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Preface

Linear algebra is a branch of both pure and applied mathematics. It provides
the foundation for multi-dimensional representations of mathematical reason-
ing. It deals with systems of linear equations, matrices, determinants, vectors
and vector spaces, transformations, and eigenvalues and eigenvectors. The
techniques of linear algebra are extensively used in every science where often
it becomes necessary to approximate nonlinear equations by linear equations.
Linear algebra also helps to find solutions for linear systems of differential and
difference equations. In pure mathematics, linear algebra (particularly, vector
spaces) is used in many different areas of algebra such as group theory, module
theory, representation theory, ring theory, Galöis theory, and this list contin-
ues. This has given linear algebra a unique place in mathematics curricula all
over the world, and it is now being taught as a compulsory course at various
levels in almost every institution.

Although several fabulous books on linear algebra have been written, the
present rigorous and transparent introductory text can be used directly in
class for students of applied sciences. In fact, in an effort to bring the subject
to a wider audience, we provide a compact, but thorough, introduction to the
subject in An Introduction to Linear Algebra. This book is intended for
senior undergraduate and for beginning graduate one-semester courses.

The subject matter has been organized in the form of theorems and their
proofs, and the presentation is rather unconventional. It comprises 25 class-
tested lectures that the first author has given to math majors and engineering
students at various institutions over a period of almost 40 years. It is our belief
that the content in a particular chapter, together with the problems therein,
provides fairly adequate coverage of the topic under study.

A brief description of the topics covered in this book follows: In Chapter
1, we define axiomatically terms such as field, vector, vector space, subspace,
linear combination of vectors, and span of vectors. InChapter 2, we introduce
various types of matrices and formalize the basic operations: matrix addition,
subtraction, scalar multiplication, and matrix multiplication. We show that
the set of all m× n matrices under the operations matrix addition and scalar
multiplication is a vector space. In Chapter 3, we begin with the defini-
tion of a determinant and then briefly sketch the important properties of

ix
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determinants. In Chapter 4, we provide necessary and sufficient conditions
for a square matrix to be invertible. We shall show that the theory of deter-
minants can be applied to find an analytical representation of the inverse of a
square matrix. Here we also use elementary theory of difference equations to
find inverses of some band matrices.

The main purpose of Chapters 5 and 6 is to discuss systematically
Gauss and Gauss–Jordan elimination methods to solve m linear equations in
n unknowns. These equations are conveniently written as Ax = b, where A is
an m × n matrix, x is an n × 1 unknown vector, and b is an m × 1 vector.
For this, we introduce the terms consistent, inconsistent, solution space, null
space, augmented matrix, echelon form of a matrix, pivot, elementary row
operations, elementary matrix, row equivalent matrix, row canonical form, and
rank of a matrix. These methods also provide effective algorithms to compute
determinants and inverses of matrices. We also prove several theoretical results
that yield necessary and sufficient conditions for a linear system of equations
to have a solution. Chapter 7 deals with a modified but restricted realization
of Gaussian elimination. We factorize a given m × n matrix A to a product
of two matrices L and U, where L is an m×m lower triangular matrix, and
U is an m× n upper triangular matrix. Here we also discuss various variants
and applications of this factorization.

