

Computational Problems for Physics

http://taylorandfrancis.com

Computational Problems
for Physics

With Guided Solutions Using Python

Rubin H. Landau, Manuel José Páez

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20180414

International Standard Book Number-13: 978-1-1387-0541-8 (Paperback)
International Standard Book Number-13: 978-1-1387-0591-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish
reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification
and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www

Contents

Acknowledgments xi

Series Preface xiii

Preface xv

About the Authors xvii

Web Materials xix

1 Computational Basics for Physics 1
1.1 Chapter Overview . 1
1.2 The Python Ecosystem . 1

1.2.1 Python Visualization Tools 2
1.2.2 Python Matrix Tools . 8
1.2.3 Python Algebraic Tools . 11

1.3 Dealing with Floating Point Numbers 12
1.3.1 Uncertainties in Computed Numbers 13

1.4 Numerical Derivatives . 14
1.5 Numerical Integration . 15

1.5.1 Gaussian Quadrature . 17
1.5.2 Monte Carlo (Mean Value) Integration 17

1.6 Random Number Generation . 19
1.6.1 Tests of Random Generators 21
1.6.2 Central Limit Theorem . 22

1.7 Ordinary Differential Equations Algorithms 24
1.7.1 Euler & Runge-Kutta Rules 25

1.8 Partial Differential Equations Algorithms 27
1.9 Code Listings . 27

v

vi Contents

2 Data Analytics for Physics 39
2.1 Chapter Overview . 39
2.2 Root Finding . 39
2.3 Least-Squares Fitting . 42

2.3.1 Linear Least-Square Fitting 43
2.4 Discrete Fourier Transforms (DFT) 47
2.5 Fast Fourier Transforms (FFT)� . 51
2.6 Noise Reduction . 54

2.6.1 Noise Reduction via Autocorrelation Function 54
2.6.2 Noise Reduction via Digital Filters 56

2.7 Spectral Analysis of Nonstationary Signals 58
2.7.1 Short-Time Fourier Transforms 59
2.7.2 Wavelet Analysis . 60
2.7.3 Discrete Wavelet Transforms, Multi-Resolution Analysis� . . 64

2.8 Principal Components Analysis (PCA) 65
2.9 Fractal Dimension Determination . 68
2.10 Code Listings . 70

3 Classical & Nonlinear Dynamics 81
3.1 Chapter Overview . 81
3.2 Oscillators . 81

3.2.1 First a Linear Oscillator . 81
3.2.2 Nonlinear Oscillators . 83
3.2.3 Assessing Precision via Energy Conservation 85
3.2.4 Models of Friction . 85
3.2.5 Linear & Nonlinear Resonances 86
3.2.6 Famous Nonlinear Oscillators 88
3.2.7 Solution via Symbolic Computing 90

3.3 Realistic Pendula . 91
3.3.1 Elliptic Integrals . 93
3.3.2 Period Algorithm . 94
3.3.3 Phase Space Orbits . 94
3.3.4 Vibrating Pivot Pendulum . 96

3.4 Fourier Analysis of Oscillations . 96
3.4.1 Pendulum Bifurcations . 97
3.4.2 Sonification . 98

3.5 The Double Pendulum . 99
3.6 Realistic Projectile Motion . 101

3.6.1 Trajectory of Thrown Baton 102
3.7 Bound States . 104
3.8 Three-Body Problems: Neptune, Two Suns, Stars 106

3.8.1 Two Fixed Suns with a Single Planet 107
3.8.2 Hénon-Heiles Bound States 108

Contents vii

3.9 Scattering . 109
3.9.1 Rutherford Scattering . 109
3.9.2 Mott Scattering . 110
3.9.3 Chaotic Scattering . 112

3.10 Billiards . 114
3.11 Lagrangian and Hamiltonian Dynamics 115

3.11.1 Hamilton’s Principle . 115
3.11.2 Lagrangian & Hamiltonian Problems 116

3.12 Weights Connected by Strings (Hard) 118
3.13 Code Listings . 119

4 Wave Equations & Fluid Dynamics 125
4.1 Chapter Overview . 125
4.2 String Waves . 126

4.2.1 Extended Wave Equations . 128
4.2.2 Computational Normal Modes 130
4.2.3 Masses on Vibrating String 131
4.2.4 Wave Equation for Large Amplitudes 133

4.3 Membrane Waves . 134
4.4 Shock Waves . 136

4.4.1 Advective Transport . 136
4.4.2 Burgers’ Equation . 137

4.5 Solitary Waves (Solitons) . 138
4.5.1 Including Dispersion, KdeV Solitons 139
4.5.2 Pendulum Chain Solitons, Sine-Gordon Solitons 141

4.6 Hydrodynamics . 144
4.6.1 Navier-Stokes Equation . 144
4.6.2 Flow over Submerged Beam 146
4.6.3 Vorticity Form of Navier-Stokes Equation 147
4.6.4 Torricelli’s Law, Orifice Flow 150
4.6.5 Inflow and Outflow from Square Box 153
4.6.6 Chaotic Convective Flow . 154

4.7 Code Listings . 156

5 Electricity & Magnetism 169
5.1 Chapter Overview . 169
5.2 Electric Potentials via Laplace’s & Poisson’s Equations 170

5.2.1 Solutions via Finite Differences 170
5.2.2 Laplace & Poisson Problems 173
5.2.3 Fourier Series vs. Finite Differences 176
5.2.4 Disk in Space, Polar Plots . 180
5.2.5 Potential within Grounded Wedge 180
5.2.6 Charge between Parallel Planes 181

viii Contents

5.3 E&M Waves via FDTD . 183
5.3.1 In Free Space . 183
5.3.2 In Dielectrics . 186
5.3.3 Circularly Polarized Waves 187
5.3.4 Wave Plates . 188
5.3.5 Telegraph Line Waves . 189

5.4 Thin Film Interference of Light . 192
5.5 Electric Fields . 194

5.5.1 Vector Field Calculations & Visualizations 194
5.5.2 Fields in Dielectrics . 194
5.5.3 Electric Fields via Integration 196
5.5.4 Electric Fields via Images . 198

5.6 Magnetic Fields via Direct Integration 199
5.6.1 Magnetic Field of Current Loop 200

5.7 Motion of Charges in Magnetic Fields 202
5.7.1 Mass Spectrometer . 202
5.7.2 Quadruple Focusing . 203
5.7.3 Magnetic Confinement . 205

5.8 Relativity in E&M . 206
5.8.1 Lorentz Transformations of Fields and Motion 206
5.8.2 Two Interacting Charges, the Breit Interaction 208
5.8.3 Field Propagation Effects . 209

5.9 Code Listings . 210

6 Quantum Mechanics 229
6.1 Chapter Overview . 229
6.2 Bound States . 230

6.2.1 Bound States in 1-D Box (Semianalytic) 230
6.2.2 Bound States in Arbitrary Potential (ODE Solver + Search) 231
6.2.3 Bound States in Arbitrary Potential (Sloppy Shortcut) 233
6.2.4 Relativistic Bound States of Klein-Gordon Equation 234

