CHAPMAN & HALL/CRC INTERDISCIPLINARY STATISTICS SERIES

MODEL-BASED GEOSTATISTICS FOR GLOBAL PUBLIC HEALTH Methods and Applications

PETER J. DIGGLE EMANUELE GIORGI

Model-based Geostatistics for Global Public Health Methods and Applications

CHAPMAN & HALL/CRC

Interdisciplinar y Statistics Series Series editors: N. Keiding, B.J.T. Morgan, C.K. Wikle, P. van der Heijden

Recently Published Titles

MENDELIAN RANDOMIZATION: METHODS FOR USING GENETIC VARIANTS IN CAUSAL ESTIMATION S.Burgess and S.G.Thompson

POWER ANALYSIS OF TRIALS WITH MULTILEVEL DATA *M. Moerbeek and S.Teerenstra*

STATISTICAL ANALYSIS OF QUESTIONNAIRES

A UNIFIED APPROACH BASED ON R AND STATA F. Bartolucci, S. Bacci, and M. Gnaldi

MISSING DATA ANALYSIS IN PRACTICE

T. Raghunathan

SPATIAL POINT PATTERNS METHODOLOGY AND APPLICATIONS WITH R

A. Baddeley, E Rubak, and R.Turner

CLINICAL TRIALS IN ONCOLOGY, THIRD EDITION *S. Green, J. Benedetti, A. Smith, and J. Crowley*

CORRESPONDENCE ANALYSIS IN PRACTICE, THIRD EDITION *M. Greenacre*

STATISTICS OF MEDICAL IMAGING *T. Lei*

CAPTURE-RECAPTURE METHODS FORTHE SOCIALAND MEDICAL SCIENCES D. Böhning, P. G. M. van der Heijden, and J. Bunge

THE DATA BOOK COLLECTION AND MANAGEMENT OF RESEARCH DATA Meredith Zozus

MODERN DIRECTIONAL STATISTICS *C. Ley and T. Verdebout*

SURVIVAL ANALYSIS WITH INTERVAL-CENSORED DATA A PRACTICAL APPROACH WITH EXAMPLES IN R, SAS, AND BUGS K. Bogaerts, A. Komarek, E. Lesaffre

STATISTICAL METHODS IN PSYCHIATRY AND RELATED FIELD LONGITUDINAL, CLUSTERED AND OTHER REPEAT MEASURES DATA *Ralitza Gueorguieva*

FLEXBILE IMPUTATION OF MISSING DATA, SECOND EDITION *Stef van Buuren*

COMPOSITIONAL DATA ANALYSIS IN PRACTICE *Michael Greenacre*

MODEL-BASED GEOSTATISTICS for GLOBAL PUBLIC HEALTH METHODS and APPLICATIONS *Peter J. Diggle and Emanuele Giorgi*

For more information about this series, please visit: https://www.crcpress.com/go/ids

Model-based Geostatistics for Global Public Health Methods and Applications

Peter J. Diggle Emanuele Giorgi

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20190125

International Standard Book Number-13: 978-1-138-73235-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

To Mandy and Iulia

Contents

Pr	eface		xi
Li	st of	Figures	$\mathbf{x}\mathbf{v}$
Li	st of	Tables	xxv
1	Intr	oduction	1
	1.1	Motivating example: mapping river-blindness in Africa	1
	1.2	Empirical or mechanistic models	5
	1.3	What is in this book?	7
2	\mathbf{Reg}	ression modelling for spatially referenced data	11
	2.1	Linear regression models	11
		2.1.1 Malnutrition in Ghana	13
	2.2	Generalised linear models	16
		2.2.1 Logistic Binomial regression: river-blindness in Liberia	16
		2.2.2 Log-linear Poisson regression: abundance of <i>Anopheles</i>	
		Gambiae mosquitoes in Southern Cameroon	20
	2.3	Questioning the assumption of independence	21
		2.3.1 Testing for residual spatial correlation: the empirical	
		variogram	24
3	The	ory	29
	3.1	Gaussian processes	29
	3.2	Families of spatial correlation functions	31
		3.2.1 The exponential family	31
		3.2.2 The Matérn family	32
		3.2.3 The spherical family	34
		3.2.4 The theoretical variogram and the nugget variance	35
	3.3	Statistical inference	37
		3.3.1 Likelihood-based inference	38
	3.4	Bayesian Inference	42
	3.5	Predictive inference	43
	3.6	Approximations to Gaussian processes	44
		3.6.1 Low-rank approximations	45
		3.6.2 Gaussian Markov random field approximations via	
		stochastic partial differential equations	48

