directional statistics are concerned with data that are directions. The typical
supports for directional data are the unit circle and unit (hyper-)sphere, or
more generally Riemannian manifolds. The nonlinear nature of these mani-
folds implies that the classical statistical techniques and tools cannot be used
to analyze directional data, and this has given rise to the research flow called
directional statistics which has been particularly active over the past two
decades.

The present book is intended to be a companion book to our manuscript
Modern Directional Statistics published by Chapman & Hall/CRC Press in
2017. While the latter book mainly covers theoretical aspects of recent devel-
opments in the field, the present book is dedicated to methodological advances
and treatments of various modern real data applications.

Content of the Companion Book Modern Directional
Statistics

In a nutshell, we now summarize the material described in Modern Directional
Statistics. It begins with a very detailed description of the recently proposed
probability distributions for data on the circle, sphere, torus, and cylinder. The
book then focuses on more inferential aspects such as nonparametric density
estimation, quantile-/depth-based inference, order-restricted inference, rank-
based inference, tests of uniformity and symmetry, among others. The Le Cam
methodology adapted to directional supports is described in detail and theo-
retical applications presented. Finally, the book deals with high-dimensional
inference on hyperspheres.

xv



xvi Introduction

Content of the present book

Various modern application areas will be described in this book, as well as the
new methods that have been developed to analyze the corresponding direc-
tional data. These areas include protein bioinformatics (Chapter 1 by Mardia,
Foldager and Frellsen, as well as Chapter 4 by Garćıa-Portugués, Golden,
Sørensen, Mardia, Hamelryck and Hein), the study of sea regimes (Chapter
3 by Lagona and Chapter 7 by Gelfand, Jona Lasinio and Mastrantonio), bi-
ology (Chapter 8 by Abe and Shimatani), the study of wildfires (Chapter 9
by Ameijeiras-Alonso, Crujeiras and Rodŕıguez Casal), social and behavioural
sciences (Chapter 10 by Klugkist, Cremers and Mulder), and machine learn-
ing (Chapter 12 by Sra). Specific topics with applications in diverse domains
have also been addressed: ambiguous rotations (Chapter 2 by Arnold and
Jupp), inference under noisy data (Chapter 5 by Pham Ngoc), the modeling
of rotation matrices (Chapter 6 by Rivest and Oualkacha), and nonparamet-
ric classification (Chapter 11 by Di Marzio, Fensore, Panzera and Taylor).
Finally, Chapter 13 by Pewsey provides an overview of existing R packages
that are relevant for directional data analysis.

We wish to thank all contributors to the present book which, we hope, will
please the reader and provide further motivation to delve into the passionating
field of directional statistics.
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1.1 Introduction

Directional statistics has been applied in several different branches of biol-
ogy [2], including the modelling of periodic properties in biological tissues [19],
movement of organisms [47], and in the study of circadian rhythms, such as
wake-sleep cycles [32]. In this chapter we will outline several usages of direc-
tional statistics in protein bioinformatics, which is a field dealing with the

1
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modelling and prediction of the three-dimensional structure of proteins. We
will first give the biochemical background for studying these biological macro-
molecules and then we will outline different approaches to molecular modelling
making use of methods from directional statistics. We will conclude the chap-
ter with a discussion on related research and open challenges.

1.2 Protein Structure

In this chapter we will be considering proteins, which are a type of biological
macromolecule. Proteins are essential to all living cells and they are often
called the workhorses of cells, due to their central roles in cellular structures
and activities. The functionality of proteins mainly arises through their struc-
ture, and in this section we take a closer look at both the terms used to
describe the different levels of structure and some general aspects of what
constrains the three-dimensional structure of molecules.