6.3 Spontaneous Decay Simulation . 236
6.3.1 Fitting a Black Body Spectrum 238

6.4 Wave Functions . 238
6.4.1 Harmonic Oscillator Wave Functions 238

6.5 Partial Wave Expansions . 240
6.5.1 Associated Legendre Polynomials 241

6.6 Hydrogen Wave Functions . 242
6.6.1 Hydrogen Radial Density . 242
6.6.2 Hydrogen 3-D Wave Functions 244

6.7 Wave Packets . 244
6.7.1 Harmonic Oscillator Wave Packets 244
6.7.2 Momentum Space Wave Packets 245

Contents ix

6.7.3 Solving Time-Dependent Schrödinger Equation 246
6.7.4 Time-Dependent Schrödinger with E Field 248

6.8 Scattering . 249
6.8.1 Square Well Scattering . 249
6.8.2 Coulomb Scattering . 252
6.8.3 Three Disks Scattering; Quantum Chaos 254
6.8.4 Chaotic Quantum Billiards 256

6.9 Matrix Quantum Mechanics . 257
6.9.1 Momentum Space Bound States (Integral Equations) 257
6.9.2 k Space Bound States Delta Shell Potential 259
6.9.3 k Space Bound States Other Potentials 260
6.9.4 Hydrogen Hyperfine Structure 261
6.9.5 SU(3) Symmetry of Quarks 263

6.10 Coherent States and Entanglement 265
6.10.1 Glauber Coherent States . 265
6.10.2 Neutral Kaons as Superpositions of States 267
6.10.3 Double Well Transitions . 269
6.10.4 Qubits . 271

6.11 Feynman Path Integral Quantum Mechanics� 274
6.12 Code Listings . 277

7 Thermodynamics & Statistical Physics 299
7.1 Chapter Overview . 299
7.2 The Heat Equation . 299

7.2.1 Algorithm for Heat Equation 300
7.2.2 Solutions for Various Geometries 301

7.3 Random Processes . 304
7.3.1 Random Walks . 304
7.3.2 Diffusion-Limited Aggregation, a Fractal Walk 306
7.3.3 Surface Deposition . 307

7.4 Thermal Behavior of Magnetic Materials 308
7.4.1 Roots of a Magnetization vs. Temperature Equation 309
7.4.2 Counting Spin States . 309

7.5 Ising Model . 311
7.5.1 Metropolis Algorithm . 312
7.5.2 Domain Formation . 315
7.5.3 Thermodynamic Properties 316
7.5.4 Extensions . 316

7.6 Molecular Dynamics . 316
7.6.1 16 Particles in a Box . 319

7.7 Code Listings . 322

x Contents

8 Biological Models: Population Dynamics & Plant Growth 335
8.1 Chapter Overview . 335
8.2 The Logistic Map . 335

8.2.1 Other Discrete and Chaotic Maps 338
8.3 Predator-Prey Dynamics . 339

8.3.1 Predator-Prey Chaos . 341
8.3.2 Including Prey Limits . 343
8.3.3 Including Predation Efficiency 343
8.3.4 Two Predators, One Prey . 345

8.4 Growth Models . 345
8.4.1 Protein Folding as a Self-Avoiding Walk 346
8.4.2 Plant Growth Simulations . 347
8.4.3 Barnsley’s Fern . 348
8.4.4 Self-Affine Trees . 349

8.5 Code Listings . 349

9 Additional Entry-Level Problems 357
9.1 Chapter Overview . 357
9.2 Specular Reflection and Numerical Precision 357
9.3 Relativistic Rocket Golf . 358
9.4 Stable Points in Electric Fields . 360
9.5 Viewing Motion in Phase Space (Parametric Plots) 361
9.6 Other Useful Visualizations . 362
9.7 Integrating Power into Energy . 365
9.8 Rigid-Body Rotations with Matrices 367
9.9 Searching for Calibration of a Spherical Tank 369
9.10 AC Circuits via Complex Numbers 370

9.10.1 Using Complex Numbers . 370
9.10.2 RLC Circuit . 371

9.11 Beats and Satellites . 373

A Appendix: Python Codes 375

Bibliography 377

Index 385

Acknowledgments

Thank you, former students who were our experimental subjects as we developed
computational physics courses and problems over the years. And special thanks to
you who have moved on with your lives, but found the time to get back to tell us how
much you have benefitted from our Computational Physics courses; bless you!

We have tried to give credit to the authors whose books have provided motivation
and materials for many of this book’s problems. Please forgive us if we have forgotten
to mention you; after all, 20 years is a long time. In particular, we have probably
made as our own materials from the pioneering works of Gould & Tobochnik, Koonin,
and Press et al..

Our lives have been enriched by the invaluable friendship, encouragement, helpful
discussions, and experiences we have had with many colleagues and students over the
years. With uncountable sadness we particularly remember our deceased colleagues
and friends Cristian Bordeianu and Jon Maestri, two of the most good-natured, and
good, people you could have ever hoped to know. We are particularly indebted to
Paul Fink (deceased), Hans Kowallik, Guillermo Avendaño-Franco, Saturo S. Kano,
David McIntyre, Shashi Phatak, Oscar A. Restrepo, Jaime Zuluaga, Viktor Podolskiy,
Bruce Sherwood, C. E. Yaguna, and Zlatco Dimcovic for their technical help and most
of all their friendship.

The authors wish to express their gratitude to Lou Han, for the encouragement
and support throughout the realization of this book, and to Titus Beu and Veronica
Rodriguez who have helped in the final production.

Finally, we extend our gratitude to our families, whose reliable support and en-
couragement are lovingly accepted, as always.

xi

http://taylorandfrancis.com

Series Preface

There can be little argument that computation has become an essential element in
all areas of physics, be it via simulation, symbolic manipulations, data manipulations,
equipment interfacing, or something with which we are not yet familiar. Nevertheless,
even though the style of teaching and organization of subjects being taught by physics
departments have changed in recent times, the actual content of the courses has been
slow to incorporate the new-found importance of computation. Yes, there are now
speciality courses and many textbooks in Computational Physics, but that is not the
same thing as incorporating computation into the very heart of a modern physics
curriculum so that the physics being taught today more closely resembles the physics
being done today. Not only will such integration provide valuable professional skills to
students, but it will also help keep physics alive by permitting new areas to be studied
and old problems to be solved.

This series is intended to provide undergraduate and graduate level textbooks
for a modern physics curriculum in which computation is incorporated within the
traditional subjects of physics, or in which there are new, multidisciplinary subjects in
which physics and computation are combined as a “computational science.” The level
of presentation will allow for their use as primary or secondary textbooks for courses
that wish to emphasize the importance of numerical methods and computational tools
in science. They will offer essential foundational materials for students and instructors
in the physical sciences as well as academic and industry professionals in physics,
engineering, computer science, applied math, and biology.

Titles in the series are targeted to specific disciplines that currently lack a textbook
with a computational physics approach. Among these subject areas are condensed
matter physics, materials science, particle physics, astrophysics, mathematical meth-
ods of computational physics, quantum mechanics, plasma physics, fluid dynamics,
statistical physics, optics, biophysics, electricity and magnetism, gravity, cosmology,
and high-performance computing in physics. We aim for a presentation that is concise
and practical, often including solved problems and examples. The books are meant for
teaching, although researchers may find them useful as well. In select cases, we have
allowed more advanced, edited works to be included when they share the spirit of the
series — to contribute to wider application of computational tools in the classroom as
well as research settings.

xiii

xiv Series Preface

Although the series editors had been all too willing to express the need for change
in the physics curriculum, the actual idea for this series came from the series manager,
Lou Han, of Taylor & Francis Publishers. We wish to thank him sincerely for that, as
well as for encouragement and direction throughout the project.