4	The	linear geostatistical model	55
	4.1	Model formulation	5!
	4.2	Inference	5'
		4.2.1 Likelihood-based inference	5^{\prime}
		4.2.1.1 Maximum likelihood estimation	58
		4.2.2 Bayesian inference	59
		4.2.3 Trans-Gaussian models	61
	4.3	Model validation	62
		4.3.1 Scenario 1: omission of the nugget effect	6
		4.3.2 Scenario 2: miss-specification of the smoothness param-	
		eter	64
		4.3.3 Scenario 3: non-Gaussian data	64
	4.4	Spatial prediction	66
	4.5	Applications	7(
		4.5.1 Heavy metal monitoring in Galicia	7(
		4.5.2 Malnutrition in Ghana (continued)	75
		4.5.2.1 Spatial predictions for the target population	78
5	Gen	eralised linear geostatistical models	83
	5.1	Model formulation	84
		5.1.1 Binomial sampling	85
		5.1.2 Poisson sampling	87
		5.1.3 Negative binomial sampling?	88
	5.2	Inference	89
		5.2.1 Likelihood-based inference	89
		5.2.1.1 Laplace approximation	89
		5.2.1.2 Monte Carlo maximum likelihood	90
		5.2.2 Bayesian inference	91
	5.3	Model validation	93
	5.4	Spatial prediction	94
	5.5	Applications	95
		5.5.1 River-blindness in Liberia (continued)	95
		5.5.2 Abundance of Anopheles Gambiae mosquitoes in South-	
		ern Cameroon (continued)	98
	5.6	A link between geostatistical models and point processes	99
	5.7	A link between geostatistical models and spatially discrete pro-	
		cesses	102
6	Geo	statistical design	10
	6.1	Introduction	105
	6.2	Definitions	107
	6.3	Non-adaptive designs	107
		6.3.1 Two extremes: completely random and completely reg-	
		ular designs	108
		6.3.2 Inhibitory designs	109

		6.3.3 Inhibitory-plus-close-pairs designs 1	109
		6.3.3.1 Comparing designs: a simple example 1	112
		6.3.4 Modified regular lattice designs	114
		6.3.5 Application: rolling malaria indicator survey sampling	
		in the Majete perimeter, southern Malawi 1	115
	6.4	Adaptive designs	117
		6.4.1 An adaptive design algorithm	118
	6.5	Application: sampling for malaria prevalence in the Majete	
		perimeter (continued) $\ldots \ldots 1$	120
	6.6	Discussion	122
7	Pre	ferential sampling 1	23
	7.1	Definitions 1	123
	7.2	Preferential sampling methodology	125
		7.2.1 Non-uniform designs need not be preferential 1	126
		7.2.2 Adaptive designs need not be strongly preferential 1	126
		7.2.3 The Diggle, Menezes and Su model	127
		7.2.4 The Pati, Reich and Dunson model	127
		7.2.4.1 Monte Carlo maximum likelihood using stochas-	
		tic partial differential equations 1	128
	7.3	Lead pollution in Galicia 1	130
	7.4	Mapping ozone concentration in Eastern United States 1	134
	7.5	Discussion	138
8	Zer	o-inflation 1	41
	8.1	Models with zero-inflation 1	141
	8.2	Inference	144
	8.3	Spatial prediction	145
	8.4	Applications	146
		8.4.1 River blindness mapping in Sudan and South Sudan . 1	146
		8.4.2 Loa loa: mapping prevalence and intensity of infection 1	150
9	Spa	tio-temporal geostatistical analysis	57
	9.1	Setting the context 1	158
	9.2	Is the sampling design preferential?	160
	9.3	Geostatistical methods for spatio-temporal analysis 1	163
		9.3.1 Exploratory analysis: the spatio-temporal variogram . 1	164
		9.3.2 Diagnostics and novel extensions	166
		9.3.2.1 Example: a model for disease prevalence with	
		town and live conving continues	167
		temporany varying variance	107
		9.3.3 Defining targets for prediction	168
		9.3.3 Defining targets for prediction	168
		9.3.3 Defining targets for prediction 1 9.3.4 Accounting for parameter uncertainty using classical methods of inference 1	167 168 168

