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Preface

The original purpose of the book was to present a unified theoretical and

conceptual framework for statistical modelling in a way that was accessible

to undergraduate students and researchers in other fields.

The second edition was expanded to include nominal and ordinal logistic

regression, survival analysis and analysis of longitudinal and clustered data.

It relied more on numerical methods, visualizing numerical optimization and

graphical methods for exploratory data analysis and checking model fit.

The third edition added three chapters on Bayesian analysis for general-

ized linear models. To help with the practical application of generalized linear

models, Stata, R and WinBUGS code were added.

This fourth edition includes new sections on the common problems of

model selection and non-linear associations. Non-linear associations have a

long history in statistics as the first application of the least squares method

was when Gauss correctly predicted the non-linear orbit of an asteroid in

1801.

Statistical methods are essential for many fields of research, but a

widespread lack of knowledge of their correct application is creating inaccu-

rate results. Untrustworthy results undermine the scientific process of using

data to make inferences and inform decisions. There are established practices

for creating reproducible results which are covered in a new Postface to this

edition.

The data sets and outline solutions of the exercises are available on

the publisher’s website: http://www.crcpress.com/9781138741515. We also

thank Thomas Haslwanter for providing a set of solutions using Python:

https://github.com/thomas-haslwanter/dobson.

We are grateful to colleagues and students at the Universities of Queens-

land and Newcastle, Australia, and those taking postgraduate courses through

the Biostatistics Collaboration of Australia for their helpful suggestions and

comments about the material.

Annette J. Dobson and Adrian G. Barnett

Brisbane, Australia

xv

http://www.crcpress.com/9781138741515
https://github.com/thomas-haslwanter/dobson
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Chapter 1

Introduction

1.1 Background

This book is designed to introduce the reader to generalized linear models,

these provide a unifying framework for many commonly used statistical tech-

niques. They also illustrate the ideas of statistical modelling.

The reader is assumed to have some familiarity with classical statistical

principles and methods. In particular, understanding the concepts of estima-

tion, sampling distributions and hypothesis testing is necessary. Experience

in the use of t-tests, analysis of variance, simple linear regression and chi-

squared tests of independence for two-dimensional contingency tables is as-

sumed. In addition, some knowledge of matrix algebra and calculus is re-

quired.

The reader will find it necessary to have access to statistical computing

facilities. Many statistical programs, languages or packages can now perform

the analyses discussed in this book. Often, however, they do so with a dif-

ferent program or procedure for each type of analysis so that the unifying

structure is not apparent.

Some programs or languages which have procedures consistent with the

approach used in this book are Stata, R, S-PLUS, SAS and Genstat. For

Chapters 13 to 14, programs to conduct Markov chain Monte Carlo methods

are needed and WinBUGS has been used here. This list is not comprehensive

as appropriate modules are continually being added to other programs.

In addition, anyone working through this book may find it helpful to be

able to use mathematical software that can perform matrix algebra, differen-

tiation and iterative calculations.

1.2 Scope

The statistical methods considered in this book all involve the analysis of

relationships between measurements made on groups of subjects or objects.

1



2 INTRODUCTION

For example, the measurements might be the heights or weights and the ages

of boys and girls, or the yield of plants under various growing conditions.

We use the terms response, outcome or dependent variable for measure-

ments that are free to vary in response to other variables called explanatory

variables or predictor variables or independent variables—although this

last term can sometimes be misleading. Responses are regarded as random

variables. Explanatory variables are usually treated as though they are non-

random measurements or observations; for example, they may be fixed by the

experimental design.

Responses and explanatory variables are measured on one of the follow-

ing scales.

1. Nominal classifications: e.g., red, green, blue; yes, no, do not know, not

applicable. In particular, for binary, dichotomous or binomial variables

there are only two categories: male, female; dead, alive; smooth leaves,

serrated leaves. If there are more than two categories the variable is called

polychotomous, polytomous or multinomial.

2. Ordinal classifications in which there is some natural order or ranking be-

tween the categories: e.g., young, middle aged, old; diastolic blood pres-

sures grouped as ≤ 70, 71–90, 91–110, 111–130, ≥ 131 mmHg.

3. Continuous measurements where observations may, at least in theory, fall

anywhere on a continuum: e.g., weight, length or time. This scale includes

both interval scale and ratio scale measurements—the latter have a well-

defined zero. A particular example of a continuous measurement is the time

until a specific event occurs, such as the failure of an electronic component;

the length of time from a known starting point is called the failure time.

Nominal and ordinal data are sometimes called categorical or discrete

variables and the numbers of observations, counts or frequencies in each

category are usually recorded. For continuous data the individual measure-

ments are recorded. The term quantitative is often used for a variable mea-

sured on a continuous scale and the term qualitative for nominal and some-

times for ordinal measurements. A qualitative, explanatory variable is called

a factor and its categories are called the levels for the factor. A quantitative

explanatory variable is sometimes called a covariate.

Methods of statistical analysis depend on the measurement scales of the

response and explanatory variables.

This book is mainly concerned with those statistical methods which are

relevant when there is just one response variable although there will usu-

ally be several explanatory variables. The responses measured on different

subjects are usually assumed to be statistically independent random variables
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although this requirement is dropped in Chapter 11, which is about correlated

data, and in subsequent chapters. Table 1.1 shows the main methods of statis-

tical analysis for various combinations of response and explanatory variables

and the chapters in which these are described. The last three chapters are de-

voted to Bayesian methods which substantially extend these analyses.