Steve Gottlieb, Bloomington
Rubin H. Landau, Corvallis

Series Editors

Preface

As seems true in many areas, practicing scientists now incorporate powerful compu-
tational techniques as key elements in their work. In contrast, physics courses often
include computational tools only to illustrate the physics, with little discussion of the
method behind the tools, and of the limits to a simulation’s reliability and precision.
Yet, just as a good researcher would not believe a physics results if the mathematics
behind it were not solid, so we should not believe a physics results if the computation
behind it is not understood and reliable. While specialty courses and textbooks in
Computational Physics are an important step in the right direction, we see an addi-
tional need to incorporate modern computational techniques throughout the Physics
curriculum. In addition to enhancing the learning process, computational tools are
valuable tools in their own right, especially considering the broad areas in which
physics graduates end up working.

The authors have spent over two decades trying to think up computational prob-
lems and demonstrations for physics courses, both as part of the development of our
Computational Physics texts, and as material to present as tutorials at various profes-
sional meetings and institutions. This book is our effort at collecting those problems
and demos, adding to them, and categorizing them so that they may extend what
has traditionally been used for homework and demonstrations throughout the physics
curriculum.

Our assumed premise is that learning to compute scientifically requires you to get
your hands dirty and to open up that black box of a program. Our preference is that
the reader use a compiled language since this keeps her closer to the basic algorithms,
and more likely to be able to estimate the numerical error in the answer (essential
for science). Nevertheless, programming from scratch can be time consuming and
frustrating, and so we provide many sample codes as models for the problems at
hand. However, readers or instructors may prefer to approach our problems with a
problem solving environment such as Sage, Maple, or Mathematica, in which case our
codes can serve as templates.

We often present simple pseudocodes in the text, with full Python code listings at
the end of each chapter (most numeric, but some symbolic).1 The Python language

1Please note that copying and pasting a code from a pdf listing is not advisable because the
formatting, to which Python is sensitive, is not preserved in the process. One needs to open the .py

xv

xvi Preface

plus its family of packages comprise a veritable ecosystem for computing [CiSE(07,11)].
Python is free, robust, portable, universal, and provides excellent visualization via
the MatPlotLib and VPython packages (the latter also called by its original name
Visual). We find Python the easiest compiled language for education, with excellent
applications in research and development. Further details are provided in Chapter 1.

Each chapter in the text contains a Chapter Overview with highlights as to what
is to follow. Chapters 1 and 2 review background materials used throughout the rest
of the book. Chapter 1 covers basic computational methods, including floating point
numbers and their errors, integration, differentiation, random numbers generation,
and the solution to ordinary and partial differential equations. Chapter 2 covers fun-
damental numerical analysis tools, including Fourier analysis, noise reduction, wavelet
analysis, principal components analysis, root searching, least-squares fitting, and frac-
tal dimension determination. Although some of the problems and demos in Chapters
1 and 2 may find use in Mathematical Methods of Physics courses, those chapters are
meant as review or reference.

This book cover multiple areas and levels of physics with the chapters organized
by subject. Most of the problems are at an upper-division undergraduate level, which
should by fine for many graduate courses as well, but with a separate chapter aimed
at entry-level courses. We leave it to instructors to decide which problems and demos
may work best in their courses, and to modify the problems for their own purposes.
In all cases, the introductory two chapters are important to cover initially.

We hope that you find this book useful in changing some of what is studied in
physics. If you have some favorite problems or demos that you think would enhance
the collection, or some suggestions for changes, please let us know.

RHL, rubin@science.oregonstate.edu Tucson, November 2017
MJP, mpaezenator@gmail.com Medellín, November 2017

version of the code with an appropriate code editor.

mailto:rubin@science.oregonstate.edu
mailto:mpaezenator@gmail.com

About the Authors

Rubin Landau is a Distinguished Professor Emeritus in the Department of Physics
at Oregon State University in Corvallis and a Fellow of the American Physical Society
(Division of Computational Physics). His research specialty is computational studies
of the scattering of elementary particles from subatomic systems and momentum space
quantum mechanics. Dr. Landau has taught courses throughout the undergraduate
and graduate curricula, and, for over 20 years, in computational physics. He was the
founder of the OSU Computational Physics degree program, an Executive Committee
member of the APS Division of Computational Physics, and the AAPT Technology
Committee. At present Dr. Landau is the Education co-editor for AIP/IEEE Com-
puting in Science & Engineering and co-editor of this Taylor & Francis book series on
computational physics. He has been a member of the XSEDE advisory committee and
has been part of the Education Program at the SuperComputing (SC) conferences for
over a decade.

Manuel José Páez-Mejia has been a Professor of Physics at Universidad de An-
tioquia in Medellín, Colombia since January 1969. He has been teaching courses in
Modern Physics, Nuclear Physics, Computational Physics, Numerical Methods, Math-
ematical Physics, and Programming in Fortran, Pascal, and C languages. He has au-
thored scientific papers in nuclear physics and computational physics, as well as texts
on the C Language, General Physics, and Computational Physics (coauthored with
Rubin Landau and Cristian Bordeianu). In the past, he and Dr. Landau conducted
pioneering computational investigations of the interactions of mesons and nucleons
with few-body nuclei. Professor Paez has led workshops in Computational Physics
throughout Latin America, and has been Director of Graduate Studies in Physics at
the Universidad de Antioquia.

xvii

http://taylorandfrancis.com

Web Materials

The Python codes listed in the text are available on the CRC Press website at
https://www.crcpress.com/Computational-Problems-for-Physics-With-Guided-

Solutions-Using-Python/Landau-Paez/p/book/9781138705418.
We have also created solutions to many problems in a variety of computer languages,
and they, as well as these same Python codes, are available on the Web at

http://science.oregonstate.edu/˜landaur/Books/CPbook/eBook/Codes/.
Updates of the programs will be posted on the websites.

Background material for this book of problems is probably best obtained from Compu-
tational Physics text books (particularly those by the authors!). In addition, Python
notebook versions of every chapter in our CP text [LPB(15)] are available at

http://physics.oregonstate.edu/˜landaur/Books/CPbook/eBook/Notebooks/.
As discussed in the documentation there, the notebook environment permits the reader
to run codes and follow links while reading the book electronically.

Furthermore, most topics from our CP text are covered in video lecture modules at
http://science.oregonstate.edu/˜landaur/Books/CPbook/eBook/Lectures/.

General System Requirements
The first chapter of the text provides details about the Python ecosystem for comput-
ing and the packages that we use in the text. Basically, a modern version of Python
and its packages are needed.

xix

https://www.crcpress.com/Computational-Problems-for-Physics-With-Guided-Solutions-Using-Python/Landau-Paez/p/book/9781138705418
http://science.oregonstate.edu/�landaur/Books/CPbook/eBook/Codes/
http://physics.oregonstate.edu/�landaur/Books/CPbook/eBook/Notebooks/
http://science.oregonstate.edu/�landaur/Books/CPbook/eBook/Lectures/
http://science.oregonstate.edu/�landaur/Books/CPbook/eBook/Lectures/
https://www.crcpress.com/Computational-Problems-for-Physics-With-Guided-Solutions-Using-Python/Landau-Paez/p/book/9781138705418

http://taylorandfrancis.com

1

Computational Basics for Physics

1.1 Chapter Overview
There is no way that a single chapter or two can provide the background necessary
for the proper use of computation in physics. So let’s hope that this chapter is just
a review. (If not, you may want to look at some of the related video lecture modules
at http://physics.oregonstate.edu/˜landaur/Books/CPbook/eBook/Lectures/.) In this
chapter we cover computing basics, starting with some of the tools available as part
of the Python ecosystem, and particularly for visualization and matrix manipulations.
There follows a discussion of number representations and the limits and consequences
of using floating-point numbers (often absent in Computer Science classes). We then
review some basic numerical methods for differentiation, integration, and random num-
ber generation. We end with a discussion of the algorithms for solving ordinary and
partial differential equations, techniques used frequently in the text. Problems are pre-
sented for many of these topics, and doing them would be a good way to get started!