Molecules are made up of atoms connected by covalent bonds. The struc-
ture of a molecule consists of the three-dimensional positions of its atoms.
At biological temperatures the atoms of a molecule do not remain at fixed
positions, but evolve over time. The dynamics of most molecules are ergodic
and as a consequence the probability of seeing a specific three-dimensional
configuration is the same when sampling a slice from a time trajectory of a
single molecule, and sampling a single molecule from a pool of molecules at
a specific time. Therefore, simulation studies are often done using only a sin-
gle molecule. Some molecules are more dynamic and can be found in a wide
range of different configurations, while other molecules are more constrained
and only vibrate around a single three-dimensional configuration. The distri-
bution depends both on the temperature and the chemical properties of the
molecule and its surroundings.

Proteins are biopolymers constructed from a linear sequence of monomeric
subunits. In proteins these subunits are amino acids, which are joined by
covalent bonding to form a single macromolecule. There are 20 different amino
acids in naturally occurring proteins. They are identical in the part involved
in the polymerization forming the backbone, but differ by what is called the
side chain. The amino acids are compactly represented by a single letter code
using the letters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
and Y. For instance, A is the code for Alanine and C is the code for Cysteine.
In the following sections we will use glutamic acid as an example, which is
abbreviated E. The specific sequence of amino acids differs between different
proteins and is called the primary structure of the molecule, which can be
represented by a string of characters. An example of a primary structure is
shown in Figure 1.1(a).
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(a) Primary structure

(b) Secondary structure

(c) Tertiary structure
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FIGURE 1.1
Protein structure is often divided into four levels, which here is illustrated
with human ubiquitin [25]. The primary structure (a) is the linear sequence
of amino acids, here shown by their one letter code. The secondary structure
(b) is a classification of amino acids into local structural elements that they
are part of. The secondary structure classification typically consists of three
or eight classes; here we used the three classes helix (H) and strand (E) and
coil (C). The tertiary structure (c) is the three-dimensional positions of all the
atoms in the protein, which here is shown using a simplified cartoon repre-
sentation. The cartoon is colored according to secondary structure, such that
the helix is red, the strands are green, and coil regions are gray. The qua-
ternary structure is the structure formed by multiple protein subunits (not
shown here). The figure is reproduced from Frellsen [14].

Proteins typically fold into complex three-dimensional structures, as illus-
trated in Figure 1.1(c). The three-dimensional structure of a single protein is
referred to as the tertiary structure. The tertiary structure mainly depends
on the primary structure, i.e., the sequence of amino acids in the polymer, as
the different amino acids have different biochemical properties. The function
of a protein is normally dictated by its three-dimensional structure. However,
experimentally determining the three-dimensional structure of a protein is
typically a difficult and expensive process, and therefore substantial research
efforts have been invested in developing computational methods for predicting
the tertiary structure of proteins given their primary structure.

The individual subunits of proteins can be classified into reoccurring lo-
cal structural patterns; this is called the secondary structure. Based on the
hydrogen bond patterns in proteins each amino acid is classified into being a
member of a helix, a sheet, or a coil as illustrated in Figure 1.1(b).
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The covalent bonds in a molecule severely constrain the relative positions
of the atoms. First of all, covalent bond lengths vary little, constraining the
distance between bound atoms. Further, the geometry of the atoms covalently
bound to a central atom is largely fixed, and depends on chemical proper-
ties that we will not describe here. In organic chemistry the most occurring
geometry is that of a carbon atom with four elements bound, which forms a
tetrahedron with the carbon atom at the center. There can be small devia-
tions from a perfect tetrahedron, but this relatively fixed geometry translates
to small variations in bond angles. The main degree of freedom in larger
molecules, including proteins, comes from rotation around covalent bonds,
which can be measured by dihedral angles [5]. The variations in the covalent
bond angles and lengths are less significant, and sometimes fixed, ideal values
are used when modelling proteins. In the following section (1.3) we will review
the geometry and dihedral angles in proteins, and then we will return to the
problem of structure prediction in Section 1.4.