The present chapter summarizes some of the statistical theory used

throughout the book. Chapters 2 through 5 cover the theoretical framework

that is common to the subsequent chapters. Later chapters focus on methods

for analyzing particular kinds of data.

Chapter 2 develops the main ideas of classical or frequentist statistical

modelling. The modelling process involves four steps:

1. Specifying models in two parts: equations linking the response and ex-

planatory variables, and the probability distribution of the response vari-

able.

2. Estimating fixed but unknown parameters used in the models.

3. Checking how well the models fit the actual data.

4. Making inferences; for example, calculating confidence intervals and test-

ing hypotheses about the parameters.

The next three chapters provide the theoretical background. Chapter 3 is

about the exponential family of distributions, which includes the Normal,

Poisson and Binomial distributions. It also covers generalized linear models

(as defined by Nelder and Wedderburn (1972)). Linear regression and many

other models are special cases of generalized linear models. In Chapter 4

methods of classical estimation and model fitting are described.

Chapter 5 outlines frequentist methods of statistical inference for gener-

alized linear models. Most of these methods are based on how well a model

describes the set of data. For example, hypothesis testing is carried out by

first specifying alternative models (one corresponding to the null hypothesis

and the other to a more general hypothesis). Then test statistics are calculated

which measure the “goodness of fit” of each model and these are compared.

Typically the model corresponding to the null hypothesis is simpler, so if it

fits the data about as well as a more complex model it is usually preferred on

the grounds of parsimony (i.e., we retain the null hypothesis).

Chapter 6 is about multiple linear regression and analysis of variance

(ANOVA). Regression is the standard method for relating a continuous re-

sponse variable to several continuous explanatory (or predictor) variables.

ANOVA is used for a continuous response variable and categorical or qual-

itative explanatory variables (factors). Analysis of covariance (ANCOVA)

is used when at least one of the explanatory variables is continuous. Nowa-
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Table 1.1 Major methods of statistical analysis for response and explanatory vari-

ables measured on various scales and chapter references for this book. Extensions of

these methods from a Bayesian perspective are illustrated in Chapters 12–14.

Response (chapter) Explanatory variables Methods

Continuous Binary t-test

(Chapter 6)

Nominal, >2 categories Analysis of variance

Ordinal Analysis of variance

Continuous Multiple regression

Nominal & some Analysis of

continuous covariance

Categorical & continuous Multiple regression

Binary Categorical Contingency tables

(Chapter 7) Logistic regression

Continuous Logistic, probit &

other dose-response

models

Categorical & continuous Logistic regression

Nominal with Nominal Contingency tables

>2 categories

(Chapters 8 & 9) Categorical & continuous Nominal logistic

regression

Ordinal Categorical & continuous Ordinal logistic

(Chapter 8) regression

Counts Categorical Log-linear models

(Chapter 9)

Categorical & continuous Poisson regression

Failure times Categorical & continuous Survival analysis

(Chapter 10) (parametric)

Correlated Categorical & continuous Generalized

responses estimating equations

(Chapter 11) Multilevel models
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days it is common to use the same computational tools for all such situations.

The terms multiple regression or general linear model are used to cover the

range of methods for analyzing one continuous response variable and mul-

tiple explanatory variables. This chapter also includes a section on model

selection that is also applicable for other types of generalized linear models

Chapter 7 is about methods for analyzing binary response data. The most

common one is logistic regression which is used to model associations be-

tween the response variable and several explanatory variables which may be

categorical or continuous. Methods for relating the response to a single con-

tinuous variable, the dose, are also considered; these include probit anal-

ysis which was originally developed for analyzing dose-response data from

bioassays. Logistic regression has been generalized to include responses with

more than two nominal categories (nominal, multinomial, polytomous or

polychotomous logistic regression) or ordinal categories (ordinal logistic

regression). These methods are discussed in Chapter 8.

Chapter 9 concerns count data. The counts may be frequencies displayed

in a contingency table or numbers of events, such as traffic accidents, which

need to be analyzed in relation to some “exposure” variable such as the num-

ber of motor vehicles registered or the distances travelled by the drivers. Mod-

elling methods are based on assuming that the distribution of counts can be

described by the Poisson distribution, at least approximately. These methods

include Poisson regression and log-linear models.

Survival analysis is the usual term for methods of analyzing failure time

data. The parametric methods described in Chapter 10 fit into the framework

of generalized linear models although the probability distribution assumed

for the failure times may not belong to the exponential family.

Generalized linear models have been extended to situations where the re-

sponses are correlated rather than independent random variables. This may

occur, for instance, if they are repeated measurements on the same sub-

ject or measurements on a group of related subjects obtained, for example,

from clustered sampling. The method of generalized estimating equations

(GEEs) has been developed for analyzing such data using techniques analo-

gous to those for generalized linear models. This method is outlined in Chap-

ter 11 together with a different approach to correlated data, namely multilevel

modelling in which some parameters are treated as random variables rather

than fixed but unknown constants. Multilevel modelling involves both fixed

and random effects (mixed models) and relates more closely to the Bayesian

approach to statistical analysis.

The main concepts and methods of Bayesian analysis are introduced in

Chapter 12. In this chapter the relationships between classical or frequentist
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methods and Bayesian methods are outlined. In addition the software Win-

BUGS which is used to fit Bayesian models is introduced.