Most every problem in this book requires some visualization. Our sample programs
tend to do this with either the Matplotlib or VPython (formerly Visual) package, or
both (§1.2.1). Including visualization in the programs does make them longer, though
having embedded visualization speeds up the debugging and learning processes, and is
more fun. In any case, the user always has the option of outputting the results to a
data file and then visualizing them separately with a program such as gnuplot or Grace.

1.2 The Python Ecosystem
This book gives solution codes in Python, with similar codes in other languages avail-
able on the Web. Python is free, robust, portable, and universal, and we find it
the easiest compiled language for education. It contains high-level, built-in data
types, which make matrix manipulations and graphics easy, and there are a myr-
iad of free packages and powerful libraries which make it all around excellent for
scientific work, even symbolic manipulation. For learning Python, we recommend the

1

http://physics.oregonstate.edu/�landaur/Books/CPbook/eBook/Lectures/.) In

2 Computational Problems for Physics

online tutorials [Ptut(14), Pguide(14), Plearn(14)], the books by Langtangen [Lang-
tangen(08),Langtangen(09)], and the Python Essential Reference [Beazley(09)].

The Python language plus its family of packages comprise a veritable ecosystem
for computing [CiSE(07,11)]. To include package PackageName in your program, you
use either an import PackageName statement, which loads the entire package, or to
load a specific method include a from PackageName statement at the beginning of your
program; for example,

from vpython import *
y1 = gcurve(color = blue)

In our work we use the packages

Matplotlib (Mathematics Plotting Library) http://matplotlib.org
NumPy (Numerical Python) http://www.numpy.org/
SciPy (Scientific Python) http://scipy.org
SymPy (Symbolic Python) http://sympy.org
VPython (Python with Visual package) http://vpython.org/

Rather than search the Web for packages, we recommend the use of Python Package
Collections, which are collections of Python packages that have been engineered and
tuned to work well together, and that can be installed in one fell swoop. We tend to
use
Anaconda https://store.continuum.io/cshop/anaconda/
Enthought Canopy https://www.enthought.com/products/canopy/
Spyder (in Anaconda) https://pythonhosted.org/spyder/

1.2.1 Python Visualization Tools
VPython, the nickname for Python plus the Visual package, is particularly useful
for creating 3-D solids, 2-D plots, and animations. In the past, and with some of
our programs, we have used the “classic” version of VPython, which is accessed via
importing the module visual. That version will no longer be supported in the future
and so we have (mostly) converted over to VPython 7, but have included the classic
(VPython 6) versions in the Codes folder as well1. The Visual package is accessed in
VPython 7 by importing the module vpython. (Follow VPython’s online instructions
to load VPython 7 into Spyder or notebooks.)

In Figure 1.1 we present two plots produced by the program EasyVisualVP.py given
in Listing 1.1.2 Notice that the plotting technique with VPython is to create first a

1For some programs we provide several versions in the Codes folder: those with a “Vis” suffix use
the classic Visual package, those with a “VP” suffix use the newer VPython package, and those with
“Mat”, or no suffix, use Matplotlib.

2We remind the reader that copying and pasting a program from a pdf listing is not advisable
because the formatting, to which Python is sensitive, is not preserved in the process. One needs to
open the .py version of the program with an appropriate code editor.

http://matplotlib.org
http://www.numpy.org/
http://scipy.org
http://sympy.org
http://vpython.org/
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
https://pythonhosted.org/spyder/

1. Computational Basics for Physics 3

Figure 1.1. Screen dumps of two x-y plots produced by our program EasyVisualVP.py
using the VPython package. The left plot uses default parameters while the right plot uses
user-supplied options.

Figure 1.2. Left: Output from the program 3GraphVP.py that places three different types
of 2-D plots on one graph using VPython. Right Three frames from a VPython animation
of a quantum mechanical wave packet produced with HOmov.py.

plot object, and then to add the points one at a time to the object. In contrast,
Matplotlib creates a vector of points and plots the entire vector in one fell swoop.

The program 3GraphVP.py in Listing 1.2 places several plots in the same figure and
produces the graph on the left of Figure 1.2. There are vertical bars created with
gvbars, dots created with gdots, and a curve created with gcurve (colors appear only
as shades of gray in the paper text). Creating animations with VPython is essentially
just making the same 2-D plot over and over again, with each one at a slightly differing
time. Three frames produced by HOmov.py are shown on the right of Figure 1.2. The
part which makes the animation is simple:

4 Computational Problems for Physics

Figure 1.3. Matplotlib plots. Left: Output of EasyMatPlot.py showing a simple, x-y plot.
Right: Output from GradesMatPlot.py that places two sets of data points, two curves, and
unequal upper and lower error bars, all on one plot.

PlotObj= curve(x=xs, color=color.yellow, radius=0.1)
...
while True:

rate(500)
RePsi[1:-1] =...
ImPsi[1:-1] =..
PlotObj.y = 4*(RePsi**2 + ImPsi**2)

The package Matplotlib is a powerful plotting package for 2-D and 3-D graphs and
data plots of various sorts. It uses the sophisticated numerics of NumPy and LAPACK
[Anderson et al.(113)] and commands similar to MATLABTM. It assumes that you
have placed the x and y values you wish to plot into 1-D arrays (vectors), and then
plots these vectors with a single call. In EasyMatPlot.py, given in Listing 1.3, we
import Matplotlib as the pylab library:

from pylab import *

Then we calculate and input arrays of the x and y values

x = arange(Xmin, Xmax, DelX) # x array in range + increment
y = -sin(x)*cos(x) # y array as function of x array

where the # indicates the beginning of a comment. As you can see, NumPy’s arange
method constructs an array covering “a range” between Xmax and Xmin in steps of
DelX. Because the limits are floating-point numbers, so too will be the individual xi’s.
And because x is an array, y = -sin(x)*cos(x) is automatically one too! The actual
plotting is performed with a dash ‘-’ used to indicate a line, and lw=2 to set its width.

1. Computational Basics for Physics 5

Figure 1.4. Left and Right columns show two separate outputs, each of two figures, produced
by MatPlot2figs.py. (We used the slider button to add some space between the red and
blue plots.)

The result is shown on the left of Figure 1.3, with the desired labels and title. The
show() command produces the graph on your desktop.

In Listing 1.4 we give the code GradesMatplot.py, and on the right of Figure 1.3
we show its output. Here we repeat the plot command several times in order to plot
several data sets on the same graph and to plot both the data points and the lines
connecting them. We import Matplotlib (pylab), and then import NumPy, which we
need for the array command. Because we have imported two packages, we add the
pylab prefix to the plot commands so that Python knows which package to use. A
horizontal line is created by plotting an array with all y values equal to zero, unequal
lower and upper error bars are included as well as grid lines.