	9.4	Historical mapping of malaria prevalence in Senegal from 1905	171
	9.5	Discussion	180
10	Furt	ther topics in model-based geostatistics	183
	10.1	Combining data from multiple surveys	183
		10.1.1 Using school and community surveys to estimate	
		malaria prevalence in Nyanza province, Kenya	184
	10.2	Combining multiple instruments	188
		10.2.1 Case I: Predicting prevalence for a gold-standard diag-	
		nostic	189
		10.2.2 Case II: Joint prediction of prevalence from two com-	
		plementary diagnostics	190
	10.3	Incomplete data	191
		10.3.1 Positional error \ldots	191
		10.3.2 Missing locations	195
		10.3.2.1 Modelling of the sampling design	196
AĮ	open	dices	199
A	Bac	kground statistical theory	201
	A.1	Probability distributions	201
		A.1.1 The Binomial distribution	202
		A.1.2 The Poisson distribution	202
		A.1.3 The Normal distribution	203
		A.1.4 Independent and dependent random variables	204
	A.2	Statistical models: responses, covariates, parameters and ran-	
		dom effects	206
	A.3	Statistical inference	208
		A.3.1 The likelihood and log-likelihood functions	208
		A.3.2 Estimation, testing and prediction	210
		A.3.3 Classical inference	211
		A.3.4 Bayesian inference	215
		A.3.5 Prediction	216
	A.4	Monte Carlo methods	217
		A.4.1 Direct simulation	218
		A.4.2 Markov chain Monte Carlo	218
		A.4.3 Monte Carlo maximum likelihood	220
в	Snat	tial data handling	223
-	B ₁	Handling vector data in R	223
	B 2	Handling rester data in R	227
	10.2		
References 231			
In	\mathbf{dex}		243

Preface

This book provides an introductory account of model-based geostatistics and its application in public health research.

The term *geostatistics* is a short-hand for the collection of statistical methods relevant to the analysis of geolocated data, in which the aim is to study geographical variation throughout a region of interest but the available data are limited to observations from a finite number of sampled locations. This scenario is typical of applications in low-resource settings where comprehensive disease registries do not exist. Accordingly, most of the examples in the book relate to public health research in low-to-middle-income countries, drawing on our experience of collaborative work in Africa, Asia and South America.

Geostatistical methods originated in the South African mining industry in the early 1950s (Krige, 1951). They were subsequently developed, by Georges Matheron and colleagues at Fontainebleau, France, into a selfcontained methodology for addressing problems of spatial prediction; see Matheron (1963) or, for a book-length account, Chilès & Delfiner (2016). This methodology has subsequently been applied in many different fields, spanning the social, physical and health sciences. Watson (1971, 1972) first pointed out the connection between geostatistics and classical stochastic process prediction. The books by Ripley (1981) and Cressie (1991) subsequently placed geostatistics within the more general setting of statistical methods for spatially referenced data. Diggle et al. (1998) coined the term model-based geostatistics to mean the application of general principles of statistical modelling and inference to the analysis of geostatistical data. In particular, they emphasised the use of likelihood-based inference within an explicitly declared parametric model, typically a generalized linear mixed model (Breslow & Clayton, 1993) with a latent spatial process included in the linear predictor.

The R software environment (www.r-project.org) has become the standard vehicle for disseminating new statistical methodology as open-source software through the provision of R *packages* as add-ons to the basic R language. Packages are made available through the CRAN repository, which is accessible via the R project web-page, https://cran.r-project.org/. All of the analyses reported in this book can be reproduced using the R package PrevMap and its predecessor geoR. R scripts are provided on the book's web-site, https://sites.google.com/site/mbgglobalhealth/.

Many of the public health applications decribed in the book fall under the general heading of *disease mapping* problems. A basic scenario is the following. How can we best use data on empirical prevalences of a disease of interest at a

set of sampled locations within a designated region A to construct a map of the spatial variation in prevalence throughout A? Many variations on this basic scenario arise according to the practical focus of particular applications. What is the relationship between disease risk and exposure to one or more spatially varying risk-factors? Where do unexplained "hot-spots" occur within A? How is the spatial distribution of prevalence changing over time? What would be an efficient spatial sampling design for monitoring changes in prevalence over time?

The remainder of our applications concern *exposure mapping*, i.e. constructing spatially continuous maps of potential exposure to risk-factors, such air pollutant concentrations, from a spatially discrete network of measurement sites. Similar questions are relevant in this context, and can again be answered using geostatistical methods.