Bayesian models are usually fitted using computer-intensive methods

based on Markov chains simulated using techniques based on random num-

bers. These methods are described in Chapter 13. This chapter uses some

examples from earlier chapters to illustrate the mechanics of Markov chain

Monte Carlo (MCMC) calculations and to demonstrate how the results allow

much richer statistical inferences than are possible using classical methods.

Chapter 14 comprises several examples, introduced in earlier chapters,

which are reworked using Bayesian analysis. These examples are used to il-

lustrate both conceptual issues and practical approaches to estimation, model

fitting and model comparisons using WinBUGS.

Finally there is a Postscript that summarizes the principles of good

statistical practice that should always be used in order to address the

“reproducibility crisis” that plagues science with daily reports of “break-

throughs” that turn out to be useless or untrue.

Further examples of generalized linear models are discussed in the books

by McCullagh and Nelder (1989), Aitkin et al. (2005) and Myers et al. (2010).

Also there are many books about specific generalized linear models such as

Agresti (2007, 2013), Collett (2003, 2014), Diggle et al. (2002), Goldstein

(2011), Hilbe (2015) and Hosmer et al. (2013).

1.3 Notation

Generally we follow the convention of denoting random variables by upper-

case italic letters and observed values by the corresponding lowercase letters.

For example, the observations y1,y2, ...,yn are regarded as realizations of the

random variables Y1,Y2, . . . ,Yn. Greek letters are used to denote parameters

and the corresponding lowercase Roman letters are used to denote estimators

and estimates; occasionally the symbol ̂ is used for estimators or estimates.

For example, the parameter β is estimated by β̂ or b. Sometimes these con-

ventions are not strictly adhered to, either to avoid excessive notation in cases

where the meaning should be apparent from the context, or when there is a

strong tradition of alternative notation (e.g., e or ε for random error terms).

Vectors and matrices, whether random or not, are denoted by boldface

lower- and uppercase letters, respectively. Thus, y represents a vector of ob-

servations
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


y1

...

yn




or a vector of random variables




Y1

...

Yn


 ,

βββ denotes a vector of parameters and X is a matrix. The superscript T is

used for a matrix transpose or when a column vector is written as a row, e.g.,

y = [Y1, . . . ,Yn]
T

.

The probability density function of a continuous random variable Y (or

the probability mass function if Y is discrete) is referred to simply as a prob-

ability distribution and denoted by

f (y;θθθ )

where θθθ represents the parameters of the distribution.

We use dot (·) subscripts for summation and bars (−) for means; thus,

y =
1

N

N

∑
i=1

yi =
1

N
y · .

The expected value and variance of a random variable Y are denoted by

E(Y ) and var(Y ), respectively. Suppose random variables Y1, . . . ,YN are in-

dependent with E(Yi) = µi and var(Yi) = σ 2
i for i = 1, . . . ,n. Let the random

variable W be a linear combination of the Yi’s

W = a1Y1 +a2Y2 + . . .+anYn, (1.1)

where the ai’s are constants. Then the expected value of W is

E(W ) = a1µ1 +a2µ2 + . . .+anµn (1.2)

and its variance is

var(W ) = a2
1σ 2

1 +a2
2σ 2

2 + . . .+a2
nσ 2

n . (1.3)
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1.4 Distributions related to the Normal distribution

The sampling distributions of many of the estimators and test statistics used

in this book depend on the Normal distribution. They do so either directly be-

cause they are derived from Normally distributed random variables or asymp-

totically, via the Central Limit Theorem for large samples. In this section we

give definitions and notation for these distributions and summarize the re-

lationships between them. The exercises at the end of the chapter provide

practice in using these results which are employed extensively in subsequent

chapters.

1.4.1 Normal distributions

1. If the random variable Y has the Normal distribution with mean µ and

variance σ 2, its probability density function is

f (y; µ ,σ 2) =
1√

2πσ 2
exp

[
−1

2

(
y−µ

σ

)2
]
.

We denote this by Y ∼ N(µ ,σ 2).

2. The Normal distribution with µ = 0 and σ 2 = 1, Y ∼ N(0,1), is called the

standard Normal distribution.

3. Let Y1, . . . ,Yn denote Normally distributed random variables with Yi ∼
N(µi,σ

2
i ) for i = 1, . . . ,n and let the covariance of Yi and Yj be denoted

by

cov(Yi,Yj) = ρi jσiσ j,

where ρi j is the correlation coefficient for Yi and Yj. Then the joint dis-

tribution of the Yi’s is the multivariate Normal distribution with mean

vector µµµ = [µ1, . . . ,µn]
T

and variance-covariance matrix V with diagonal

elements σ 2
i and non-diagonal elements ρi jσiσ j for i 6= j. We write this as

y ∼ MVN(µµµ ,V), where y = [Y1, . . . ,Yn]
T

.

4. Suppose the random variables Y1, . . . ,Yn are independent and Normally dis-

tributed with the distributions Yi ∼ N(µi,σ
2
i ) for i = 1, . . . ,n. If

W = a1Y1 +a2Y2 + . . .+anYn,

where the ai’s are constants, then W is also Normally distributed, so that

W =
n

∑
i=1

aiYi ∼ N

(
n

∑
i=1

aiµi,
n

∑
i=1

a2
i σ 2

i

)

by Equations (1.2) and (1.3).
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1.4.2 Chi-squared distribution

1. The central chi-squared distribution with n degrees of freedom is defined

as the sum of squares of n independent random variables Z1, . . . ,Zn each

with the standard Normal distribution. It is denoted by

X2 =
n

∑
i=1

Z2
i ∼ χ2(n).

