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Preface

This book provides an introductory account of model-based geostatistics and
its application in public health research.

The term geostatistics is a short-hand for the collection of statistical meth-
ods relevant to the analysis of geolocated data, in which the aim is to study
geographical variation throughout a region of interest but the available data
are limited to observations from a finite number of sampled locations. This sce-
nario is typical of applications in low-resource settings where comprehensive
disease registries do not exist. Accordingly, most of the examples in the book
relate to public health research in low-to-middle-income countries, drawing on
our experience of collaborative work in Africa, Asia and South America.

Geostatistical methods originated in the South African mining indus-
try in the early 1950s (Krige, 1951). They were subsequently developed,
by Georges Matheron and colleagues at Fontainebleau, France, into a self-
contained methodology for addressing problems of spatial prediction; see
Matheron (1963) or, for a book-length account, Chilès & Delfiner (2016). This
methodology has subsequently been applied in many different fields, spanning
the social, physical and health sciences. Watson (1971, 1972) first pointed
out the connection between geostatistics and classical stochastic process pre-
diction. The books by Ripley (1981) and Cressie (1991) subsequently placed
geostatistics within the more general setting of statistical methods for spatially
referenced data. Diggle et al. (1998) coined the term model-based geostatistics
to mean the application of general principles of statistical modelling and in-
ference to the analysis of geostatistical data. In particular, they emphasised
the use of likelihood-based inference within an explicitly declared parametric
model, typically a generalized linear mixed model (Breslow & Clayton, 1993)
with a latent spatial process included in the linear predictor.

The R software environment (www.r-project.org) has become the stan-
dard vehicle for disseminating new statistical methodology as open-source
software through the provision of R packages as add-ons to the basic R lan-
guage. Packages are made available through the CRAN repository, which is
accessible via the R project web-page, https://cran.r-project.org/. All
of the analyses reported in this book can be reproduced using the R pack-
age PrevMap and its predecessor geoR. R scripts are provided on the book’s
web-site, https://sites.google.com/site/mbgglobalhealth/.

Many of the public health applications decribed in the book fall under the
general heading of disease mapping problems. A basic scenario is the following.
How can we best use data on empirical prevalences of a disease of interest at a

xi
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set of sampled locations within a designated region A to construct a map of the
spatial variation in prevalence throughout A? Many variations on this basic
scenario arise according to the practical focus of particular applications. What
is the relationship between disease risk and exposure to one or more spatially
varying risk-factors? Where do unexplained “hot-spots” occur within A? How
is the spatial distribution of prevalence changing over time? What would be
an efficient spatial sampling design for monitoring changes in prevalence over
time?

The remainder of our applications concern exposure mapping, i.e. con-
structing spatially continuous maps of potential exposure to risk-factors, such
air pollutant concentrations, from a spatially discrete network of measurement
sites. Similar questions are relevant in this context, and can again be answered
using geostatistical methods.

Our aim has been to write a book that is accessible not only to statisticians
but also to students and researchers in the public health sciences. Those in the
latter category may initially struggle with some of the mathematical formalism
that we use in describing the various statistical models and methods. However,
we believe that the effort involved in becoming comfortable with mathematical
notation, and with some basic concepts in probability and statistical inference,
is well worthwhile for at least three reasons. Firstly, expressing a statistical
model in mathematical terms forces precision of thought and explicit dec-
laration of underlying assumptions, both of which can be masked by vague
statements of the kind, “we fitted a regression model of disease risk on age,
gender and socio-economic status.” Secondly, understanding the differences
amongst statistical testing, estimation and prediction helps to ensure that the
analysis of a set of data focuses on the correct scientific question. Finally, by
embedding geostatistical methods within a general inferential paradigm we
greatly reduce reliance on ad hoc methods and thereby ensure that our analy-
ses are statistically efficient, i.e. within the declared model our inferences are
as precise as they can be.

To help this second category of reader negotiate any initial technical diffi-
culties, we have included a brief account of the underlying statistical theory
and methods in Appendix A. Also, at the end of Chapter 1 we signpost those
parts of the book that less mathematically inclined readers may wish to skip
on a first reading. We emphasise that the reader needs only to understand the
statements of the various results, not how they are derived.

Conversely, statisticians may be less familiar than public health scientists
with software tools such as geographical information systems (GIS) for draw-
ing the high-quality maps that are an essential part of communicating the
results of a geostatistical analysis to users. We have therefore included Ap-
pendix B, which describes how to use R packages to do this. We could have used
an open-source GIS instead. For example, we sometimes use the Quantum GIS
(QGIS) system (https://www.qgis.org/en/site/) in our own work. But we
think it is more helpful to the reader that we keep all of our analysis tools
within a single software environment.

https://www.qgis.org
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In writing this book we have benefited greatly from discussion and collab-
oration with many friends, colleagues and students without whom this book
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the non-spatial model of Schlüter et al. (2016). The dashed lines
represent the theoretical standardized variograms and cross-
variogram from fitted geostatistical model to the Loa loa data,
given by (8.8) and (8.9), respectively. . . . . . . . . . . . . . 154

8.7 Scatter plot of the point estimates (a) and length of the 95%
predictive intervals (b) for the prediction target, defined in
(8.10) with c = 8000, from the non-spatial model of Schlüter et
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