Our aim has been to write a book that is accessible not only to statisticians but also to students and researchers in the public health sciences. Those in the latter category may initially struggle with some of the mathematical formalism that we use in describing the various statistical models and methods. However, we believe that the effort involved in becoming comfortable with mathematical notation, and with some basic concepts in probability and statistical inference, is well worthwhile for at least three reasons. Firstly, expressing a statistical model in mathematical terms forces precision of thought and explicit declaration of underlying assumptions, both of which can be masked by vague statements of the kind, "we fitted a regression model of disease risk on age, gender and socio-economic status." Secondly, understanding the differences amongst statistical testing, estimation and prediction helps to ensure that the analysis of a set of data focuses on the correct scientific question. Finally, by embedding geostatistical methods within a general inferential paradigm we greatly reduce reliance on *ad hoc* methods and thereby ensure that our analyses are statistically efficient, i.e. within the declared model our inferences are as precise as they can be.

To help this second category of reader negotiate any initial technical difficulties, we have included a brief account of the underlying statistical theory and methods in Appendix A. Also, at the end of Chapter 1 we signpost those parts of the book that less mathematically inclined readers may wish to skip on a first reading. We emphasise that the reader needs only to understand the statements of the various results, not how they are derived.

Conversely, statisticians may be less familiar than public health scientists with software tools such as geographical information systems (GIS) for drawing the high-quality maps that are an essential part of communicating the results of a geostatistical analysis to users. We have therefore included Appendix B, which describes how to use R packages to do this. We could have used an open-source GIS instead. For example, we sometimes use the Quantum GIS (QGIS) system (https://www.qgis.org/en/site/) in our own work. But we think it is more helpful to the reader that we keep all of our analysis tools within a single software environment.

In writing this book we have benefited greatly from discussion and collaboration with many friends, colleagues and students without whom this book would never have been written. Special thanks are due to Madeleine Thomson (Columbia University), who introduced PJD to the world of global public health research having spotted the potential for geospatial statistical methods to contribute to this important area of work.

The opportunity to make a contribution, however small, to public heath in some of the world's poorest countries has been both a humbling and an enormously rewarding experience for us both.

Peter J Diggle and Emanuele Giorgi, Lancaster, 17 November, 2018

List of Figures

1.1	Map of estimated pre-control prevalence of onchocericasis in-	1
1.2	Prevalence map for onchocerciasis in Liberia produced by WHO (methodology unspecified)	1
1.3	Prevalence map for onchocerciasis in Liberia produced by the application of model-based geostatistics.	4
1.4	Predictive probability map for exceedance of 20% onchocercia- sis prelevance in Liberia, the WHO-defined threshold for "treat- ment priority areas"	6
1.5	Residential locations (unit post-codes) of reported cases of non- specific gastrointestinal illness in Hampshire, UK	8
1.6	Estimated relative risk of lung cancer mortality in Castile-La Mancha, Spain	8
2.1	Gauss and the Gaussian distribution depicted on a 10 Deutschmark banknote	12
2.2	Curves of child-growth based on length-for-age (0-2 years) and height-for-age (2-5 years). Each curve correspond to a specific length/height-for-age Z-score value (HAZ) of -3, -2, 0, 2 and 3,	10
2.3	with 0 being the standard level of growth	13
2.4	geographical locations in (a) is 1 km	15 17
2.5	Predictive probability map for exceedance of 20% skin nodule prevalence in Liberia from the Binomial regression model in (2.2)	10
2.6	(2.3). Map of the locations of the <i>Anopheles gambiae</i> counts in Southern Cameroon.	18 19