In Chapter 8, we define the concepts linear dependence and linear inde-
pendence of vectors. These concepts play an essential role in linear algebra
and as a whole in mathematics. Linear dependence and independence distin-
guish between two vectors being essentially the same or different. In Chapter
9, for a given vector space, first we introduce the concept of a basis and then
describe its dimension in terms of the number of vectors in the basis. Here we
also introduce the concept of direct sum of two subspaces. In Chapter 10,
we extend the known geometric interpretation of the coordinates of a vector
in R3 to a general vector space. We show how the coordinates of a vector
space with respect to one basis can be changed to another basis. Here we also
define the terms ordered basis, isomorphism, and transition matrix. In Chap-
ter 11, we redefine rank of a matrix and show how this number is directly
related to the dimension of the solution space of homogeneous linear systems.
Here for a given matrix we also define row space, column space, left and right
inverses, and provide necessary and sufficient conditions for their existence.
In Chapter 12, we introduce the concept of linear mappings between two
vector spaces and extend some results of earlier chapters. In Chapter 13, we
establish a connection between linear mappings and matrices. We also intro-
duce the concept of similar matrices, which plays an important role in later
chapters. In Chapter 14, we extend the familiar concept inner product of two
or three dimensional vectors to general vector spaces. Our definition of inner
products leads to the generalization of the notion of perpendicular vectors,
called orthogonal vectors. We also discuss the concepts projection of a vector
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onto another vector, unitary space, orthogonal complement, orthogonal basis,
and Fourier expansion. This chapter concludes with the well-known Gram–
Schmidt orthogonalization process. In Chapter 15, we discuss a special type
of linear mapping, known as linear functional. We also address such notions
as dual space, dual basis, second dual, natural mapping, adjoint mapping,
annihilator, and prove the famous Riesz representation theorem.

Chapter 16 deals with the eigenvalues and eigenvectors of matrices. We
summarize those properties of the eigenvalues and eigenvectors of matrices
that facilitate their computation. Here we come across the concepts char-
acteristic polynomial, algebraic and geometric multiplicities of eigenvalues,
eigenspace, and companion and circulant matrices. We begin Chapter 17
with the definition of a norm of a vector and then extend it to a matrix.
Next, we drive some estimates on the eigenvalues of a given matrix, and prove
some useful convergence results. Here we also establish well known Cauchy–
Schwarz, Minkowski, and Bessel inequalities, and discuss the terms spectral
radius, Rayleigh quotient, and best approximation.

In Chapter 18, we show that if algebraic and geometric multiplicities of
an n×nmatrix A are the same, then it can be diagonalized, i.e., A = PDP−1;
here, P is a nonsingular matrix and D is a diagonal matrix. Next, we provide
necessary and sufficient conditions for A to be orthogonally diagonalizable,
i.e., A = QDQt, where Q is an orthogonal matrix. Then, we discuss QR fac-
torization of the matrix A. We also furnish complete computationable char-
acterizations of the matrices P,D,Q, and R. In Chapter 19, we develop a
generalization of the diagonalization procedure discussed in Chapter 18. This
factorization is applicable to any real m × n matrix A, and in the literature
has been named singular value decomposition. Here we also discuss reduced
singular value decomposition.

In Chapter 20, we show how linear algebra (especially eigenvalues and
eigenvectors) plays an important role to find the solutions of homogeneous
differential and difference systems with constant coefficients. Here we also de-
velop continuous and discrete versions of the famous Putzer’s algorithm. In
a wide range of applications, we encounter problems in which a given system
Ax = b does not have a solution. For such a system we seek a vector(s) x̂ so
that the error in the Euclidean norm, i.e., ‖Ax̂ − b‖2, is as small as possible
(minimized). This solution(s) x̂ is called the least squares approximate solu-
tion. In Chapter 21, we shall show that a least squares approximate solution
always exists and can be conveniently computed by solving a related system
of n equations in n unknowns (normal equations). In Chapter 22, we study
quadratic and diagonal quadratic forms in n variables, and provide criteria for
them to be positive definite. Here we also discuss maximum and minimum of
the quadratic forms subject to some constraints (constrained optimization).
In Chapter 23, first we define positive definite symmetric matrices in terms
of quadratic forms, and then for a symmetric matrix to be positive definite, we
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provide necessary and sufficient conditions. Next, for a symmetric matrix we
revisit LU -factorization, and give conditions for a unique factorization LDLt,
where L is a lower triangular matrix with all diagonal elements 1, and D is a
diagonal matrix with all positive elements. We also discuss Cholesky’s decom-
position LcL