In matrix notation, if z = [Z1, . . . ,Zn]
T

, then zT z = ∑n
i=1 Z2

i so that X2 =
zTz ∼ χ2(n).

2. If X2 has the distribution χ2(n), then its expected value is E(X2) = n and

its variance is var(X2) = 2n.

3. If Y1, . . . ,Yn are independent, Normally distributed random variables, each

with the distribution Yi ∼ N(µi,σ
2
i ), then

X2 =
n

∑
i=1

(
Yi −µi

σi

)2

∼ χ2(n) (1.4)

because each of the variables Zi = (Yi −µi)/σi has the standard Normal

distribution N(0,1).

4. Let Z1, . . . ,Zn be independent random variables each with the distribution

N(0,1) and let Yi = Zi+µi, where at least one of the µi’s is non-zero. Then

the distribution of

∑Y 2
i = ∑(Zi +µi)

2 =∑Z2
i +2∑Ziµi +∑µ2

i

has larger mean n + λ and larger variance 2n + 4λ than χ2(n) where

λ = ∑ µ2
i . This is called the non-central chi-squared distribution with

n degrees of freedom and non-centrality parameter λ . It is denoted by

χ2(n,λ ).

5. Suppose that the Yi’s are not necessarily independent and the vector

y = [Y1, . . . ,Yn]
T

has the multivariate Normal distribution y ∼ MVN(µµµ ,V)
where the variance–covariance matrix V is non-singular and its inverse is

V−1. Then

X2 = (y−µµµ)T V−1(y−µµµ)∼ χ2(n). (1.5)

6. More generally if y ∼ MVN(µµµ ,V), then the random variable yT V−1y has

the non-central chi-squared distribution χ2(n,λ ) where λ = µµµT V−1µµµ .

7. If X2
1 , . . . ,X

2
m are m independent random variables with the chi-squared dis-

tributions X2
i ∼ χ2(ni,λi), which may or may not be central, then their sum
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also has a chi-squared distribution with ∑ni degrees of freedom and non-

centrality parameter ∑λi, that is,

m

∑
i=1

X2
i ∼ χ2

(
m

∑
i=1

ni,
m

∑
i=1

λi

)
.

This is called the reproductive property of the chi-squared distribution.

8. Let y ∼ MVN(µµµ ,V), where y has n elements but the Yi’s are not indepen-

dent so that the number k of linearly independent rows (or columns) of V

(that is, the rank of V) is less than n and so V is singular and its inverse

is not uniquely defined. Let V− denote a generalized inverse of V (that

is a matrix with the property that VV−V = V). Then the random variable

yT V−y has the non-central chi-squared distribution with k degrees of free-

dom and non-centrality parameter λ = µµµT V−µµµ .

For further details about properties of the chi-squared distribution see

Forbes et al. (2010).

9. Let y1, . . . ,yn be n independent random vectors each of length p and

yn ∼ MVN(0,V). Then S = ∑n
i=i yiy

T
i is a p × p random matrix which

has the Wishart distribution W(V,n). This distribution can be used to

make inferences about the covariance matrix V because S is proportional

to V. In the case p = 1 the Yi’s are independent random variables with

Yi ∼ N(0,σ 2), so Zi = Yi/σ ∼ N(0,1). Hence, S = ∑n
i=1Y 2

i = σ 2 ∑n
i=1 Z2

i

and therefore S/σ 2 ∼ χ2(n). Thus, the Wishart distribution can be re-

garded as a generalisation of the chi-squared distribution.

1.4.3 t-distribution

The t-distribution with n degrees of freedom is defined as the ratio of two

independent random variables. The numerator has the standard Normal distri-

bution and the denominator is the square root of a central chi-squared random

variable divided by its degrees of freedom; that is,

T =
Z

(X2/n)1/2
(1.6)

where Z ∼N(0,1), X2 ∼ χ2(n) and Z and X2 are independent. This is denoted

by T ∼ t(n).

1.4.4 F-distribution

1. The central F-distribution with n and m degrees of freedom is defined

as the ratio of two independent central chi-squared random variables, each
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divided by its degrees of freedom,

F =
X2

1

n

/
X2

2

m
, (1.7)

where X2
1 ∼ χ2(n),X2

2 ∼ χ2(m) and X2
1 and X2

2 are independent. This is

denoted by F ∼ F(n,m).

2. The relationship between the t-distribution and the F-distribution can be

derived by squaring the terms in Equation (1.6) and using definition (1.7)

to obtain

T 2 =
Z2

1

/
X2

n
∼ F(1,n) , (1.8)

that is, the square of a random variable with the t-distribution, t(n), has the

F-distribution, F(1,n).

3. The non-central F-distribution is defined as the ratio of two independent

random variables, each divided by its degrees of freedom, where the nu-

merator has a non-central chi-squared distribution and the denominator has

a central chi-squared distribution, that is,

F =
X2

1

n

/
X2

2

m
,

where X2
1 ∼ χ2(n,λ ) with λ = µµµT V−1µµµ , X2

2 ∼ χ2(m), and X2
1 and X2

2 are

independent. The mean of a non-central F-distribution is larger than the

mean of central F-distribution with the same degrees of freedom.