2.7	Scatter plot of the log-counts of mosquitoes against elevation for the data on <i>Anopheles gambiae</i> counts in Southern Cameroon;	
	the solid line is the fitted mean using the Poisson log-linear model (2.5).	20
2.8	Empirical variograms of residuals from GLMM fits to data on river blindness in Liberia (upper panels) and abundance of <i>Anopheles gambiae</i> in Cameroon (lower panels). The left-hand panels shows un-binned empirical variograms, the right-hand panels empirical variograms using a bin-width of 25 km (upper panel) and 10 km (lower panel).	26
2.9	Plots of the diagnostic check on the presence of residual spatial correlation for the data on river blindness in Liberia (upper panels) and abundance of <i>Anopheles gambiae</i> in Cameroon (lower panels). Left panels: empirical variograms of the estimate residual variation \hat{Z}_i (solid lines) and 95% tolerance bandwith (grey area) generated under the hypothesis of spatial independence. Right panels: null distribution of the test statistic in 2.12 with the solid point on the abscissa corresponding to the observed value of the test statistic.	97
	value of the test statistic.	27
3.1	Exponential correlation functions, $\rho(u) = \exp(-u/\phi)$, for $\phi = 0.1$ and $\phi = 1.0$ (solid and dashed lines, respectively). The thin horizontal line intersects each $\rho(u)$ at its practical range,	
3.2	$u \approx 3 \times \phi$	32
3.3	to $\phi = 0.1$ and $\phi = 1.0$, respectively	აა
3.4	tion function at the same value, $u = 3$	34
0.4	tion function $\rho(u; \phi, \kappa)$ The upper and lower panels correspond	~~
3.5	to $\kappa = 1.5$ and $\kappa = 2.5$, respectively	35
3.6	of ϕ chosen so that in each case the practical range is 3.0 The generic form of the variogram, $V(u)$. The <i>nugget</i> is another name for the parameter τ^2 , the <i>sill</i> is likwise another name for the parameter σ^2 whilst the <i>practical range</i> is the distance u	36
	at which the correlation function $\rho(u)$ decays to 0.05	38

3.7	A process model expresses a scientist's assumptions about na- ture, a data model expresses a statistician's assumptions about	
	how nature generates observations, statistical inference links the two.	40
3.8	Kernel regression estimates of a function $s(x)$ calculated from data Y_i observed at 100 equally spaced points x_i in one spatial dimension. Black, red and blue lines correspond to values of	10
3.9	$\phi = 0.2, 0.4$ and 0.8, respectively	46
3.10	and dashed lines, respectively)	48
3.11	(5.25) with Kenler function $f(a) = 2\pi^{-1} (1 - a) + a \le 1$ and $\phi = 0.9$ (dashed line)	49
3.12	spond to an entry value of zero. The upper configuration is used to a approximate a Matérn field with $\kappa = 1$ and the lower with $\kappa = 2. \ldots \ldots$ The Matérn correlation function with scale parameter $\phi = 0.1$ and smoothness parameter $\kappa = 1$ (solid lide). The points corre- spond to the correlation of a CAR process defined over a regular grid with spacing 1/64 and precision matrix given by the upper	51
3.13	panel of Figure 3.11	52 53
4.1	Log-Gaussian, Gamma and Uniform density functions, $f(\theta)$. In	
4.2	all three cases, $\int_{1}^{10} f(\theta) d\theta = 0.95$ Results from the graphical test based on the algorithm described in Section 4.3 for each of the models of Section 4.3.1 to 4.3.3. In each panel, the solid line is the empirical variogram of the residuals from a standard linear regression model. The shaded area is a 95% pointwise tolerance band generated under	61
4.3	the fitted geostatistical model	65
	the administrative boundary of Galcia	71

4.4 4.5	Histograms of the Galicia lead concentation data(left panel) and log-transformed data (right panel)	72
4.6	Spatial prediction for Galicia lead concentration data. Point predictions (left panel) and standard errors (right panel) of the log-transformed lead concentration were computed on a 20 by 20 km regular grid over Galicia. In both plots, the vertical axis corresponds to results from the likelihood-based method, and the horizontal axis to results from the Revenien method.	75
4.7	Spatial prediction of lead concentrations in moss samples, based on the model (4.19). Predictive mean (left-hand panel) and pre- dictive probability of exceeding 4ppm dry weight (right-hand	15
4.8	panel)	76
4.9	gorithm described in Section 4.3	78
4.10	the whole of Ghana	79 81
5.1	Plot of the marginal probability that $Y_i = 0$ from model (5.7) against $1/\operatorname{Var}[e_i^U]$, when e^{U_i} is log-Gaussian (black line) or Gamma (red line) distributed.	88

xviii

5.2	Diagnostic results for the analysis on river-blindness in Liberia.
	The solid line is the empirical variogram based on estimated
	random effects from a non-spatial binomial mixed model. The
	shaded area is a 95% tolerance bandwidth generated by the
	algorithm of Section 5.3.
5.3	Maps of the predicted nodule prevalence (left panel) and ex-

- 5.3 Maps of the predicted nodule prevalence (left panel) and exceedance probability of 20% prevalence (right panel) in Liberia. Contours of 20% prevalence and of 25% and 75% exceedance probabilities are shown in the left and right panels, respectively.
- 5.4 Schematic representation of individual events (solid dots) occurring in a geographical region. In the left-hand panel, events are coloured red or black according to whether they do or do not fall within one of a set of delineated sampling areas. In the right-hand panel, the number of events in each sampled area is shown as a circle at the centroid of each sampled area, with radius size-coded to correspond to counts of 0, 1, 2, 3. . . .