t
c where Lc = LD1/2, and for its computation provide Cholesky’s

algorithm. This is followed by Sylvester’s criterion, which gives easily verifiable
necessary and sufficient conditions for a symmetric matrix to be positive defi-
nite. We conclude this chapter with a polar decomposition. InChapter 24, we
introduce the concept of pseudo/generalized (Moore–Penrose) inverse which
is applicable to all m×n matrices. As an illustration we apply Moore–Penrose
inverse to least squares solutions of linear equations. Finally, in Chapter 25,
we briefly discuss irreducible, nonnegative, diagonally dominant, monotone,
and Toeplitz matrices. We state 11 theorems which, from the practical point
of view, are of immense value. These types of matrices arise in several diverse
fields, and hence have attracted considerable attention in recent years.

In this book, there are 148 examples that explain each concept and demon-
strate the importance of every result. Two types of 254 problems are also
included, those that illustrate the general theory and others designed to fill
out text material. The problems form an integral part of the book, and every
reader is urged to attempt most, if not all of them. For the convenience of the
reader, we have provided answers or hints to all the problems.

In writing a book of this nature, no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly, and
accurately as possible. The illustrative examples are usually very simple, keep-
ing in mind an average student.

It is earnestly hoped that An Introduction to Linear Algebra will
serve an inquisitive reader as a starting point in this rich, vast, and ever-
expanding field of knowledge.

We would like to express our appreciation to our students and Ms. Aastha
Sharma at CRC (New Delhi) for her support and cooperation.

Ravi P. Agarwal
Cristina Flaut



Chapter 1

Linear Vector Spaces

A vector space (or linear space) consists of four things {F, V,+, s.m.}, where F
is a field of scalars, V is the set of vectors, and + and s.m. are binary operations
on the set V called vector addition and scalar multiplication, respectively.
In this chapter we shall define each term axiomatically and provide several
examples.

Fields. A field is a set of scalars, denoted by F, in which two binary op-
erations, addition (+) and multiplication (·), are defined so that the following
axioms hold:

A1. Closure property of addition: If a, b ∈ F, then a+ b ∈ F.

A2. Commutative property of addition: If a, b ∈ F, then a+ b = b+ a.

A3. Associative property of addition: If a, b, c ∈ F, then (a+b)+c = a+(b+c).

A4. Additive identity: There exists a zero element, denoted by 0, in F such
that for all a ∈ F, a+ 0 = 0 + a = a.

A5. Additive inverse: For each a ∈ F, there is a unique element (−a) ∈ F
such that a+ (−a) = (−a) + a = 0.

A6. Closure property of multiplication: If a, b ∈ F, then a · b ∈ F.

A7. Commutative property of multiplication: If a, b ∈ F, then a · b = b · a.
A8. Associative property of multiplication: If a, b, c ∈ F, then (a·b)·c = a·(b·c).
A9. Multiplicative identity: There exists a unit element, denoted by 1, in F
such that for all a ∈ F, a · 1 = 1 · a = a.

A10. Multiplicative inverse: For each a ∈ F, a 6= 0, there is an unique element
a−1 ∈ F such that a · a−1 = a−1a = 1.

A11. Left distributivity: If a, b, c ∈ F, then a · (b + c) = a · b+ a · c.
A12. Right distributivity: If a, b, c ∈ F, then (a+ b) · c = a · c+ b · c.

Example 1.1. The set of rational numbers Q, the set of real numbers R,
and the set of complex numbers C, with the usual definitions of addition and
multiplication, are fields. The set of natural numbers N = {1, 2, · · · }, and the
set of all integers Z = {· · · ,−2,−1, 0, 1, 2 · · · } are not fields.

Let F and F1 be fields and F1 ⊆ F, then F1 is called a subfield of F. Thus,
Q is a subfield of R, and R is a subfield of C.

1



2 Chapter 1

Vector spaces. A vector space V over a field F denoted as (V, F )
is a nonempty set of elements called vectors together with two binary opera-
tions, addition of vectors and multiplication of vectors by scalars, so that the
following axioms hold:

B1. Closure property of addition: If u, v ∈ V, then u+ v ∈ V.