1.4.5 Some relationships between distributions

We summarize the above relationships in Figure 1.1. In later chapters we add

to this diagram and a more extensive diagram involving most of the distri-

butions used in this book is given in the Appendix. Asymptotic relationships

are shown using dotted lines and transformations using solid lines. For more

details see Leemis (1986) from which this diagram was developed.

1.5 Quadratic forms

1. A quadratic form is a polynomial expression in which each term has de-

gree 2. Thus, y2
1 +y2

2 and 2y2
1 +y2

2 +3y1y2 are quadratic forms in y1 and y2,

but y2
1 + y2

2 +2y1 or y2
1 +3y2

2 +2 are not.
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Normal

N( )

Standard
Normal

N(0,1)

Chi-square

(n)

t

t(n)

F

F(n,m)

Wishart

W(R,   n )

Multivariate
Normal

MVN( )X

X-

X2

n X +...+X2 2
1 n

X  X
n  m/

2
22

1

m
nX

R=1

n=1

22

2

Figure 1.1 Some relationships between common distributions related to the Normal

distribution, adapted from Leemis (1986). Dotted line indicates an asymptotic rela-

tionship and solid lines a transformation.

2. Let A be a symmetric matrix




a11 a12 · · · a1n

a21 a22 · · · a2n

...
. . .

...

an1 an2 · · · ann


 ,

where ai j = a ji; then the expression yT Ay = ∑i ∑ j ai jyiy j is a quadratic

form in the yi’s. The expression (y− µµµ)T V−1(y− µµµ) is a quadratic form

in the terms (yi −µi) but not in the yi’s.

3. The quadratic form yT Ay and the matrix A are said to be positive definite

if yT Ay > 0 whenever the elements of y are not all zero. A necessary and

sufficient condition for positive definiteness is that all the determinants

|A1|= a11, |A2|=
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ , |A3|=

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
, . . . , and

|An| = det A are positive. If a matrix is positive definite, then it can be

inverted and also it has a square root matrix A∗ such that A∗A = A. These
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properties are useful for the derivation of several theoretical results related

to estimation and the probability distributions of estimators.

4. The rank of the matrix A is also called the degrees of freedom of the

quadratic form Q = yT Ay.

5. Suppose Y1, . . . ,Yn are independent random variables each with the Nor-

mal distribution N(0,σ 2). Let Q = ∑n
i=1Y 2

i and let Q1, . . . ,Qk be quadratic

forms in the Yi’s such that

Q = Q1 + . . .+Qk,

where Qi has mi degrees of freedom (i = 1, . . . ,k). Then Q1, . . . ,Qk are

independent random variables and Q1/σ 2 ∼ χ2(m1), Q2/σ 2 ∼ χ2(m2), . . .,
and Qk/σ 2 ∼ χ2(mk), if and only if

m1 +m2 + . . .+mk = n.

This is Cochran’s theorem. A similar result also holds for non-central dis-

tributions. For more details see Forbes et al. (2010).

6. A consequence of Cochran’s theorem is that the difference of two indepen-

dent random variables, X2
1 ∼ χ2(m) and X2

2 ∼ χ2(k), also has a chi-squared

distribution

X2 = X2
1 −X2

2 ∼ χ2(m− k)

provided that X2 ≥ 0 and m > k.

1.6 Estimation

1.6.1 Maximum likelihood estimation

Let y = [Y1, . . . ,Yn]
T

denote a random vector and let the joint probability den-

sity function of the Yi’s be

f (y;θθθ )

which depends on the vector of parameters θθθ = [θ1, . . . ,θp]
T

.

The likelihood function L(θθθ ;y) is algebraically the same as the joint

probability density function f (y;θθθ ) but the change in notation reflects a shift

of emphasis from the random variables y, with θθθ fixed, to the parameters θθθ ,

with y fixed. Since L is defined in terms of the random vector y, it is itself

a random variable. Let Ω denote the set of all possible values of the param-

eter vector θθθ ; Ω is called the parameter space. The maximum likelihood

estimator of θ is the value θ̂θθ which maximizes the likelihood function, that

is,

L(θ̂θθ ;y)≥ L(θθθ ;y) for all θθθ in Ω.
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Equivalently, θ̂θθ is the value which maximizes the log-likelihood function

l(θθθ ;y) = logL(θθθ ;y) since the logarithmic function is monotonic. Thus,

l(θ̂θθ ;y) ≥ l(θθθ ;y) for all θθθ in Ω.

Often it is easier to work with the log-likelihood function than with the like-

lihood function itself.

Usually the estimator θ̂θθ is obtained by differentiating the log-likelihood

function with respect to each element θ j of θθθ and solving the simultaneous

equations
∂ l(θθθ ;y)

∂θ j

= 0 for j = 1, . . . , p. (1.9)

It is necessary to check that the solutions do correspond to maxima of

l(θθθ ;y) by verifying that the matrix of second derivatives

∂ 2l(θθθ ;y)

∂θ j∂θk

evaluated at θθθ = θ̂θθ is negative definite. For example, if θθθ has only one element

θ , this means it is necessary to check that

[
∂ 2l(θ ,y)

∂θ2

]

θ=θ̂

< 0.