- completely random (left-hand panel); inhibitory (centre panel); inhibitory plus close pairs (right-hand panel). See text for detailed specifications.
 6.6 Realisations of two stationary process each with mean μ = 0, variance σ² = 1 and exponential correlation function, ρ(u) = exp(-u/φ). In the left-hand panel. φ = 0.1. In the right-hand

97

97

100

6.7	Two modified square lattice-based designs: lattice-plus-close- pairs (left-hand panel); lattice-plus-in-fill (right-hand panel). completely random (left-hand panel) and square lattice (right- hand panel) designs, each consists of $n = 100$ sampling loca-	
	tions on the unit square.	115
6.8	The map of Malawi, showing Majete Wildlife Reserve high- lighted (left) and its perimeter with focal areas A, B and C	
6.9	highlighted (right)	116
6.10	black dots, respectively An efficiency comparison between non-adaptive (NAGD) and adaptive (AGD) designs with respect to spatially averaged pre- diction variance. All designs are inhibitory with minimum per- missible distance between sampled locations $d_0 = 0.03$. For the adaptive designs, initial designs were of size $n_0 = 30, 40,, 90$, batch sizes were $b = 1, 5, 10$. Calculations assumed a Gaus- sian model with Matérn correlation and parameters $\phi = 0.05$, $\kappa = 1.5$. Adapted from Chineta et al. (2016)	118
6.11	Initial inhibitory sampling design (red dots) and first wave of adaptive sampling locations (blue dots) in sub-area B. Inset	101
7.1	Sampling locations for the two surveys of lead concentrations in moss samples. The two maps correspond to surveys conducted in 1997 (left panel) and 2000 (right panel). Unit of distance is 100 km. Each point is represented by a symbol corresponding to a quintile class of the observed lead-concentration values as	121
7.2	indicated by the legend	124
7.3	(right-hand panel, dashed line is the least squares fit Triangulated mesh used for the SPDE representation of the	130
	field \mathcal{S}_1	131
7.4	Trace plot (central panel), correlogram (central panel) and em- pirical cumulative density function (right panel) of the first and second 5000 samples of the region-wide average of \tilde{S}_1 , obtained	100
7.5	from the independence sampler algorithm	132
7.6	the ratio of the latter over the former (lower panel) Locations of the air pollution monitoring stations across the	133
	Eastern United States.	135

List of Figures

7.7	Scatter plots of the sampling intensity against the log- transformed population density (upper panel), the ozone con- centration against the log-transformed population density (middle panel) and the ozone concentration against the sam- pling intensity. The sampling intensity is estimated using a Gaussian kernel density estimate. The red solid lines are least squares fit with corresponding 95% confidence intervals as dashed lines. The <i>broken sticks</i> in the upper and lower pan- els are constructed using a knot at 5 for the log-transformed population density	136
(.8	ozone concentration in ppb (right panel).	137
8.1	Plot of the three different disease prevalence patterns at the boundary of endemic areas: continuous and decreasing trajec- tory that never reaches exactly zero (black line); continuous and decreasing trajectory that exactly reaches zero (red line); and discontinuous trajectory that exactly reaches zero (green line)	149
8.2	Map of the 900 sampled locations in Sudan and South Sudan. The background is a physical map of the region with the solid light blue line representing the Nile river.	142
8.3 8.4	Map of the estimated probability of suitability for river- blindness, $\pi(x)$, from zero-inflated model of Section 8.4.1 Surfaces of the estimated river-blindness nodule prevalence (left panels) and its probability of exceeding a threshold of 20% (right panels) from the standard (upper panels) and zero- inflated (middle panels) geostatistical models. The lower panels	148
8.5	show the difference between the surfaces from the two models. Expected fraction of individuals with more than 8000 MF counts per ml of blood, in each of the sampled viallges in the study sites in Cameroon (upper panel), the Republic of Congo (central panel) and the Democratic Republic of Congo (lower	149
8.6	panel)	153
8.7	given by (8.8) and (8.9), respectively. $\dots \dots \dots \dots$ Scatter plot of the point estimates (a) and length of the 95% predictive intervals (b) for the prediction target, defined in (8.10) with $c = 8000$, from the non-spatial model of Schlüter et al. (2016) and the spatial model of Giorgi et al. (2017)	154
	and the spanar model of Glorgi et al. (2017) .	104