B2. Commutative property of addition: If u, v ∈ V, then u+ v = v + u.

B3. Associativity property of addition: If u, v, w ∈ V, then (u + v) + w =
u+ (v + w).

B4. Additive identity: There exists a zero vector, denoted by 0, in V such
that for all u ∈ V, u+ 0 = 0 + u = u.

B5. Additive inverse: For each u ∈ V, there exists a vector v in V such that
u+ v = v + u = 0. Such a vector v is usually written as −u.
B6. Closure property of multiplication: If u ∈ V and a ∈ F, then the product
a · u = au ∈ V.

B7. If u, v ∈ V and a ∈ F, then a(u+ v) = au+ av.

B8. If u ∈ V and a, b ∈ F, then (a+ b)u = au+ bu.

B9. If u ∈ V and a, b ∈ F, then ab(u) = a(bu).

B10. Multiplication of a vector by a unit scalar: If u ∈ V and 1 ∈ F, then
1u = u.

In what follows, the subtraction of the vector v from u will be written as
u − v, and by this we mean u + (−v), or u + (−1)v. The spaces (V,R) and
(V,C) will be called real and complex vector spaces, respectively.

Example 1.2 (The n-tuple space). Let F be a given field. We
consider the set V of all ordered n-tuples

u =







a1
...
an






(or, (a1, · · · , an))

of scalars (known as components) ai ∈ F. If

v =







b1
...
bn







is in V, the addition of u and v is defined by

u+ v =







a1 + b1
...

an + bn






,
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and the product of a scalar c ∈ F and vector u ∈ V is defined by

cu =







ca1
...
can






.

It is to be remembered that u = v, if and only if their corresponding com-
ponents are equal, i.e., ai = bi, i = 1, · · · , n. With this definition of addition
and scalar multiplication it is easy to verify all the axioms B1–B10, and hence
this (V, F ) is a vector space. In particular, if

w =







c1
...
cn







is in V, then the i-th component of (u+ v) +w is (ai + bi) + ci, which in view
of A3 is the same as ai + (bi + ci), and this is the same as the i-th component
of u + (v + w), i.e., B3 holds. If F = R, then V is denoted as Rn, which
for n = 2 and 3 reduces respectively to the two and three dimensional usual
vector spaces. Similarly, if F = C, then V is written as Cn.

Example 1.3 (The space of polynomials). Let F be a given field.
We consider the set Pn, n ≥ 1 of all polynomials of degree at most n− 1, i.e.,

Pn =

{

a0 + a1x+ · · ·+ an−1x
n−1 =

n−1
∑

i=0

aix
i : ai ∈ F, x ∈ R

}

.

If u =
∑n−1

i=0 aix
i, v =

∑n−1
i=0 bix

i ∈ Pn, then the addition of vectors u and v
is defined by

u+ v =
n−1
∑

i=0

aix
i +

n−1
∑

i=0

bix
i =

n−1
∑

i=0

(ai + bi)x
i,

and the product of a scalar c ∈ F and vector u ∈ Pn is defined by

cu = c

n−1
∑

i=0

aix
i =

n−1
∑

i=0

(cai)x
i.

This (Pn, F ) is a vector space. We remark that the set of all polynomials of
degree exactly n− 1 is not a vector space. In fact, if we choose bn−1 = −an−1,
then u+ v is a polynomial of degree n− 2.

Example 1.4 (The space of functions). Let F be a given field, and
X ⊆ F.We consider the set V of all functions from the set X to F. The sum of
two vectors f, g ∈ V is defined by (f+g), i.e., (f+g)(x) = f(x)+g(x), x ∈ X,
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and the product of a scalar c ∈ F and vector f ∈ V is defined by cf, i.e.,
(cf)(x) = cf(x). This (V, F ) is a vector space. In particular, (C[X ], F ), where
C[X ] is the set of all continuous functions from X to F, with the same vector
addition, and scalar multiplication is a vector space.