It is also necessary to check if there are any values of θθθ at the edges of the

parameter space Ω that give local maxima of l(θθθ ;y). When all local maxima

have been identified, the value of θ̂θθ corresponding to the largest one is the

maximum likelihood estimator. (For most of the models considered in this

book there is only one maximum and it corresponds to the solution of the

equations ∂ l/∂θ j = 0, j = 1, . . . , p.)

An important property of maximum likelihood estimators is that if g(θθθ )
is any function of the parameters θθθ , then the maximum likelihood estimator

of g(θθθ ) is g(θ̂θθ ). This follows from the definition of θ̂θθ . It is sometimes called

the invariance property of maximum likelihood estimators. A consequence

is that we can work with a function of the parameters that is convenient for

maximum likelihood estimation and then use the invariance property to obtain

maximum likelihood estimates for the required parameters.

In principle, it is not necessary to be able to find the derivatives of the

likelihood or log-likelihood functions or to solve Equation (1.9) if θ̂θθ can be

found numerically. In practice, numerical approximations are very important

for generalized linear models.
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Other properties of maximum likelihood estimators include consistency,

sufficiency, asymptotic efficiency and asymptotic normality. These are dis-

cussed in books such as Cox and Hinkley (1974) or Forbes et al. (2010).

1.6.2 Example: Poisson distribution

Let Y1, . . . ,Yn be independent random variables each with the Poisson distri-

bution

f (yi;θ) =
θ yi e−θ

yi!
, yi = 0,1,2, . . .

with the same parameter θ . Their joint distribution is

f (y1, . . . ,yn;θ) =
n

∏
i=1

f (yi;θ) =
θ y1 e−θ

y1!
× θ y2 e−θ

y2!
×·· ·× θ yn e−θ

yn!

=
θΣyi e−nθ

y1!y2! . . .yn!
.

This is also the likelihood function L(θ ;y1, . . . ,yn). It is easier to use the log-

likelihood function

l(θ ;y1, . . . ,yn) = logL(θ ;y1, . . . ,yn) = (∑yi) log θ −nθ −∑(logyi!).

To find the maximum likelihood estimate θ̂ , use

dl

dθ
=

1

θ ∑yi −n.

Equate this to zero to obtain the solution

θ̂ = ∑yi/n = y.

Since d2l/dθ2 =−∑yi/θ2 < 0, l has its maximum value when θ = θ̂ , con-

firming that y is the maximum likelihood estimate.

1.6.3 Least squares estimation

Let Y1, . . . ,Yn be independent random variables with expected values µ1, . . . ,
µn, respectively. Suppose that the µi’s are functions of the parameter vector

that we want to estimate, βββ = [β1, . . . ,βp]
T

; p < n. Thus

E(Yi) = µi(βββ ).

The simplest form of the method of least squares consists of finding the
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estimator β̂ββ that minimizes the sum of squares of the differences between Yi’s

and their expected values

S = ∑ [Yi −µi (βββ )]
2 .

Usually β̂ββ is obtained by differentiating S with respect to each element β j

of βββ and solving the simultaneous equations

∂S

∂β j

= 0, j = 1, . . . , p.

Of course it is necessary to check that the solutions correspond to minima

(i.e., the matrix of second derivatives is positive definite) and to identify the

global minimum from among these solutions and any local minima at the

boundary of the parameter space.

Now suppose that the Yi’s have variances σ 2
i that are not all equal. Then

it may be desirable to minimize the weighted sum of squared differences

S = ∑wi [Yi −µi (βββ )]
2 ,

where the weights are wi = (σ 2
i )

−1. In this way, the observations which are

less reliable (i.e., the Yi’s with the larger variances) will have less influence

on the estimates.

More generally, let y = [Y1, . . . ,Yn]
T denote a random vector with

mean vector µµµ = [µ1, . . . ,µn]
T

and variance–covariance matrix V. Then the

weighted least squares estimator is obtained by minimizing

S = (y−µµµ)T V−1(y−µµµ).

1.6.4 Comments on estimation

1. An important distinction between the methods of maximum likelihood and

least squares is that the method of least squares can be used without making

assumptions about the distributions of the response variables Yi beyond

specifying their expected values and possibly their variance–covariance

structure. In contrast, to obtain maximum likelihood estimators we need

to specify the joint probability distribution of the Yi’s.

2. For many situations maximum likelihood and least squares estimators are

identical.

3. Often numerical methods rather than calculus may be needed to obtain pa-

rameter estimates that maximize the likelihood or log-likelihood function

or minimize the sum of squares. The following example illustrates this ap-

proach.
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1.6.5 Example: Tropical cyclones

Table 1.2 shows the number of tropical cyclones in northeastern Australia for

the seasons 1956–7 (season 1) through 1968–9 (season 13), a period of fairly

consistent conditions for the definition and tracking of cyclones (Dobson and

Stewart 1974).

Table 1.2 Numbers of tropical cyclones in 13 successive seasons.

Season 1 2 3 4 5 6 7 8 9 10 11 12 13

No. of cyclones 6 5 4 6 6 3 12 7 4 2 6 7 4

Let Yi denote the number of cyclones in season i, where i= 1, . . . ,13. Sup-

pose the Yi’s are independent random variables with the Poisson distribution

with parameter θ . From Example 1.6.2, θ̂ = y = 72/13 = 5.538. An alterna-

tive approach would be to find numerically the value of θ that maximizes the

log-likelihood function. The component of the log-likelihood function due to

yi is

li = yi log θ −θ − logyi!.