xxi

9.1	Diagram of the different stages of a statistical analysis	163
9.2	The underlying data are described in Section 9.4 Locations of the sampled communities in each of the time-	169
5.5	blocks indicated by Table 9.1.	171
9.4	The plots show the results from the Monte Carlo methods used to test the hypotheses of spatio-temporal indepence (upper pan- els) and of compatibility of the adopted covariance model with the data (lower panels). The shaded areas represent the 95% tol- erance region under each of the two hypotheses. The solid lines correspond to the empirical variogram for $\tilde{Z}(x_i, t_i)$, as defined in Section 9.3.1. In the lower panels, the theoretical variograms obtained from the least squares (dotted lines) and maximum	
0.5	likelihood (dashed lines) methods are shown.	174
9.5	of the model parameters based on parameteric bootstrap (PB), as black lines, and the Gaussian approximation (GA), as orange lines; the blue lines correspond to the posterior density from the Bayesian fit.	175
9.6	Profile deviance (solid line) for the parameter of spatio-	110
	temporal interaction ξ of the Gneiting (2002) family given by (9.11). The dashed line is the 0.95 quantile of a χ^2 distribution with one degree of freedom	177
9.7	Scatter plots of the point estimates (upper panels) and standard errors (lower panels) of <i>Plasmodium falciparum</i> prevalence for children between 2 and 10 years of age, using plugin, parametric bootsptrap and Bayesian methods. The dashed red lines in each panel is the identity line.	177
9.8	(a) Predictive mean (solid line) of the country-wide average prevalence with 95% predictive intervals. (b) Predictive probability of the country-wide average prevalence exceeding a 50% threshold	179
9.9	(a) Predictive mean surface of prevalence for children between 2 and 10 $(PfPR_{2-10})$; (b) Exceedance probability surface for a threshold of 5% $PfPR_{2-10}$. Both maps are for the year 2014. The contour lines correspond to 5% $PfPR_{2-10}$, in the left panel, and to 25%, 50% and 75% exceedance probability, in	178
	the right panel.	179
9.10	Prevalence estimates (left panel) and standard errors (right panel) based on the Demographic and Health Survey conducted in Senegal in 2014. Those are obtained from a model using a spatial indicator for urban and rural communities (x-axis) and excluding this explanatory variable (y-axis). The dashed line in	_
	both graphs is the identity line.	181

Geographical coordinates of the sampled compounds in the community (black points) and school (grey triangles) surveys.	185
Maps of: (a) the point predictions of $B^*(x)$, the bias surface associated with the school-based sample of Kenyan children;	100
(b) $r(x)$, the predictive probability that $B^*(x)$ lies outside the interval from 0.9 to 1.1 ()	187
(a) scatter plot of the standard errors for $S(x)$ using models fitted to the data from the community survey against the com- munity and school surveys, with dashed identity line; (b) plot of the prediction locations where black (grey) points correspond to locations where a reduction (an increase) in the standard errors for $S(x)$ is estimated when using the data from both the	100
Representation of the Giorgi et al. (2015) model as a directed	188
acyclic graph.	189
Three examples of the binomial distribution, $p(y)$, with $m = 10$ and $\theta = 0.2, 0.5, 0.8$ (solid, dashed and dotted lines, respec- tively). The first and third are mirror images of each other. The second is symmetric about the point $y = 5$. In all three,	
the maximum value of $p(y)$ is at $y = m\theta$, the expectation of Y.	203
Two examples of the Poisson distribution, $p(y)$, with $\mu = 2, 5$ (solid and dashed lines, respectively), and a binomial distribu- tion with $m = 100$ and $p = 0.05$, hence expectation $\mu = 5$	004
(dotted line). The second and third are almost identical The probability density functions, $f(y)$ of three Normal distributions, N(5, 1), N(10, 1), N(10, 4) (solid, dashed and dotted lines, respectively). Changing μ shifts $f(y)$ along the y-axis;	204
changing σ^2 increases or decreases the spread of $f(y)$ The Baisson log likelihood function for a single absorbition of	205
The Poisson log-intermodel function for a single observation $y = 10. \dots \dots$	209
The Poisson deviance function for a single observation $y = 10$ (solid line) and for a set of five independent observations with	
sample mean $\bar{y} = 10$ (dashed line)	210 213
The left panel shows a map of the second level subdivision of	
Liberia. The central and right panels add a 5 by 5 regular grid and the area of each district, respectively.	226
Interactive map of the area of each district in Liberia obtained	000
Maps of the elevation, in meters, in Liberia.	226 228
	Geographical coordinates of the sampled compounds in the community (black points) and school (grey triangles) surveys. Maps of: (a) the point predictions of $B^*(x)$, the bias surface associated with the school-based sample of Kenyan children; (b) $r(x)$, the predictive probability that $B^*(x)$ lies outside the interval from 0.9 to 1.1 ()