1.3 Protein Geometry

The sequence of amino acids in a protein are linked together by peptide bonds
between the carboxyl group of one amino acid and the amino group of the
following, which form the polypeptide backbone of the protein. After amino
acids form polypeptides the correct term for them is amino acid residues as
the chemical groups they are named by have been modified. However, they are
commonly still referred to as amino acids, which we will also do in this chap-
ter when there is no ambiguity. As illustrated in Figure 1.2, the polypeptide
backbone consists of a repeated sequence of three atoms: a nitrogen (N), a
carbon (Cα), and another carbon (C). If we index the atoms by their position
in the amino acid sequence, we can write the sequence of backbone atoms as

N(1) − C(1)
α − C(1) −N(2) − C(2)

α − C(2) − · · · −N(n) − C(n)
α − C(n).

In this sequence, the peptide bonds are C(i)−N (i+1). The atoms of an amino
acid that are not part of the backbone are part of the side chain, which is
attached to Cα. The backbone is identical across all 20 amino acids, while
the side chains are different, and it is this difference that gives the amino
acids different biochemical properties. For each amino acid, i, there are three
dihedral angles in the backbone:

• φ(i) formed by C(i−1) −N(i) − C(i)
α − C(i),

• ψ(i) formed by N(i) − C(i)
α − C(i) −N (i+1) and

• ω(i) formed by C(i)
α − C(i) −N (i+1) − C(i+1)

α .
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FIGURE 1.2
A protein fragment with selected atom and dihedral angle names. Atoms are
colored by element: nitrogen, blue; carbon, gray; oxygen, red; and hydrogens
are left out. Backbone atom names are in gray for the noncentral amino acids
and black for the central amino acid. The central amino acid is a glutamic acid
with dihedral angle names in red. The glutamic acid has the three dihedral
angles in the side chain, χ1, χ2, and χ3. The dihedral angles are shown on
the covalent bond they specify rotation around. The figure is adapted from
Frellsen [14].

The three dihedral angles of the backbone are illustrated in Figure 1.2.
The peptide bonds have a partial double-bond character, which means

that the bond is planar and the ω angle is concentrated around two modes.
The two modes are denoted cis isomer with ω ≈ 0◦ and trans isomers with
ω ≈ 180◦. The main flexibility in the backbone is due to the rotational degrees
of freedom of the φ and ψ angles. However, due to stereochemical properties
of the polypeptide chain, only a limited number of conformations of these an-
gles are energetically allowed. This is typically illustrated in a Ramachandran
plot [50], a scatter plot where the ψ angle is plotted against the φ angle for
all amino acids in a set of proteins. The Ramachandran plot from the original
work by Ramachandran et al. [50] is shown in Figure 1.4. The Ramachandran
plot is normally divided into energetically favorable and energetically disal-
lowed regions, making it a useful tool in structure quality assessment. If most
of the amino acids of a protein are not in the favorable regions, the model is
likely in poor agreement with the real protein structure. Figure 1.3 shows the
Ramachandran plot in the plan and on the two-dimensional torus.

There are between zero and four free dihedral angles in the side chain de-
pending on the amino acid type. These angles are denoted χ1, χ2, χ3, and χ4,
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FIGURE 1.3
Two Ramachandran plots constructed from the Top 100 database [58]. The
left is a scatter plot in the plane and the right is a scatter plot on the
two-dimensional torus. In the torus plot, φ is the toroidal angle and ψ is
the poloidal angle. Regions for right-handed α-helices, left-handed α-helices,
and β-strands are shown on both plots. Figure reproduced from Mardia and
Frellsen [38].

and they are also constrained to a limited number of allowed conformations.
The side chain angles are shown in Figure 1.2.

1.4 Structure Determination and Prediction

There exist a number of experimental biophysical methods for determining the
structure of proteins, where the two most predominantly used methods are
X-ray crystallography and NMR spectroscopy. Both methods obtain measure-
ments of physical quantities that can be used to infer the tertiary structure,
often at atomic level resolution. Predicting the structure of proteins is a major
research challenge in molecular biology, computational chemistry and bioin-
formatics. The problem can be formulated as: given the primary structure of a
molecule (the sequence of amino acids), predict the secondary and the tertiary
structure.