The log-likelihood function is the sum of these terms

l =
13

∑
i=1

li =
13

∑
i=1

(yi logθ −θ − logyi!) .

Only the first two terms in the brackets involve θ and so are relevant to

the optimization calculation because the term ∑13
1 logyi! is a constant. To plot

the log-likelihood function (without the constant term) against θ , for various

values of θ , calculate (yi log θ −θ) for each yi and add the results to obtain

l∗ = ∑(yi log θ −θ). Figure 1.2 shows l∗ plotted against θ .

Clearly the maximum value is between θ = 5 and θ = 6. This can pro-

vide a starting point for an iterative procedure for obtaining θ̂ . The results of

a simple bisection calculation are shown in Table 1.3. The function l∗ is first

calculated for approximations θ (1) = 5 and θ (2) = 6. Then subsequent approx-

imations θ (k) for k = 3,4, . . . are the average values of the two previous esti-

mates of θ with the largest values of l∗(for example, θ (6) = 1
2
(θ (5)+ θ (3))).

After 7 steps, this process gives θ̂ ≃ 5.54 which is correct to 2 decimal places.

1.7 Exercises

1.1 Let Y1 and Y2 be independent random variables with

Y1 ∼ N(1,3) and Y2 ∼ N(2,5). If W1 = Y1 +2Y2 and W2 = 4Y1 −Y2, what is

the joint distribution of W1 and W2?
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Figure 1.2 Graph showing the location of the maximum likelihood estimate for the

data in Table 1.2 on tropical cyclones.

Table 1.3 Successive approximations to the maximum likelihood estimate of the

mean number of cyclones per season.

k θ (k) l∗

1 5 50.878

2 6 51.007

3 5.5 51.242

4 5.75 51.192

5 5.625 51.235

6 5.5625 51.243

7 5.5313 51.24354

8 5.5469 51.24352

9 5.5391 51.24360

10 5.5352 51.24359

1.2 Let Y1 and Y2 be independent random variables with Y1 ∼ N(0,1) and Y2 ∼
N(3,4).

a. What is the distribution of Y 2
1 ?

b. If y =

[
Y1

(Y2 −3)/2

]
, obtain an expression for yT y. What is its distri-

bution?

c. If y =

(
Y1

Y2

)
and its distribution is y ∼MVN(µµµ ,V), obtain an expres-

sion for yT V−1y. What is its distribution?
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1.3 Let the joint distribution of Y1 and Y2 be MVN(µµµ ,V) with

µµµ =

(
2

3

)
and V =

(
4 1

1 9

)
.

a. Obtain an expression for (y−µµµ)T V−1(y−µµµ). What is its distribution?

b. Obtain an expression for yT V−1y. What is its distribution?

1.4 Let Y1, . . . ,Yn be independent random variables each with the distribution

N(µ ,σ 2). Let

Y =
1

n

n

∑
i=1

Yi and S2 =
1

n−1

n

∑
i=1

(Yi −Y )2.

a. What is the distribution of Y ?

b. Show that S2 = 1
n−1

[
∑n

i=1(Yi −µ)2 −n(Y −µ)2
]
.

c. From (b) it follows that ∑(Yi−µ)2/σ 2 =(n−1)S2/σ 2+
[
(Y −µ)2n/σ 2

]
.

How does this allow you to deduce that Y and S2 are independent?

d. What is the distribution of (n−1)S2/σ 2?

e. What is the distribution of
Y−µ
S/

√
n
?

1.5 This exercise is a continuation of the example in Section 1.6.2 in which

Y1, . . . ,Yn are independent Poisson random variables with the parameter θ .

a. Show that E(Yi) = θ for i = 1, . . . ,n.

b. Suppose θ = eβ . Find the maximum likelihood estimator of β .

c. Minimize S = ∑
(
Yi − eβ

)2
to obtain a least squares estimator of β .

1.6 The data in Table 1.4 are the numbers of females and males in the progeny

of 16 female light brown apple moths in Muswellbrook, New South Wales,

Australia (from Lewis, 1987).

a. Calculate the proportion of females in each of the 16 groups of progeny.

b. Let Yi denote the number of females and ni the number of progeny in

each group (i = 1, . . . ,16). Suppose the Yi’s are independent random

variables each with the Binomial distribution

f (yi;θ) =

(
ni

yi

)
θ yi(1−θ)ni−yi .

Find the maximum likelihood estimator of θ using calculus and evalu-

ate it for these data.

c. Use a numerical method to estimate θ̂ and compare the answer with

the one from (b).
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Table 1.4 Progeny of light brown apple moths.

Progeny Females Males

group

1 18 11

2 31 22

3 34 27

4 33 29

5 27 24

6 33 29

7 28 25

8 23 26

9 33 38

10 12 14

11 19 23

12 25 31

13 14 20

14 4 6

15 22 34

16 7 12



Chapter 2

Model Fitting

2.1 Introduction

The model fitting process described in this book involves four steps:

1. Model specification—a model is specified in two parts: an equation linking

the response and explanatory variables and the probability distribution of

the response variable.