Example 1.5 (The space of sequences). Let F be a given field.
Consider the set S of all sequences a = {an}∞n=1, where an ∈ F. If a and
b are in S and c ∈ F, we define a + b = {an} + {bn} = {an + bn} and
ca = c{an} = {can}. Clearly, (S, F ) is a vector space.

Example 1.6. Let F = R and V be the set of all solutions of the homo-
geneous ordinary linear differential equation with real constant coefficients

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = 0, a0 6= 0, x ∈ R.

This (V, F ) is a vector space with the same vector addition and scalar mul-
tiplication as in Example 1.4. Note that if the above differential equation is
nonhomogeneous then (V, F ) is not a vector space.

Theorem 1.1. Let V be a vector space over the field F, and let u, v ∈ V.
Then,

1. u+ v = u implies v = 0 ∈ V.

2. 0u = 0 ∈ V.

3. −u is unique.

4. −u = (−1)u.

Proof. 1. On adding −u on both sides of u+ v = u, we have

−u+ u+ v = − u+ u ⇒ (−u+ u) + v = 0 ⇒ 0 + v = 0 ⇒ v = 0.

2. Clearly, 0u = (0 + 0)u = 0u+ 0u, and hence 0u = 0 ∈ V.

3. Assume that v and w are such that u + v = 0 and u + w = 0. Then, we
have

v = v + 0 = v + (u+ w) = (v + u) + w = (u+ v) + w = 0 + w = w,

i.e., −u of any vector u ∈ V is unique.

4. Since

0 = 0u = [1 + (−1)]u = 1u+ (−1)u = u+ (−1)u,

it follows that (−1)u is a negative for u. The uniqueness of this negative vector
now follows from Part 3.

Subspaces. Let (V, F ) and (W,F ) be vector spaces and W ⊆ V, then
(W,F ) is called a subspace of (V, F ). It is clear that the smallest subspace
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(W,F ) of (V, F ) consists of only the zero vector, and the largest subspace
(W,F ) is (V, F ) itself.

Example 1.7. Let F = R,

W =











a1
a2
0



 : a1, a2 ∈ R







and V =











a1
a2
a3



 : a1, a2, a3 ∈ R







.

Clearly, (W,R) is a subspace of (V,R). However, if we let

W =











a1
a2
a3



 : a1 > 0, a2 > 0, a3 > 0







,

then (W,R) is not a subspace of (V,R).

Example 1.8. Let F be a given field. Consider the vector spaces (P4, F )
and (P3, F ). Clearly, (P3, F ) is a subspace of (P4, F ). However, the set of all
polynomials of degree exactly two over the field F is not a subspace of (P4, F ).

Example 1.9. Consider the vector spaces (V, F ) and (C[X ], F ) considered
in Example 1.4. Clearly, (C[X ], F ) is a subspace of (V, F ).

To check if the nonempty subset W of V over the field F is a subspace
requires the verification of all the axioms B1–B10. However, the following
result simplifies this verification considerably.

Theorem 1.2. If (V, F ) is a vector space and W is a nonempty subset of
V, then (W,F ) is a subspace of (V, F ) if and only if for each pair of vectors
u, v ∈W and each scalar a ∈ F the vector au+ v ∈ W.

Proof. If (W,F ) is a subspace of (V, F ), and u, v ∈ W, a ∈ F , then obviously
au + v ∈ W. Conversely, since W 6= ∅, there is a vector u ∈ W, and hence
(−1)u+ u = 0 ∈W. Further, for any vector u ∈ W and any scalar a ∈ F, the
vector au = au + 0 ∈ W. This in particular implies that (−1)u = −u ∈ W.
Finally, we notice that if u, v ∈W, then 1u+ v ∈W. The other axioms can be
shown similarly. Thus (W,F ) is a subspace of (V, F ).