Due to very active research in the past decades, the secondary structure of
proteins can be predicted with great accuracy. Traditionally, artificial neural
networks have been used for secondary structure prediction [24], and today
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FIGURE 1.4
The original Ramachandran plot reproduced from Ramachandran et al. [50].
The regions are labelled according to secondary structure, including αR for
right-handed helix, αL for left-handed helix, and the upper left region for
strands.

the three classes of secondary structure can be predicted with more than 80%
accuracy [57].

Tertiary structure prediction is a more challenging problem. If the molecule
has a close sequence homolog (i.e., a molecule with shared ancestry) for which
the structure is known, the tertiary structure of the molecule can often be well
predicted by using the structure of the homolog as a scaffold. This approach is
denoted homology modelling or template-based modelling, and if the sequence
similarity between the two molecules is high the prediction can be quite ac-
curate [59]. If no close sequence homolog exists, tertiary structure prediction
is hard and this is the problem addressed by so-called de novo structure pre-
diction.

De novo structure prediction methods often make use of a parametrized
physical force field, which facilitates calculating the potential energy U(x) of
the molecule from the 3D Cartesian coordinates x ∈ R3m of all the m atoms
in the molecule. Popular force fields include AMBER [49], CHARMM [7], and
OPLS [30]. If we assume that the volume and temperature T of the system
are constant, then according to statistical physics [13, 20, 51] the probability
of observing a particular configuration x of the molecule can be expressed by
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the Boltzmann distribution

p(x | β) =
exp(−βU(x))

Zβ
, (1.1)

where Zβ =
∫
R3m exp(−βU(x)) dx is the normalization constant (partition

function in physics), β = (kbT )
−1

is the thermodynamic beta, kb the Boltz-
mann constant, and T the temperature. In Equation (1.1) we left out the
kinetic contribution, since it is trivial in Cartesian space [13].

The Boltzmann distribution can be used to make inference about the sys-
tem. For instance, the tertiary structure(s) of the molecule can then be inferred
from p(x | β) by finding the mode(s) of the distribution. The Helmholtz free
energy at a given temperature can be calculated for the normalization constant
as F (β) = −β−1 ln(Zβ) [13, 51]. Furthermore, given a function g : R3m → R,
we may be interested in calculating the expectation

Eβ [g] =

∫

R3m

g(x)p(x | β) dx. (1.2)

For instance we may want to find the mean potential energy Eβ [U ] at given β-
value. This can be used to calculate the thermodynamic entropy of the system,
S(β) = βkb(Eβ [U ]− F (β)) [13, 51].

However, for all nontrivial energy functions, inference in p(x | β) is analyt-
ically intractable. Molecular dynamics (MD) is a simulation-based method for
probing p(x | β), which assumes that the system follows Newton’s laws of mo-
tion and performs inference by numerically solving Newton’s equations. These
simulations assume that ∇xU(x) is readily available, which is usually the case.
While MD methods have been very successful [53], their main disadvantage
is that they are very computationally demanding. In practice, the time step
size in an MD simulation is of the magnitude of femtoseconds (10−12s), while
proteins fold in the order of magnitudes of microseconds (10−6s) to seconds
(s). This means that simulating a single folding event with MD simulations
requires millions to trillions of simulation steps.