2. Estimation of the parameters of the model.

3. Checking the adequacy of the model—how well it fits or summarizes the

data.

4. Inference—for classical or frequentist inference this involves calculating

confidence intervals, testing hypotheses about the parameters in the model

and interpreting the results.

In this chapter these steps are first illustrated using two small examples.

Then some general principles are discussed. Finally there are sections about

notation and coding of explanatory variables which are needed in subsequent

chapters.

2.2 Examples

2.2.1 Chronic medical conditions

Data from the Australian Longitudinal Study on Women’s Health (Lee et al.

2005) show that women who live in country areas tend to have fewer consul-

tations with general practitioners (family physicians) than women who live

near a wider range of health services. It is not clear whether this is because

they are healthier or because structural factors, such as shortage of doctors,

higher costs of visits and longer distances to travel, act as barriers to the use

of general practitioner (GP) services. Table 2.1 shows the numbers of chronic

medical conditions (for example, high blood pressure or arthritis) reported
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Table 2.1 Number of chronic medical conditions of 26 town women and 23 country

women with similar use of general practitioner services.

Town

0 1 1 0 2 3 0 1 1 1 1 2 0 1 3 0 1 2 1 3 3 4 1 3 2 0

n = 26, mean = 1.423, standard deviation = 1.172, variance = 1.374

Country

2 0 3 0 0 1 1 1 1 0 0 2 2 0 1 2 0 0 1 1 1 0 2

n = 23, mean = 0.913, standard deviation = 0.900, variance = 0.810

by samples of women living in large country towns (town group) or in more

rural areas (country group) in New South Wales, Australia. All the women

were aged 70–75 years, had the same socio-economic status and had three or

fewer GP visits during 1996. The question of interest is: Do women who have

similar levels of use of GP services in the two groups have the same need as

indicated by their number of chronic medical conditions?

The Poisson distribution provides a plausible way of modelling these data

as they are count data and within each group the sample mean and variance are

similar. Let Yjk be a random variable representing the number of conditions

for the kth woman in the jth group, where j = 1 for the town group and j = 2

for the country group and k = 1, . . . , K j with K1 = 26 and K2 = 23. Suppose

the Yjk’s are all independent and have the Poisson distribution with parameter

θ j representing the expected number of conditions.

The question of interest can be formulated as a test of the null hypothesis

H0 : θ1 = θ2 = θ against the alternative hypothesis H1 : θ1 6= θ2. The model

fitting approach to testing H0 is to fit two models, one assuming H0 is true,

that is

E(Yjk) = θ ; Yjk ∼ Po(θ), (2.1)

and the other assuming it is not, so that

E(Yjk) = θ j; Yjk ∼ Po(θ j), (2.2)

where j = 1 or 2. Testing H0 against H1 involves comparing how well Mod-

els (2.1) and (2.2) fit the data. If they are about equally good, then there is

little reason for rejecting H0. However, if Model (2.2) is clearly better, then

H0 would be rejected in favor of H1.

If H0 is true, then the log-likelihood function of the Yjk’s is

l0 = l(θ ;y) =
J

∑
j=1

K j

∑
k=1

(y jk logθ −θ − logy jk!), (2.3)
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where J = 2 in this case. The maximum likelihood estimate, which can be

obtained as shown in the example in Section 1.6.2, is

θ̂ = ∑∑y jk/N,

where N = ∑ j K j. For these data the estimate is θ̂ = 1.184 and the maximum

value of the log-likelihood function, obtained by substituting this value of θ̂

and the data values y jk into (2.3), is l̂0 =−68.3868.

If H1 is true, then the log-likelihood function is

l1 = l(θ1,θ2;y) =
K1

∑
k=1

(y1k logθ1 −θ1 − logy1k!)

+
K2

∑
k=1

(y2k logθ2 −θ2 − logy2k!). (2.4)

(The subscripts on l0 and l1 in (2.3) and (2.4) are used to emphasize the con-

nections with the hypotheses H0 and H1, respectively). From (2.4) the max-

imum likelihood estimates are θ̂ j = ∑k y jk/K j for j = 1 or 2. In this case

θ̂1 = 1.423, θ̂2 = 0.913 and the maximum value of the log-likelihood function,

obtained by substituting these values and the data into (2.4), is l̂1 =−67.0230.

The maximum value of the log-likelihood function l1 will always be

greater than or equal to that of l0 because one more parameter has been fitted.

To decide whether the difference is statistically significant, we need to know

the sampling distribution of the log-likelihood function. This is discussed in

Chapter 4.

If Y ∼ Po(θ) then E(Y )= var(Y )= θ . The estimate θ̂ of E(Y ) is called the

fitted value of Y . The difference Y − θ̂ is called a residual (other definitions

of residuals are also possible, see Section 2.3.4). Residuals form the basis of

many methods for examining the adequacy of a model. A residual is usually

standardized by dividing by its standard error. For the Poisson distribution an

approximate standardized residual is

r =
Y − θ̂√

θ̂
.

The standardized residuals for Models (2.1) and (2.2) are shown in Ta-

ble 2.2 and Figure 2.1. Examination of individual residuals is useful for as-

sessing certain features of a model such as the appropriateness of the probabil-

ity distribution used for the responses or the inclusion of specific explanatory

variables. For example, the residuals in Table 2.2 and Figure 2.1 exhibit some

skewness, as might be expected for the Poisson distribution.