Thus (W,F ) is a subspace of (V, F ) if and only if for each pair of vectors
u, v ∈W,u+ v ∈ W and for each scalar a ∈ F, au ∈W.

Let u1, · · · , un be vectors in a given vector space (V, F ), and c1, · · · , cn ∈ F
be scalars. The vector u = c1u

1 + · · · + cnu
n is known as linear combination

of ui, i = 1, · · · , n. By mathematical induction it follows that u ∈ (V, F ).

Theorem 1.3. Let ui ∈ (V, F ), i = 1, · · · , n(≥ 1), and

W =
{

c1u
1 + · · ·+ cnu

n : ci ∈ F, i = 1, · · · , n
}
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then (W,F ) is a subspace of (V, F ), andW contains each of the vectors ui, i =
1, · · · , n.

Proof. Clearly, each ui is a linear combination of the form

ui =

n
∑

j=1

δiju
j ,

where δij is the Kronecker delta defined by

δij =

{

0, i 6= j
1, i = j.

Thus, each ui ∈ W. Now, if v =
∑n

i=1 ciu
i, w =

∑n
i=1 diu

i and a ∈ F, then
we have

av + w = a

n
∑

i=1

ciu
i +

n
∑

i=1

diu
i =

n
∑

i=1

(aci + di)u
i =

n
∑

i=1

αiu
i, αi ∈ F

which shows that av+w ∈ W. The result now follows from Theorem 1.2.

The subspace (W,F ) in Theorem 1.3 is called the subspace spanned or
generated by the vectors ui, i = 1, · · · , n, and written as Span{u1, · · · , un}.
If (W,F ) = (V, F ), then the set {u1, · · · , un} is called a spanning set for the
vector space (V, F ). Clearly, in this case each vector u ∈ V can be expressed
as a linear combination of vectors ui, i = 1, · · · , n.

Example 1.10. Since

2





2
1
4



− 3





1
0
2



+ 5





3
2
1



−





4
2
0



 =





12
10
7





it follows that




12
10
7



 ∈ Span











2
1
4



 ,





1
0
2



 ,





3
2
1



 ,





4
2
0











.

However,




1
2
3



 6∈ Span











1
0
0



 ,





1
1
0











.

Example 1.11. For the vector space (V, F ) considered in Example 1.2
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the set {e1, · · · , en}, where

ei =

























0
...
0
1
0
...
0

























∈ V (1 at the i-th place)

is a spanning set. Similarly, for the vector space (Pn, F ) considered in Example
1.3, the set {1, x, · · · , xn−1} is a spanning set.

Problems

1.1. Show that the set of all real numbers of the form a+
√
2b, where a

and b are rational numbers, is a field.

1.2. Show that

(i) if u1, · · · , un span V and u ∈ V, then u, u1, · · · , un also span V

(ii) if u1, · · · , un span V and uk is a linear combination of ui, i = 1, · · · ,
n, i 6= k, then ui, i = 1, · · · , n, i 6= k also span V

(iii) if u1, · · · , un span V and uk = 0, then ui, i = 1, · · · , n, i 6= k also
span V.

1.3. Show that the intersection of any number of subspaces of a vector
space V is a subspace of V.

1.4. Let U and W be subspaces of a vector space V. The space

U +W = {v : v = u+ w where u ∈ U, w ∈W}
is called the sum of U and W. Show that

(i) U +W is also a subspace of V

(ii) U and W are contained in U +W

(iii) U + U = U

(iv) U ∪W is a subspace of V ?.

1.5. Consider the following polynomials of degree three:

L1(x) =
(x− x2)(x− x3)(x− x4)

(x1−x2)(x1−x3)(x1−x4)
, L2(x) =

(x− x1)(x− x3)(x− x4)

(x2−x1)(x2−x3)(x2−x4)

L3(x) =
(x− x1)(x− x2)(x − x4)

(x3−x1)(x3−x2)(x3−x4)
, L4(x) =

(x − x1)(x − x2)(x − x3)

(x4−x1)(x4−x2)(x4−x3)
,
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where x1 < x2 < x3 < x4. Show that

(i) if P3(x) ∈ P4 is an arbitrary polynomial of degree three, then P3(x) =
L1(x)P3(x1) + L2(x)P3(x2) + L3(x)P3(x3) + L4(x)P3(x4)

(ii) the set {L1(x), L2(x), L3(x), L4(x)} is a spanning set for (P4, R).