1.4.1 Markov Chain Monte Carlo Simulations of Proteins

Monte Carlo (MC) based methods do not have the time scale limitation of
MD. They work by drawing L samples {x`}L`=1 from p(x | β), and then ap-
proximating the integral Eβ [g] in equation (1.2) by

ÎL(g) =
1

L

L∑

`=1

g(x`). (1.3)

It can be shown that ÎL(g) is an unbiased estimator for Eβ [g] and that it
almost surely converges to Eβ [g] as L → ∞ [1]. This is known as the Monte
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Carlo principle. The principle can also be used to obtain estimates of ratios
of normalization constants: An unbiased estimate of

Zβ′

Zβ
=

∫

R3m

exp(−β′U(x))

Zβ
dx =

∫

R3m

exp(−β′U(x))

exp(−βU(x))
p(x | β) dx (1.4)

can be obtained by ÎL

(
exp(−β′U(x))
exp(−βU(x))

)
.

As mentioned before, it is usually not straightforward to efficiently generate
samples from p(x | β). In Markov chain Monte Carlo (MCMC) this is resolved
by constructing a Markov chain that has P (x | β) as stationary distribution. In
principle this can be done using the Metropolis–Hastings (MH) algorithm [23].
In this algorithm a sequence of states {x`}L`=1 is generated one at a time. At
the (`+ 1)th time step, a new state x′ is sampled from a proposal distribution
q(x′ | x`) and then either accepted or rejected as the (` + 1)th realization of
the chain. The probability of accepting the proposed state x′ is

α(x′ | x`) = min

(
1,
p(x′ | β) · q(x` | x′)
p(x` | β) · q(x′ | x`)

)
. (1.5)

If the proposed state is accepted, then x`+1 = x′, otherwise the chain stays
in the previous state, x`+1 = x`.

A special case of MH is the Metropolis algorithm [41]. In this algorithm a

symmetric proposal distribution is used, such that q(x`|x′)
q(x′|x`) = 1, which simpli-

fies Equation (1.5). A proposal is then accepted if x′ is at least as probable as

x`, and otherwise x′ is accepted with the probability p(x′|β)
p(x`|β) . This choice of

acceptance criterion still ensures the correct stationary distribution. When the
proposal distribution is not symmetric, the ratio of proposals in (1.5) can be
seen as a correction factor that allows the chain to have the correct stationary
distribution no matter the choice of proposal distribution.

For most molecular systems the Markov chain constructed by the MH
algorithm will not mix well, i.e., the sample will be highly correlated and the
chain will only explore the relevant part of the sample space slowly. So in
practice more advanced MCMC methods are used [6, 18], see for example the
reviews by Iba [26], Murray [43], or Ferkinghoff-Borg [13].

One of the challenges in MCMC based simulation is designing a good
proposal distribution q(x′ | x`). Many methods [6, 27] assume that bond angles
and bond lengths of the molecule are constant and represent the molecule by
internal dihedral angles Φ ∈ Tp, taking value on the p-dimensional hypertorus
Tp = [−π, π)p. Changes to the molecule are then proposed as changes in
dihedral angles and the proposal distribution takes the form q(Φ′ | Φ`).

The most straightforward proposal distributions to use are concentrated
Gaussian perturbations [27]. However, a proposal distribution is better when
it is closer to the stationary distribution, and to take advantage of this, most
proposal distributions incorporate protein structure information. A simple
way to achieve this is by proposing angles, or stretches of angles, observed in
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real proteins. Such methods are very successful, but come with the statistical
problem that q(Φ′ | Φ`) is not meaningful for continuous Φ. The solution

is often to disregard the term q(Φ`|Φ′)
q(Φ′|Φ`)

in equation (1.5), and abide that this

changes the stationary distribution of the chain and therefore results in biased
Monte Carlo estimators, c.f. Equation (1.3). The standard choices for such
proposal distributions are to use fragment libraries for backbone angles [28,
29, 54], and rotamer libraries for side chain angles. Rotamer libraries exist in
both backbone-independent version [34] and backbone-dependent version [11,
31, 52], where the frequency of each rotamer depends on the backbone angles
(φ, ψ).

In the following sections we are going to review a number of tractable
statistical models for describing the distributions over the dihedral angles in
proteins. Ideally we would be interested in a fully tractable model for the
conditional distribution of the dihedral angles in a protein p(Φ | a) given the
amino acid sequence a. However, tractable models have only been developed
for marginals or conditionals of this distribution.