Often the science is clearer if there are several curves in one plot, and, several plots
in one figures. Matplotlib lets you do this with the plot and the subplot commands.
For example, in MatPlot2figs.py in Listing 1.5 and Figure 1.4, we have placed two
curves in one plot, and then output two different figures, each containing two plots.
The key here is repetition of the subplot command:

figure(1) # 1st figure
subplot(2,1,1) # 1st subplot, 2 rows, 1 column
subplot(2,1,2) # 2nd subplot

If you want to visualize a function like the dipole potential

V (x, y) = [B + C/(x2 + y2)3/2]x, (1.1)

you need a 3-D visualization in which the mountain height z = V (x, y), and the x
and y axes define the plane below the mountain. The impression of three dimensions
is obtained by shading, parallax, and rotations with the mouse, and other tricks. In

6 Computational Problems for Physics

Figure 1.5. Left: A 3-D wire frame. Right: a surface plot with wire frame. Both are produced
by the program Simple3Dplot.py using Matplotlib.

Figure 1.5 left we show a wire-frame plot and in Figure 1.5 right a surface-plus-wire-
frame plot. These are obtained from the program Simple3Dplot.py in Listing 1.6. The
meshgrid method sets up grid matrix from the x and y coordinate vectors, and then
constructs the Z(x, y) surface with another vector operation.

A scatter plot is a useful way to visualize individual points (xi, yj , zk) in 3-D. In
Figure 1.6 left we show two such plots created with PondMatPlot.py in Listing 1.7 and
Scatter3dPlot.py in Listing 1.8. Here the 111 indicates a 1× 1× 1 grid.

1. As shown in Figure 1.7, a beam of length L = 10 m and weight W = 400 N
rests on two supports a distance d = 2 m apart. A box of weight Wb = 800 N,
initially above the left support, slides frictionlessly to the right with a velocity
v=7 m/s.
a. Write a program that calculates the forces exerted on the beam by the right

and left supports as the box slides along the beam.
b. Extend your program so that it creates an animation showing the forces and

the position of the block as the box slides along the beam. In Listing 1.10 we
present our code SlidingBox.py that uses the Python Visual package, and in
Figure 1.7 left we present a screen shot captured from this code’s animation.
Modify it for the problem at hand.

c. Extend the two-support problem to a box sliding to the right on a beam with
a third support under the right edge of the beam.

2. As shown on the left of Figure 1.8, a two kilogram mass is attached to two 5-m
strings that pass over frictionless rollers. There is a student holding the end of
each string. Initially the strings are vertical, but then move apart as the students
move at a constant 4 m/s, one to the right and one to the left.

1. Computational Basics for Physics 7

Pond

Figure 1.6. Left: Throwing stones into a pond as a technique for measuring its area. The
ratio of “hits” to total number of stones thrown equals the ratio of the area of the pond to
that of the box. Right: The evaluation of an integral via a Monte Carlo (stone throwing)
technique of the ratio of areas.
.

Figure 1.7. Left: A beam and a box supported at two points. Right: A screen shot from the
animation showing the forces on the beam as the weight moves.

(a) What is the initial tension of each cord?
(b) Compute the tension in each cord as the students move apart.
(c) Can the students ever get both strings to be horizontal?
(d) Extend your program so that it creates an animation showing the tensions

in the string as the students move apart. In Listing 1.9 we present our
code using the Python Visual package, and in Figure 1.8 right we present
a screen shot captured from this code’s animation. Modify the code as
appropriate for your problem.

3. As shown on the right of Figure 1.8, masses m1 = m2 = 1kg are suspended by
two strings of length L = 2.5m and connected by a string of length s = 1m.

8 Computational Problems for Physics

m1 m2

L L

s

Figure 1.8. Left: A mass is suspended from two strings on frictionless rollers, with students
pulling horizontally at the end of each string. Center: A mass m1 and a second m2 are
suspended by two strings of length L and connected by a string of length s. Right: A screen
shot from animation showing the forces on two strings as the students pulling on each mass
move apart.

As before, the strings of length L are being pulled horizontally over frictionless
pulleys.
a. Write a program that computes the tension of each cord as the students move

apart.
b. Extend your program so that it creates an animation showing the tensions in

the strings as the students move apart.
c. How would the problem change if m1 6= m2?

1.2.2 Python Matrix Tools
Dealing with many numbers at one time is a prime strength of computation, and
computer languages have abstract data types for just that purpose. A list is Python’s
built-in data type for a sequence of numbers or objects kept in a definite order. An
array is a higher-level data type available with the NumPy package, and can be
manipulated like a vector. Square brackets with comma separators [1, 2, 3] are used
for lists, with square brackets also used to indicate the index for a list item:
>>> L = [1, 2, 3] # Create list
>>> L[0] # Print element 0
1
>>> L # Print entire list
[1, 2, 3]

>>> L[0]= 5 # Change element 0
>>> len(L) # Length of list
3

NumPy arrays convert Python lists into arrays, which can be manipulated like vectors:
>>> vector1 = array([1, 2, 3, 4, 5]) # Fill array wi list
>>> print(’vector1 =’, vector1)

1. Computational Basics for Physics 9

vector1 = [1 2 3 4 5]
>>> vector2 = vector1 + vector1 # Add 2 vectors
>>> print(’vector2=’, vector2)
vector2= [2 4 6 8 10]
>>> matrix1 = array(([0,1],[1,3]) # An array of arrays
>>> print(matrix1)
[[0 1]
[1 3]]

>>> print (matrix1 * matrix1) # Matrix multiply
[[0 1]
[1 9]]

When describing NumPy arrays, the number of “dimensions”, ndim, means the number
of indices, which can be as high as 32. What might be called the “size” or “dimensions”
of a matrix is called the shape of a NumPy array:
>>> import numpy as np
>>> np.arange(12) # List 12 ints
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> np.arange(12).reshape((3,4)) # Reshape to 3x4
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> a = np.arange(12).reshape((3,4))
>>> a.shape
(3L, 4L)
>>> a.ndim # Dimension?
2
>>> a.size # Number of elements?
12

If you want to form the familiar matrix product from two arrays, you use the dot
function, whereas the asterisk * is used for an element-by-element product:
>>> matrix1= array([[0,1], [1,3]])
>>> matrix1
array([[0, 1],

[1, 3]])
>>> print (dot(matrix1,matrix1)) # Matrix or dot product
[[1 3]
[3 10]]

>>> print (matrix1 * matrix1) # Element-by-element product
[[0 1]
[1 9]]

Rather than writing your own matrix routines, for the sake of speed and reliability we
recommend the use of well established libraries. Although the array objects of NumPy
are not the same as mathematical matrices, there is the LinearAlgebra package that
treats 2-D arrays as mathematical matrices. Consider the standard solution of linear
equations

Ax = b, (1.2)
where we have used a bold character to represent a vector. For example,

10 Computational Problems for Physics

>>> from numpy import *
>>> from numpy.linalg import*
>>> A = array([[1,2,3], [22,32,42], [55,66,100]]) # Array of arrays
>>> print (’A =’, A)
A = [[1 2 3]

[22 32 42]
[55 66 100]]

We solve (1.2) with NumPy’s solve command, and then test the solution:

>>> b = array([1,2,3])
>>> from numpy.linalg import solve
>>> x = solve(A, b) # Finds solution
>>> print (’x =’, x)
x = [-1.4057971 -0.1884058 0.92753623] # The solution
>>> print (’Residual =’, dot(A, x) - b) # LHS-RHS
Residual = [4.44089210e-16 0.00000000e+00 -3.55271368e-15]

A direct, if not most efficient, way to solve (1.2) is to calculate the inverse A−1, and
then multiply through by the inverse, x = A−1b:

>>> from numpy.linalg import inv
>>> dot(inv(A), A) # Test inverse
array([[1.00000000e+00, -1.33226763e-15, -1.77635684e-15],

[8.88178420e-16, 1.00000000e+00, 0.00000000e+00],
[-4.44089210e-16, 4.44089210e-16, 1.00000000e+00]])

>>> print (’x =’, multiply(inv(A), b))
x = [-1.4057971 -0.1884058 0.92753623] # Solution
>>> print (’Residual =’, dot(A, x) - b)
Residual = [4.44089210e-16 0.00000000e+00 -3.55271368e-15]

To solve the eigenvalue problem,
Iω = λω, (1.3)

we call the eig method (as in Eigen.py):

>>> from numpy import*
>>> from numpy.linalg import eig
>>> I = array([[2./3,-1./4], [-1./4,2./3]])
>>> print(’I =\n’, I)

I = [[0.66666667 -0.25]
[-0.25 0.66666667]]

>>> Es, evectors = eig(A) # Solve eigenvalue problem
>>> print(’Eigenvalues =’, Es, ’\n Eigenvector Matrix =\n’, evectors)

Eigenvalues = [0.91666667 0.41666667]
Eigenvector Matrix = [[0.70710678 0.70710678]

[-0.70710678 0.70710678]]
>>> Vec = array([evectors[0, 0], evectors[1, 0]])
>>> LHS = dot(I, Vec)
>>> RHS = Es[0]*Vec
>>> print(’LHS - RHS =’, LHS-RHS) # Test for 0

LHS - RHS = [1.11022302e-16 -1.11022302e-16]

1. Computational Basics for Physics 11

1. Find the numerical inverse of

A =

+4 −2 +1
+3 +6 −4
+2 +1 +8

 . (1.4)

a. Check your inverse in both directions; that is, check that AA−1 = A−1A = I.
b. Note the number of decimal places to which this is true as this gives you some

idea of the precision of your calculation.
c. Determine the number of decimal places of agreement there is between your

numerical inverse and the analytic result:

A−1 = 1
263

+52 +17 +2
−32 +30 +19
−9 −8 +30

. (1.5)

2. Consider the matrix A again, here being used to describe three simultaneous
linear equations, Ax = b. Solve for three different x vectors appropriate to the
three different b’s:

b1 =

+12
−25
+32

, b2 =

 +4
−10
+22

, b3 =

+20
−30
+40

.
3. Consider the matrix A =

[
α β
−β α

]
, where you are free to use any values you

want for α and β. Show numerically that the eigenvalues and eigenvectors are
the complex conjugates

x1,2 =
[
+1
∓i

]
, λ1,2 = α∓ iβ. (1.6)

1.2.3 Python Algebraic Tools
Symbolic manipulation software represents a supplementary, yet powerful, approach
to computation in physics [Napolitano(18)]. Python distributions often contain the
symbolic manipulation packages Sage and SymPy, which are quite different from each
other. Sage is in the same class as Maple and MATHEMATICA and is beyond what
we care to cover in this book. In contrast, the SymPy package runs very much like
any other Python package from within a Python shell. For example, here we use
Python’s interactive shell to import methods from SymPy and then take some analytic
derivatives:
>>> from sympy import *
>>> x, y = symbols(’x y’)
>>> y = diff(tan(x),x); y

12 Computational Problems for Physics

tan^2(x) + 1
>>> y = diff(5*x**4 + 7*x**2, x, 1); y # dy/dx 1 optional

20 x^3 + 14 x
>>> y = diff(5*x**4+7*x**2, x, 2); y # d^2y/dx^2

2 (30 x^2 + 7)

The symbols command declares the variables x and y as algebraic, and the diff com-
mand takes the derivative with respect to second argument (the third argument is
order of derivative). Here are some expansions:

>>> from sympy import *
>>> x, y = symbols(’x y’)
>>> z = (x + y)**8; z

(x + y)^8
>>> expand(z)

x^8 + 8 x^7 y + 28 x^6 y^2 + 56 x^5 y^3 + 70 x^4 y^4
+ 56 x^3 y^5 + 28 x^2 y^6 + 8 x y^7 + y^8

SymPy knows about infinite series, and about different expansion points:

>>> sin(x).series(x, 0) # Sin x series
x - x^3/6 + x^5/120 + \mathcal{O}(x^6)$

>>> sin(x).series(x,10) # sin x about x=10
sin(10) + x cos(10) - x^2 sin(10)/2 - x^3 cos(10)/6

+ x^4 sin(10)/24 + x^5 cos(10)/120 +O(x^6)
>>> z = 1/cos(x); z # Division, not an inverse

$1/\cos(x)$
>>> z.series(x, 0) # Expand 1/cos x about 0

1 + x^2/2 + 5 x^4/24 + O(x^6)

A classic difficulty with computer algebra systems is that the produced answers may
be correct though not in a simple enough form to be useful. SymPy has functions
such as simplify, tellfactor, collect, cancel, and apart which often help:

>>> factor(x**2 -1)
(x - 1) (x + 1) # Well done

>>> factor(x**3 - x**2 + x - 1)
(x - 1) (x^2 + 1)

>>> simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
x - 1

>>> factor(x**3+3*x**2*y+3*x*y**2+y**3)
(x + y)^3 # Much better!

>>> simplify(1 + tan(x)**2)
cos(x)^{(-2)}

1.3 Dealing with Floating Point Numbers
Scientific computations must account for the limited amount of computer memory
used to represent numbers. Standard computations employ integers represented in
fixed-point notation and other numbers in floating-point or scientific notation. In
Python, we usually deal with 32 bit integers and 64 bit floating point numbers (called

1. Computational Basics for Physics 13

double precision in other languages). Doubles have approximately 16 decimal places
of precision and magnitudes in the range

4.9× 10−324 ≤ double precision ≤ 1.8× 10308. (1.7)

If a double becomes larger than 1.8 × 10308, a fault condition known as an overflow
occurs. If the double becomes smaller than 4.9 × 10−324, an underflow occurs. For
overflows, the resulting number may end up being a machine-dependent pattern, not
a number (NAN), or unpredictable. For underflows, the resulting number is usually
set to zero.

Because a 64-bit floating point number stores the equivalent of only 15–16 deci-
mal places, floating-point computations are usually approximate. For example, on a
computer

3 + 1.0× 10−16 = 3. (1.8)
This loss of precision is measured by defining the machine precision εm as the maxi-
mum positive number that can be added to a stored 1.0 without changing that stored
1.0:

1.0c + εm
def= 1.0c, (1.9)

where the subscript c is a reminder that this is a computer representation of 1. So,
except for powers of 2, which are represented exactly, we should assume that all
floating-point numbers have an error in the fifteenth place.

1.3.1 Uncertainties in Computed Numbers
Errors and uncertainties are integral parts of computation. Some errors are computer
errors arising from the limited precision with which computers store numbers, or
because of the approximate nature of algorithm. An algorithmic error may arise from
the replacement of infinitesimal intervals by finite ones or of infinite series by finite
sums, such as,

sin(x) =
∞∑
n=1

(−1)n−1x2n−1

(2n− 1)! '
N∑
n=1

(−1)n−1x2n−1

(2n− 1)! + E(x,N), (1.10)

where E(x,N) is the approximation error. A reasonable algorithm should have E
decreasing as N increases.