1.6. Prove that the sets {1, 1+x, 1+x+x2, 1+x+x2 +x3} and {1, (1−
x), (1 − x)2, (1− x)3} are spanning sets for (P4, R).

1.7. Let S be a subset of Rn consisting of all vectors with components
ai, i = 1, · · · , n such that a1 + · · ·+ an = 0. Show that S is a subspace of Rn.

1.8. On R3 we define the following operations




x1
x2
x3



+





y1
y2
y3



 =





x1 + y1
0

x3 + y3



 and a





x1
x2
x3



 =





ax1
ax2
ax3



 , a ∈ R.

With these operations, is R3 a vector space over the field R?

1.9. Consider the following subsets of the vector space R3:

(i) V1 = {x ∈ R3 : 3x3 = x1 − 5x2} (ii) V2 = {x ∈ R3 : x21 = x2 + 6x3}
(iii) V3 = {x ∈ R3 : x2 = 0} (iv) V4 = {x ∈ R3 : x2 = a, a ∈ R − {0}}.
Find if the above sets V1, V2, V3, and V4 are vector subspaces of R3.

1.10. Let (V,X) be the vector space of functions considered in Example
1.4 with X = F = R, and W ⊂ V. Show that W is a subspace of V if

(i) W contains all bounded functions

(ii) W contains all even functions (f(−x) = f(x))

(iii) W contains all odd functions (f(−x) = −f(x)).

Answers or Hints

1.1. Verify A1–A12.
1.2. (i) Since u1, · · · , un span V and u ∈ V there exist scalars c1, · · · , cn
such that u =

∑n
i=1 ciu

i. Let W = {v : v =
∑n

i=1 αiu
i + αn+1u}. We need

to show that (V, F ) = (W,F ). Clearly, V ⊆ W. Now let v ∈ W, then v =
∑n

i=1 αiu
i + αn+1

∑n
i=1 ciu

i =
∑n

i=i(αi + αn+1ci)u
i. Hence, W ⊆ V.

(ii) Similar as (i).
(iii) Similar as (i).

1.3. Let U,W be subspaces of V. It suffices to show that U ∩W is also a
subspace of V. Since 0 ∈ U and 0 ∈ W it is clear that 0 ∈ U ∩W. Now let
u,w ∈ U ∩ W, then u,w ∈ U and u,w ∈ W. Further for all scalars a, b ∈
F, au+ bw ∈ U and au+ bw ∈W. Thus au+ bw ∈ U ∩W.
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1.4. (i) Let v1, v2 ∈ U + W, where v1 = u1 + w1, v2 = u2 + w2. Then,
v1 + v2 = u1+w1 +u2+w2 = (u1 +u2)+ (w1 +w2). Now since U and W are
subspaces, u1 + u2 ∈ U and w1 +w2 ∈W. This implies that v1 + v2 ∈ U +W.
Similarly we can show that cv1 ∈ U +W, c ∈ F.

(ii) If u ∈ U, then since 0 ∈W, u = u+ 0 ∈ U +W.

(iii) Since U is a subspace of V it is closed under vector addition, and hence
U + U ⊆ U. We also have U ⊆ U + U from (i).

(iv) U ∪W need not be a subspace of V. For example, consider V = R3,

U =











a1
0
0



 : a1 ∈ R







, W =











0
0
a3



 : a3 ∈ R







.

Then

U ∪W =











a1
0
0



 ,





0
0
a3



 : a1 ∈ R, a3 ∈ R







.

Clearly,





1
0
0



 ∈ U ∪W,





0
0
1



 ∈ U ∪W, but





1
0
1



 6∈ U ∪W.