1.5 Generative Models for the Polypeptide Backbone

Generative models for protein structure draw samples from the joint prob-
ability distribution of internal angles. As discussed in Section 1.3, the main
degrees of freedom in the protein backbone are the angles φ, ψ, and ω. Due
to the partial double bond character of the peptide bond, ω can be closely
approximated by a discrete two-state variable, leaving most of the variation
in the Ramachandran angles (φ, ψ). Any generative model either implicitly
or explicitly defines the joint probability distribution over all the backbone
dihedral angles, p(Ψ), where Ψ ∈ Tr and r is the total number of backbone
angles. From a modelling perspective, the full joint distribution is difficult to
work with directly without simplifying assumptions, both in terms of func-
tional form and dependency structure. Reducing the problem to independent
distributions of Ramachandran angle pairs on T2 is a good starting point for
modelling. A generative model for protein structure must as a minimum recu-
perate the Ramachandran empirical distribution. However, such a generative
model turns out to be very poor for predicting local protein structure, as
there is a strong dependency between (φ, ψ)-angle pairs at different positions
in the protein sequence. A tractable way of introducing dependency struc-
ture was introduced by Boomsma et al. [4] using a hidden Markov model,
denoted TorusDBN, which encodes dependency along the sequence while any
(φ, ψ)-pair remain conditionally independent from other angle pairs given the
sequence of hidden (latent) variables.
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1.5.1 Bivariate Angular Distributions

There are multiple options for the functional form of angle distributions in-
volved in protein structures. Here we focus on bivariate forms, due to the
strong dependency between φ and ψ observed in Ramachandran plots. Bivari-
ate distributions can be used as a basic building block for more complicated
models such as the generative model for protein backbones.

1.5.1.1 Bivariate von Mises

The von Mises distribution can be used for univariate angular data, and has
the attractive feature that it is a close approximation to the wrapped normal
distribution. By analogy to the normal distribution we would like a bivariate
von Mises distribution with five parameters: two mean parameters and three
parameters for variance and covariance. However, the “full” bivariate von
Mises distribution introduced by Mardia [36] has eight parameters,

p(φ, ψ | µ, ν, κ1, κ2,A) ∝ exp(κ1 cos(φ− µ) + κ2 cos(ψ − ν)

+
[
cos(φ− µ), sin(φ− µ)

]
A
[
cos(ψ − ν), sin(ψ − ν))

]ᵀ
), (1.6)

where µ and ν are mean parameters, κ1 and κ2 are concentration parameters,
and A ∈ R2×2 is a two-by-two matrix. Different submodels of Equation (1.6)
have been proposed, of which most attention has been given to the sine model
by Singh et al. [55]

ps(φ, ψ | µ, ν, κ1, κ2, λ)

∝ exp(κ1 cos(φ− µ) + κ2 cos(ψ − ν) + λ sin(φ− µ) sin(ψ − ν)), (1.7)

and the cosine model explored by Mardia et al. [40]

pc(φ, ψ | µ, ν, κ1, κ2, κ3)

∝ exp(κ1 cos(φ− µ) + κ2 cos(ψ − ν) + κ3 cos(φ− µ− ψ + ν)). (1.8)

Both submodels have five parameters and both approximate a normal distri-
bution for higher concentrations. For details on their properties see Mardia
et al. [40], Mardia and Jupp [39], Mardia and Frellsen [38], or Ley and Verde-
bout [33].

1.5.1.2 Histograms and Fourier Series

Initially models for (φ, ψ) were histogram based, which involves discretising
T2 into regions and assuming equal density within a region. Histogram meth-
ods are very flexible, as the bin size can be arbitrarily small. However, the
number of parameters is equal to the number of bins, and grows large for finer
meshes. Besides the large number of parameters needed, a histogram using
an adequately fine mesh would also suffer from a lack of precision due to the
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limited number of available protein structures according to Pertsemlidis et al.
[48]. Continuous models can have a more compact formulation, and have the
inherent advantage of being smooth.

