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Preface

Since I started working with fractals, my family, friends, colleagues, and
students were puzzled hearing about hypercomplex fractals. This is mainly
due to the specific nomenclature used both in the fractal theory as well as
in the hypercomplex number theory, with all of their attractors, repellers,
octonions, zero divisors, and nilpotents. These words naturally scare
them! And at the same time, they love colorful images generated by
my computer simulations. These images, however, are just nice pictures
to them. I am convinced that many non scientists, who had contact with
complex and hypercomplex fractals have the same feelings. Therefore, I
decided to write a book which would present complex and hypercomplex
fractals in a concise and comprehensible manner omitting mathematical
formalism as much as possible. This idea has germinated in my mind for
a few years, and finally I can place the fruit of a few years’ work into your
hands.

This book concisely presents the complete story on complex and
hypercomplex fractals, starting from the very first steps in complex
dynamics and resulting complex fractal sets, through the generalizations
of Julia and Mandelbrot sets on a complex plane and the Holy Grail of
fractal geometry – a 3D Mandelbrot set, and ending with hypercomplex,
multicomplex, and multihypercomplex fractal sets that are still under
consideration of scientists. I tried to write this book in a simple way in
order to make it understandable to most people whose math knowledge
covers the fundamentals of complex numbers only. Moreover, the book
is full of illustrations of generated fractals and stories about great
mathematicians, number spaces, and related fractals. In most cases, only
information required for proper understanding of a nature of a given vector
space or a construction of a given fractal set is provided; nevertheless, a
more advanced reader may treat this book as a fundamental compendium
on hypercomplex fractals, with references to purely scientific issues like
dynamics and stability of hypercomplex systems.

The preparation of this book would not be possible without the
reviewers: Professor Wojciech Chojnacki from the University of Adelaide,

vii



viii � Preface

Australia, who is an outstanding specialist in computer science, computer
graphics, and mathematics related to these disciplines, and Dr. Krzysztof
Gdawiec from the University of Silesia, Poland, who is the eminent fractal
researcher working on developing new types of fractal sets. They both
contributed many corrections and additions to make this book even
better, and I am very grateful to them for their valuable comments and
discussion.

I would like to thank my dear fiancée, Angelika, who supported me
during my writing of this book, read its draft version, and provided a great
feedback. I am very grateful to her for this help.

Finally, I would like to thank CRC editorial staff, especially Rick Adams,
Jessica Vega, and Robin LloydStarkes, for their great and professional
support during the entirety of the publishing process.

Andrzej Katunin
January, 2017



C H A P T E R 1

Introduction to Fractals

on a Complex Plane

Fractal. This mysterious word penetrates modern popculture and society.
But what does it mean? What is the definition of a fractal?

Actually, considering a great variety of types, shapes, and properties
of objects that are called fractals, it is really hard to formulate a universal
definition. In 1975, the word “fractal” was introduced by Benoit B.
Mandelbrot, the father of a fractal geometry, and popularized in his
famous book, The Fractal Geometry of Nature [79]. It comes from the
Latin fractus, which means “broken” or “fractured.” This name explains
its nature, which is usually characterized by a very complex shape and, in
most cases, fractional dimension. Beyond this property, fractals have few
other differences from other geometrical objects. The next property is the
selfsimilarity of fractals, which means that they looks exactly the same
no matter how big the magnification of the fractals are. Roughly speaking,
fractals are constructed from smaller copies of themselves. And the last
thing that characterizes a fractal (which results from already presented
properties) – it cannot be represented by a closed form expression, but
by a recurrent dependency.

However, fractals and hierarchical structure of objects were known
a long time before the Mandelbrot. The best examples are the Indian
temples built in the Middle Ages1 (see example in Figure 1.1). Many
proofs of selfsimilarity of Hindu temples were given by numerous

1Striking examples of Indian temples that use selfsimilarity in their constructions are
the Kandariya Mahadeva Temple built in 1030 in Khajuraho, the towers of Meenakshi
Amman Temple built in 1623–1655 in Madurai, the Shveta Varahaswamy Temple built in
1673–1704 in Mysore, and many others.

1



2 � A concise introduction to hypercomplex fractals

Figure 1.1: A view of Chennakesava Temple, Somanathapura, India, built
in 1268 (photo courtesy of Arlan Zwegers).

researchers [31, 106, 117]. Additional proofs were provided by Ron
Eglash, who works in the area of ethnomathematics, and are outlined
in his book [36]. He wrote that Africans have been widely using fractals in
their culture (e.g., in architecture and textile design) for centuries. In the
20th century, fractals conquered arts, they appeared in works of artists
who used the decalcomania technique; several paintings of the 20th
century surrealists also consist of a fractal hierarchy (e.g. The Face of War
painted in 1940 by Salvador Dalı́).

The first objects that we call now fractals appeared at the turn of
the 19th and 20th centuries, and started from the simplest fractal — the
Cantor set, named after Georg Cantor, a German mathematician. This
fractal was constructed by Cantor in 1883, and inspired by earlier studies
of Karl Weierstrass, a German mathematician who introduced everywhere
continuous but nowhere differentiable function (which is known now as
the Weierstrass function), the prototype of a fractal. Two decades later,
the next fractal function appeared — the Koch curve, and then Koch
snowflake, which was proposed by Swedish mathematician Helge von
Koch in 1904.

In the meantime, two fractal curves of a special type appeared,