B.4	Map of the distance from the closest river on a 5 by 5 km regular	
	grid. The black lines represent the digitized rivers contained in	
	the water object.	228

List of Tables

2.1	Ordinary least squares estimates with nominal standard errors (Std. Error) and 95% confidence intervals (CI) for the regression	10
2.2	Maximum likelihood estimates with associated standard errors (Std. Error) and 95% confidence intervals (CI) for the regression	16
2.3	coefficients of the Binomial regression model in (2.3) Maximum likelihood estimates with associated standard errors (Std. Error) and 95% confidence intervals (CI) for the regression	18
	coefficients of the Poisson regression model in 2.5	21
4.1	P-values based on the test statistic (4.13) for the misspecified and true model under each of the three scenarios in Section	
4.2	4.3.1 to 4.3.3	64
	intervals for the Bayesian method	74
4.3	Maximum likelihood estimates with associated standard errors (Std. Error) and 95% confidence intervals (CI) for the regression	
	coefficients of the linear geostatistical model in (4.20). \ldots	77
4.4	Empirical joint distribution of maternal education (from $1=$ "Poorly educated" to $3=$ "Highly educated") and wealth in-	
	dex (from $1=$ "Poor" to $3=$ "Wealthy").	80
5.1	Maximum likelihood estimates and associates 95% confidence intervals (CI) for the model in (5.19) using the Laplace (Sec- tion 5.2.1.1) and the Monte Carlo likelihood (Section 5.2.1.2)	
50	methods.	96
5.2	Monte Carlo maximum likelihood estimates and associated 95% confidence intervals for the model in (5.20)	98
6.1	Average squared prediction errors for three designs (D1, D2, D3) and realisations of two simulations models (SGP1, SGP2).	
	See text for specification of designs and simulation models.	113

6.2	Monte Carlo maximum likelihood estimates and 95 % confi- dence intervals for the binomial logistic geostatistical model fitted to malaria prevalence data in Maiete sub-area B	117
6.3	Monte Carlo maximum likelihood estimates and 95 % confi- dence intervals for the model fitted to the initial Majete malaria data.	122
7.1	Maximised log-likelihoods for four models fitted by Diggle et al. (2010) to the Galicia lead pollution data.	132
7.2	Monte Carlo maximum likelihood parameter estimates and 95% confidence interval for the model fitted to the 1997 and 2000 surveys of lead concentrations in moss samples. The unit of	
	measure for ϕ_1 and ϕ_2 is 100km.	133
7.3	Monte Carlo maximum likelihood estimates and associated 95%	
	confidence intervals for the model on ozone concentration.	137
8.1	Monte Carlo maximum likelihood estimates and association 95% confidence intervals for the standard and zero-inflated geo-	
8.2	statistical models of Section 8.4.1	148
	8.4.2	152
9.1	Number of surveys and country-wide average Plasmodium fal-	
0.9	<i>ciparum</i> prevalence, in each time-block	173
9.2	their 95% confidence intervals (CI) based on the asymptotic	
	Gaussian approximation (GA) and parametric bootstrap (PB).	176
9.3	Posterior mean and 95% credible intervals of the model param-	
	eters from the Bayesian fit.	176
10.1	Explanatory variables used in the analysis of malaria prevalence	
	in Nyanza province, Kenya	186
10.2	Monte Carlo maximum likelihood estimates and corresponding	4.0.7
	95% confidence intervals	186

1 Introduction

CONTENTS

1.1	Motivating example: mapping river-blindness in Africa	1
1.2	Empirical or mechanistic models	5
1.3	What is in this book?	7

1.1 Motivating example: mapping river-blindness in Africa

FIGURE 1.1

Map of estimated pre-control prevalence of onchocericasis infection Africa-wide.