A simple unimodal distribution cannot be used to approximate the quite
complicated multimodal Ramachandran empirical distribution, shown in Fig-
ure 1.3. Pertsemlidis et al. [48] proposed a parametrized continuous model for
the distribution using two-dimensional Fourier series for the log likelihood,
which can approximate any density function arbitrarily well by increasing the
order of the series. The density across the identity lines was ensured to be
continuous by using a period of 2π for the basis functions. A good approxi-
mation to the Ramachandran density required 80 parameters [48]. However,
the parameters are not easily interpretable in a biological context.

1.5.1.3 Mixture of von Mises

Mardia et al. [40] suggested using a mixture of bivariate von Mises distri-
butions for the Ramachandran empirical distribution, where either Equa-
tion (1.8) or (1.7) was the building block for the individual components. The
graphical representation of the model is shown in Figure 1.6 and the mixture
is defined as

p(φ, ψ | µ,ν,κ1,κ2,λ,w) =
∑

i

w(i)ps(φ, ψ | µ(i), ν(i), κ
(i)
1 , κ

(i)
2 , λ(i)), (1.9)

where i denotes the different components, w(i) is a positive weight such that∑
i w

(i) = 1, and ps(·) is the sine based bivariate von Mises distribution (1.7),
as it is used by Mardia [37]. A mixture can also be constructed using the
cosine model (1.8) as seen in Mardia et al. [40] and in TorusDBN described
later [4]. The mixture model needs multiple components to approximate the
Ramachandran empirical distribution, but the components are consistent with
partitions traditionally assigned to Ramachandran plots [40]. A maximum
likelihood fit of the model can be obtained using the expectation-maximization
(EM) algorithm [10], and a fitted model using the sine bivariate von Mises is
seen in Figure 1.5.

A mixture model is also compatible with how the Ramachandran empirical
distribution is thought to arise. In a protein the local context dictates and
restricts the possible dihedral angles for a residue. If the possible contexts with
reasonable accuracy can be discretised, then each discrete context corresponds
to a mixture component, and the distribution over Ramachandran angles is
obtained by marginalization. As we will see in the next section, this idea was
used in a hidden Markov model, where a discrete hidden state encapsulates
the contexts [4].

1.5.2 A Dynamical Bayesian Network Model: TorusDBN

Boomsma et al. [4] proposed a generative model for backbone angles that is
similar to a hidden Markov model, but it has more emission nodes. This type
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FIGURE 1.5
The Ramachandran plot for a mixture model, Equation (1.9), fitted to a subset
of the Top 500 database [35]. The model is a mixture of seven bivariate von
Mises sine components. Figure reproduced from Mardia [37].
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FIGURE 1.6
Graph representation of a mixture model. h is a discrete variable, each state
emitting a distinct distribution for (φ, ψ). Naa is the total number of amino
acids.

of model belongs to the broader group of models called dynamical Bayesian
networks [9, 42], however for most purposes it is simpler to consider it a hid-
den Markov model. The structure of the model can be seen in Figure 1.7.
The model consists of a sequence of hidden nodes, hi, each connecting to four
emission nodes. The sequence represents the protein chain and N denotes the
sequence length. Each hidden node is a discrete variable and can only take on
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FIGURE 1.7
The independence structure for the protein backbone model TorusDBN by
Boomsma et al. [4]. The lack of an arrow between two nodes indicates they
are conditionally independent. Hidden nodes are connected to emission nodes
for amino acid (a), dihedral angles (φ, ψ), cis/trans configuration (ω), and
secondary structure (s). M is the total number of proteins and N is the
length of individual proteins.

a limited number of states. Each hidden state corresponds to a distinct emis-
sion distribution for amino acid (a), Ramachandran angles (φ, ψ), cis/trans
conformation (ω), and secondary structure (s). The model can be used in
multiple ways; it can both be used for evaluating probabilities and generate
samples for whole proteins or parts of a protein. When used as a generative
model the hidden state sequence is sampled first, followed by sampling of the
emission nodes. This method is also applicable for partial resampling, where
nodes are resampled conditioned on the remaining fixed part of the sequence.