1.5. (i) The function f(x) = L1(x)P3(x1) + L2(x)P3(x2) + L3(x)P3(x3) +
L4(x)P4(x4) is a polynomial of degree at most three, and f(xi) = Li(xi)×
P3(xi) = P3(xi), i = 1, 2, 3, 4. Thus f(x) = P3(x) follows from the uniqueness
of interpolating polynomials.

(ii) Follows from (i).

1.6. It suffices to note that a + bx + cx2 + dx3 = (a − b) + (b − c)(1 + x) +
(c− d)(1 + x+ x2) + d(1 + x+ x2 + x3).
1.7. Use Theorem 1.2.
1.8. No.
1.9. V1 and V3 are vector subspaces, whereas V2 and V4 are not vector sub-
spaces of R3.
1.10. Use Theorem 1.2.
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Chapter 2

Matrices

Matrices occur in many branches of applied mathematics and social sciences,
such as algebraic and differential equations, mechanics, theory of electrical
circuits, nuclear physics, aerodynamics, and astronomy. It is, therefore, nec-
essary for every young scientist and engineer to learn the elements of matrix
algebra.

A system of m × n elements from a field F arranged in a rectangular
formation along m rows and n columns and bounded by the brackets ( ) is
called an m×n matrix. Usually, a matrix is written by a single capital letter.
Thus,

A =

















a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n
· · · · · · · · · · · · · · · · · ·
ai1 ai2 · · · aij · · · ain
· · · · · · · · · · · · · · · · · ·
am1 am2 · · · amj · · · amn

















is an m×n matrix. In short, we often write A = (aij), where it is understood
that the suffix i = 1, · · · ,m and j = 1, · · · , n, and ij indicates the i-th row
and the j-th column. The numbers (A)ij = aij are called the elements of the
matrix A. For example, the following matrices A and B are of order 2× 3 and
3× 2,

A =

(

3 5 7
1 4 8

)

, B =





1 + i 1− i
2 + 3i 2− 5i
7 5 + 3i



 , i =
√
−1.

A matrix having a single row, i.e., m = 1, is called a row matrix or a row
vector, e.g., (2 3 5 7).

A matrix having a single column, i.e., n = 1, is called a column matrix or
a column vector, e.g.,





5
7
3



 .

Thus the columns of the matrix A can be viewed as vertical m-tuples (see

11
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Example 1.2), and the rows as horizontal n-tuples. Hence, if we let

aj =







a1j
...

amj






, j = 1, 2, · · · , n

then the above matrix A can be written as

A = (a1, a2, · · · , an).

A matrix having n rows and n columns is called a square matrix of order
n, e.g.,

A =





1 2 3
2 3 4
3 4 5



 (2.1)

is a square matrix of order 3.

For a square matrix A of order n, the elements aii, i = 1, · · · , n, lying
on the leading or principal diagonal are called the diagonal elements of A,
whereas the remaining elements are called the off-diagonal elements. Thus for
the matrix A in (2.1) the diagonal elements are 1, 3, 5.

A square matrix all of whose elements except those in the principal diag-
onal are zero, i.e., aij = 0, |i− j| ≥ 1 is called a diagonal matrix, e.g.,

A =





7 0 0
0 5 0
0 0 1



 .

A diagonal matrix of order n that has unity for all its diagonal elements,
i.e., aii = 1, is called a unit or identity matrix of order n and is denoted by In
or simply by I. For example, identity matrix of order 3 is

I3 =





1 0 0
0 1 0
0 0 1



 ,

and of nth order In = (e1, e2, · · · , en).
If all the elements of a matrix are zero, i.e., aij = 0, it is called a null or

zero matrix and is denoted by 0, e.g.,

0 =





0 0
0 0
0 0



 .

A square matrix A = (aij) is called symmetric when aij = aji. If aij =
−aji, so that all the principal diagonal elements are zero, then the matrix is