A common type of uncertainty in computations that involve many steps is round-
off errors. These are accumulated imprecisions arising from the finite number of digits
in floating-point numbers. For the sake of brevity, imagine a computer that kept just
four decimal places. It would then store 1/3 as 0.3333 and 2/3 as 0.6667, where
the computer has “rounded off” the last digit in 2/3. Accordingly, even a simple
subtraction can be wrong:

2
(

1
3

)
− 2

3 = 0.6666− 0.6667 = −0.0001 6= 0. (1.11)

14 Computational Problems for Physics

So although the result is small, it is not 0. Even with full 64 bit precision, if a
calculation gets repeated millions or billions of times, the accumulated error answer
may become large.

Actual calculations are often a balance. If we include more steps then the ap-
proximation error generally follows a power-law decrease. Nevertheless the relative
round-off error afterN steps tends to accumulate randomly, approximately like

√
Nεm.

Because the total error is the sum of both these errors, eventually the ever-increasing
round-off error will dominate. As rule of thumb, as you increase the number of steps
in a calculation you should watch for the answer to converge or stabilize, decimal place
by decimal place. Once you see what looks like random noise occurring in the last
digits, you know round-off error is beginning to dominate, and you should probably
step back a few steps and quit. An example is given in Figure 1.9.

1. Write a program that determines your computer’s underflow and overflow limits
(within a factor of 2). Here’s a sample pseudocode

under = 1.
over = 1.
begin do N times

under = under/2.
over = over * 2.
write out: loop number, under, over

end do

a. Increase N if your initial choice does not lead to underflow and overflow.
b. Check where under- and overflow occur for floating-point numbers.
c. Check what are the largest and the most negative integers. You accomplish

this by continually adding and subtracting 1.

2. Write a program to determine the machine precision εm of your computer system
within a factor of 2. A sample pseudocode is

eps = 1.
begin do N times

eps = eps/2.
one = 1. + eps

end do

a. Determine experimentally the machine precision of floats.
b. Determine experimentally the machine precision of complex numbers.

1.4 Numerical Derivatives
Although the mathematical definition of the derivative is simple,

dy(t)
dt

def= lim
h→0

y(t+ h)− y(t)
h

, (1.12)

1. Computational Basics for Physics 15

it is not a good algorithm. As h gets smaller, the numerator to fluctuate between 0
and machine precision εm, and the denominator approaches zero. Instead, we use the
Taylor series expansion of a f(x + h) about x with h kept small but finite. In the
forward-difference algorithm we take

dy(t)
dt

∣∣∣∣
FD

' y(t+ h)− y(t)
h

+O(h). (1.13)

This O(h) error can be cancelled off by evaluating the function at a half step less than
and a half step greater than t. This yields the central-difference derivative:

dy(t)
dt

∣∣∣∣
CD

y(t+ h/2)− y(t− h/2)
h

+O(h2). (1.14)

The central-difference algorithm for the second derivative is obtained by using the
central-difference algorithm on the corresponding expression for the first derivative:

d2y(t)
dt2

∣∣∣∣
CD

' y′(t+ h/2)− y′(t− h/2)
h

' y(t+ h) + y(t− h)− 2y(t)
h2 . (1.15)

1. Use forward- and central-difference algorithms to differentiate the functions cos t
and et at t = 0.1, 1., and 100.
a. Print out the derivative and its relative error E as functions of h. Reduce the

step size h until it equals machine precision h ' εm.
b. Plot log10 |E| versus log10 h and check whether the number of decimal places

obtained agrees with the estimates in the text.

2. Calculate the second derivative of cos t using the central-difference algorithms.
a. Test it over four cycles, starting with h ' π/10 and keep reducing h until you

reach machine precision

1.5 Numerical Integration
Mathematically, the Riemann definition of an integral is the limit∫ b

a

f(x) dx = lim
h→0

(b−a)/h∑
i=1

f(xi)h. (1.16)

Numerical integration is similar, but approximates the integral as the a finite sum
over rectangles of height f(x) and widths (or weights) wi:∫ b

a

f(x) dx '
N∑
i=1

f(xi)wi. (1.17)

16 Computational Problems for Physics

Equation (1.17) is the standard form for all integration algorithms: the function f(x)
is evaluated at N points in the interval [a, b], and the function values fi ≡ f(xi)
are summed with each term in the sum weighted by wi. The different integration
algorithms amount to different ways of choosing the points xi and weights wi. If
you are free to pick the integration points, then our suggested algorithm is Gaussian
quadrature. If the points are evenly spaced, then Simpson’s rule makes good sense.

The trapezoid and Simpson integration rules both employ N − 1 boxes of width h
evenly-spaced throughout the integration region [a, b]:

xi = a+ ih, h = b− a
N − 1 , i = 0, N − 1. (1.18)

For each interval, the trapezoid rule assumes a trapezoid of width h and height (fi +
fi+1)/2, and, accordingly, approximates the area of each trapezoid as 1

2hfi + 1
2hfi+1.

To apply the trapezoid rule to the entire region [a, b], we add the contributions from
all subintervals:∫ b

a

f(x) dx ' h

2 f1 + hf2 + hf3 + · · ·+ hfN−1 + h

2 fN , (1.19)

where the endpoints get counted just once, but the interior points twice. In terms of
our standard integration rule (1.17), we have

wi =
{
h

2 , h, . . . , h,
h

2

}
(Trapezoid Rule). (1.20)

In TrapMethods.py in Listing 1.15 we provide a simple implementation.
Simpson’s rule is also for evenly spaced points of width h, though with the heights

given by parabolas fit to successive sets of three adjacent integrand values. This leads
to the approximation:∫ b

a

f(x)dx ' h

3 f1 + 4h
3 f2 + 2h

3 f3 + 4h
3 f4 + · · ·+ 4h

3 fN−1 + h

3 fN . (1.21)

In terms of our standard integration rule (1.17), this is

wi =
{
h

3 ,
4h
3 ,

2h
3 ,

4h
3 , . . . ,

4h
3 ,

h

3

}
(Simpson’s Rule). (1.22)

Because the fitting is done with sets of three points, the number of points N must be
odd for Simpson’s rule.

In general, you should choose an integration rule that gives an accurate answer
using the least number of integration points. For the trapezoid and Simpson rules the
errors vary as

Et = O

(
[b− a]3

N2

)
d2f

dx2 , Es = O

(
[b− a]5

N4

)
d4f

dx4 , (1.23)

1. Computational Basics for Physics 17

where the derivatives are evaluated someplace within the integration region. So un-
less the integrand has behavior problems with its derivatives, Simpson’s rule should
converge more rapidly than the trapezoid rule and with less error. While it seems like
one might need only to keep increasing the number of integration points to obtain
better accuracy, relative round-off error tends to accumulate, and, after N integration
points, grows like

εro '
√
Nεm, (1.24)

where εm ' 1015 is the machine precision (discussed in §1.3). So even though the
error in the algorithm can be made arbitrary small, the total error, that is, the error
due to algorithm plus the error due to round-off, eventually will increase like

√
N .

1.5.1 Gaussian Quadrature
Gauss figured out a way of picking the N points and weights in (1.17) so as to make an
integration over [-1,1] exact if g(x) is a polynomial of degree 2N−1 or less. To accom-
plish this miraculous feat, the xi’s must be the N zeros of the Legendre polynomial
of degree N , and the weights related to the derivatives of the polynomials [LPB(15)]:

PN (xi) = 0, wi = 2
(1− x2

i)[P
′
N (xi)]2

. (1.25)

Not to worry, we supply a program that determines the points and weights. If your
integration range is [a,b] and not [-1,+1], they will be scaled as

x′i = b+ a

2 + b− a
2 xi, w′i = b− a

2 wi. (1.26)

In general, Gaussian quadrature will produce higher accuracy than the trapezoid and
Simpson rules for the same number of points, and is our recommended integration
method.