If some of the emission nodes are known a priori, they can be used to inform
the sequence of hidden states. In protein structure prediction the amino acid
sequence is known, and using Bayes theorem the hidden state sequence can be
sampled conditioned on the observed amino acid sequence. This can be done
for any of the emission nodes making the model ideal for generating proposals
in MCMC sampling.

The factorization of the joint probability distribution can be read directly
from the directed acyclic graph (DAG) in Figure 1.7. Each node contributes
with the probability of the node itself conditioned on any input nodes. Starting
with the top node h1 the full factorization reads

p(a,φ,ψ,ω, s,h) = p(h1)p(a1 | h1)p(φ1, ψ1 | h1)p(ω1 | h1)p(s1 | h1)

p(h2 | h1)p(a2 | h2) . . . p(s2 | h2)

...

p(hN | hN−1)p(aN | hN ) . . . p(sN | hN ).

(1.10)

In the TorusDBN model, the transition probabilities p(hi | hi−1) are assumed
to be a categorical distribution, which means that the parameters can be de-
scribed by a RK×K transition matrix, where K is the number of hidden states.
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Similarly, the emission probabilities for the amino acid p(ai | hi) and the sec-
ondary structure p(si | hi) are categorical distributions. By assuming that the
ω-angle is highly concentrated in the two modes, the cis/trans conformation
probability p(ωi | hi−1) can be assumed to be binomial. Finally, the probabil-
ity of the Ramachandran angles p(φi, ψi | hi) is assumed to be a cosine model
bivariate von Mises distribution.

As implied by the name, the hidden node sequence is not directly observ-
able, and when evaluating the probability of a protein structure the marginal-
ized distribution is used,

p(a,φ,ψ,ω, s) =
∑

h

p(a | h)p(φ,ψ | h)p(ω | h)p(s | h)p(h)

=
∑

h

∏

i

p(ai | hi)p(φi, ψi | hi)p(ωi | hi)p(si | hi)p(hi | hi−1),
(1.11)

where we conveniently define p(h1 | h0) = p(h1) since h1 has no incoming
edges. The calculation scales poorly as h has KN possible states where K
is the number of possible states for each hidden node, and N is the length
of the sequence. Fortunately the complexity can be reduced by using the
forward-backward algorithm that takes advantage of dynamic programming,
see, e.g., Durbin et al. [12]. Similarly, the forward-backtrack algorithm can be
used for efficient sampling [8].

The Markov property makes for a simple model but comes at the cost of
a short memory. A larger state space could make up for this, but would not
scale well. The model can generate protein structures that locally are protein-
like which combined with the ability to evaluate exact probabilities makes it
a perfect proposal distribution for MCMC sampling.

The parameters of the TorusDBN model can be estimated from data. A
maximum likelihood estimate of the parameters can be obtained using the
EM algorithm [10] or the stochastic EM algorithm [45].

1.6 Generative Models for Amino Acids Side Chains

In the previous section, we described generative models for the protein back-
bone. In this section we will review generative models for the amino acids side
chains. As mentioned earlier, the main degrees of freedom in the amino acids
side chains are the dihedral angles denoted χ1, χ2, χ3, and χ4. The number
of angles varies between amino acids, for example, glutamic acid has three
χ-angles, as illustrated in Figure 1.2.

Here we will consider a continuous model for the amino acid side chain an-
gles called BASILISK [22]. The independence assumptions in this model follow
an input output hidden Markov model (IOHMM) structure [3, 15, 42], which
has previously also been used successfully for modelling the dihedral angles in