Our Gaussian quadrature code IntegGaussCall.py in Listing 1.16 requires the value
for precision eps of the points and weights to be provided by the user. Overall precision
is usually increased by increasing the number of points used. The points and weights
are generated by the method GaussPoints.py, which will be included automatically in
your program via the from GaussPoints import GaussPoints statement.

1.5.2 Monte Carlo (Mean Value) Integration
Monte Carlo integration is usually simple, but not particularly efficient. It is just a
direct application of the mean value theorem:

I =
∫ b

a

dx f(x) = (b− a) 〈f〉 . (1.27)

18 Computational Problems for Physics

10 100

10-13

10-9

10-5

N

|rorre|

trapezoid

Simpson

Gaussian

Figure 1.9. A log-log plots of the relative error in an integration using the trapezoid rule,
Simpson’s rule, and Gaussian quadrature versus the number of integration points N.

The mean is determined by sampling the function f(x) at random points within the
integration interval:

〈f〉 ' 1
N

N∑
i=1

f(xi) ⇒
∫ b

a

dx f(x) ' (b− a) 1
N

N∑
i=1

f(xi). (1.28)

The uncertainty in the value obtained for the integral I after N samples of f(x) is
measured by the standard deviation σI . If σf is the standard deviation of the integrand
f in the sampling, then for a normal distribution of random number we would have

σI '
1√
N
σf . (1.29)

So, for large N the error decreases as 1/
√
N . In Figure 1.6 left we show a scatter

plot of the points used in a Monte Carlo integration by the code PondMapPlot.py in
Listing 1.7.

Before you actually use random numbers to evaluate integrals, we recommend that
you work through §1.6.2 to be sure your random number generator is working properly.

On the left of Figure 1.6 we show a pond whose area we wish to determine. We can
determine the area of such an irregular figure by throwing stones in the air (generating
random (x, y) values), and counting the number of splashes Npond as well as the
number of stones lying on the ground Nbox. The area of the pond is then given by
the simple ratio:

Apond = Npond

Npond +Nbox
Abox. (1.30)

1. Write a program to integrate a function for which you know the analytic answer
so that you can determine the error. Use

1. Computational Basics for Physics 19

a. the trapezoid rule,
b. the Simpson rule,
c. Gaussian quadrature, and
d. Monte Carlo integration.

2. Compute the relative error ε = |(numerical-exact)/exact| for each case, and
make a log-log plot of relative error versus N as we do in Figure 1.9. You should
observe a steep initial power-law drop-off of the error, which is characteristic of
an algorithmic error decreasing with increasing N . Note that the ordinate in the
plot is the negative of the number of decimal places of precision in your integral.

3. The algorithms should stop converging when round-off error starts to dominate,
as noted by random fluctuations in the error. Estimate the number of decimal
places of precision obtained for each of the three rules.

4. Use sampling to compute π (number hits in unit circle/total number hits =
π/Area of box).

5. Evaluate the following integrals:

a.
∫ 1

0 e
√
x3+5 x dx

b.
∫ 1
x2+2 x+4 dx

c.
∫∞

0 e(−x2) dx

1.6 Random Number Generation
Randomness or chance occurs in different areas of physics. For example, quantum
mechanics and statistical mechanics are statistical by nature, and so randomness enters
as one of the key assumptions of statistics. Or, looked at the other way, random
processes such as the motion of molecules were observed early on, and this led to theory
of statistical mechanics. In addition to the randomness in nature, many computer
calculations employ Monte Carlo methods that include elements of chance to either
simulate random physical processes, such as thermal motion or radioactive decay, or
in mathematical evaluations, such as integration.

Randomness describes a lack of predicability or regular pattern. Mathematically,
we define a sequence r1, r2, . . . as random if there are no short- or long-range corre-
lations among the numbers. This does not necessarily mean that all the numbers in
the sequence are equally likely to occur; that is called uniformity. As a case in point,
0, 2, 4, 6, . . . is uniform though probably not random. If P (r) dr is the probability of
finding r in the interval [r, r + dr], a uniform distribution has P (r) = a constant.

20 Computational Problems for Physics

f(x)

x

x+1

x-2

x-1

x+4

x-3

+0 -

Figure 1.10. Left: A graphical representation of three steps involved in solving for a zero of
f(x) using the bisection algorithm. Right: Two steps shown for the Newton-Raphson method
of root finding in which the function is approximated as a straight line, and then the intercept
of that line is determined.

Computers, being deterministic, cannot generate truly random numbers. However,
they can generate pseudorandom numbers, and the built-in generators are often very
good at this. The random module in Python produces a sequence of random numbers,
and can be used after an import random statement. The module permits many options,
with the simple command random.random() returning the next random floating point
number, distributed uniformly in the range [0.0, 1.0). But if you look hard enough,
you are sure to find correlations among the numbers.

The linear congruential or power residue method is the common way of generating
a pseudorandom sequence of numbers:

ri+1
def= (a ri + c)modM = remainder

(
a ri + c

M

)
. (1.31)

Wikipedia has a table of common choices, for instance,m = 248, a = 25214903917, c =
11. Here mod is a function (% sign in Python) for modulus or remaindering, which is
essentially a bit-shift operation that results in the least significant part of the input
number and hence counts on the randomness of round-off errors.

Your computer probably has random-number generators that should be better than
one computed by a simple application of the power residue method. In Python we use
random.random(), the Mersenne Twister generator. To initialize a random sequence,
you need to plant a seed (r0), or in Python say random.seed(None), which seeds the
generator with the system time, which would differ for repeated executions. If random
numbers in the range [A,B] are needed, you only need to scale, for example,

xi = A+ (B −A)ri, 0 ≤ ri ≤ 1, ⇒ A ≤ xi ≤ B. (1.32)

1. Computational Basics for Physics 21

0 50 100 150 200 250
x

0

50

100

150

200

250

y

0 50 100 150 200 250
x

Figure 1.11. Left: A plot of successive random numbers (x, y) = (ri, ri+1) generated with
a deliberately “bad” generator. Right: A plot generated with the built-in random number
generator. While the plot on the right is not proof that the distribution is random, the plot
on the left is proof enough that the distribution is not random.

1.6.1 Tests of Random Generators
A good general rule, before starting a full calculation, is to check your random number
generator by itself. Here are some ways:

• Look at a print out of the numbers and check that they fall within the desired
range and that they look different from each other.

• A simple plot of ri versus i (Figure 1.12) may not prove randomness, though it
may disprove it as well as showing the range of numbers.

• Make an x-y plot of (xi, yi) = (r2i, r2i+1). If your points have noticeable regular-
ity (Figure 1.11 left), the sequence is not random. Random points (Figure 1.11
right) should uniformly fill a square with no discernible pattern (a cloud).

• A simple test of uniformity, though not randomness, evaluates the kth moment
of a distribution

〈xk〉 = 1
N

N∑
i=1

xki '
∫ 1

0
dx xkP (x) ' 1

k + 1 +O

(
1√
N

)
, (1.33)

where the approximate value is good for a continuous uniform distribution. If the
deviation from (1.33) varies as 1/

√
N , then you also know that the distribution

is random since this assumes randomness.

