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Preface

Behavioral ecology is a field that largely depends upon empirical investiga-
tion and observation, and as such leans heavily on statistical methods. Thus, 
behavioral ecologists require some instruction into those statistical concepts 
and methods that will be of use to their work. For example, in the September 
2017 issue of the journal Behavioral Ecology, we counted more than 50 differ-
ent statistical techniques. Although all the methods mentioned in that work 
could be found in various statistical texts, it would be difficult to find all 
of them in one place. This text was written with the behavioral ecologist 
in mind. Not only does it contain information on methods that have been 
widely used by behavioral ecologists, it also provides a little depth into the 
theory under which those methods were derived. Without getting overly 
mathematical, the theoretical aspects are described in order to elucidate the 
assumptions and limitations of the methods. In that way, the scientist will 
have a better view as to when these methods are applicable, and the appro-
priate level of skepticism required when interpreting results. Sometimes 
there may be more than one technique for analyzing the same data and pro-
viding the same type of conclusion. This text will also compare such meth-
ods, describe their assumptions, and hopefully provide some insight into 
which technique the researcher might choose. In particular, methods that 
require few assumptions about the underlying probability distributions of 
populations or data-generating processes will be described, together with 
associated computer programs. The computer programs provided are writ-
ten in the R language, which has gained much popularity in the scientific 
world. Datasets provided are mostly based, at least to some degree, on real 
studies, but the data themselves are simulated, and the examples are simpli-
fied for pedagogical purposes. Those studies providing the inspiration for 
the simulated data are cited in the text.

It is assumed that the reader has had exposure to statistics through a first 
introductory course at least, and also has sufficient knowledge of R. This 
is not a primer for R or for statistics. However, some introductory material 
is included to aid the less initiated reader. The first five chapters largely 
consist of material covered in many first courses on statistics for biologists. 
However, there is mention of some intermediate notions, such as rank-based 
methods, permutation tests, and bootstrapping. In most chapters, at least two 
different methods are presented, together with their primary assumptions, 
for analyzing the exact same data. As such, this is not a book about para-
metric, nonparametric, frequentist, or Bayesian statistics. Rather, with no 
sword to grind, statistical methods are presented to the researcher in order 
to familiarize him or her with techniques described in scholarly literature. 
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Hopefully, the text will remove the perception of the magical aura that sta-
tistical methods often evoke.

The remaining chapters cover methods that each have multiple books 
written on them. As such, this can only be viewed as an introduction, and 
an introduction to some more fundamental but not elementary methods. 
Nevertheless, the material presented should at least get the reader started 
on the path.

Something should be said about the organization of material within a 
chapter. Except for Chapters 1, 15, and 16, each chapter is divided into five 
sections:

General Ideas
Examples with R Code
Theoretical Aspects
Key Points
Exercises and Questions

Hopefully, the first two sections, General Ideas and Examples with R Code, 
can get the reader started in the process of analyzing data. The Theoretical 
Aspects section will help provide some explanation of how the methods 
actually work, why they work, and what assumptions are necessary for 
them to work correctly. We strongly recommend that the student reads the 
Theoretical Aspects sections in order to gain a better understanding of the 
methods, their strengths, and their limitations.

As in the case of all texts, some very important topics have been omitted. 
In particular, the uses of statistical methods for phylogenetic analyses and 
spatial modeling have not been discussed. These, and other advanced meth-
ods, are beyond the scope of this book.
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1

1
Statistical Foundations

Statistics has its foundation in probability. The basic building block is known 
as the random variable. Without being overly mathematical, random vari-
ables are those things that can be expressed in some sort of quantitative fash-
ion, and whose values cannot be perfectly predicted. Random variables will 
take the form of observations or measurements made on experimental units. 
Experimental units are very often individual animals, but could be a collec-
tive, such as a flock, herd, hive, family, or other collection of individuals. The 
observations and measurements to be discussed in this text will be things 
that can be quantified. For example, a variable might have only two possible 
values: Say, one, if a particular, predefined behavior is observed under par-
ticular conditions; and zero if it is not. Another variable could be the distance 
traveled by an individual in some fixed period of time. The random nature 
of these variables implies that they have a probability distribution associated 
with their respective values. The analyses of data will be all about features 
of these distributions, such as means, standard deviations, and percentiles.

By way of a taxonomy for observations or measurements, we will refer 
to those whose values can be expressed as an integer as discrete, and those 
whose values can be expressed as a decimal number or fraction as continu-
ous. Analyses for these types of variables are different in details, but have 
similar aims.

Statistical analyses involve three basic procedures:

 1. Estimation
 2. Inference and decision making
 3. Model building: Discrimination and prediction

In all cases, statistics is the science of applying the laws and rules of prob-
ability to samples, which are collections of values of a random variable or 
in fact a collection of random variables. The type of sample upon which we 
will most heavily rely is called the random sample. A random sample can be 
defined as a subset of individual values of a random variable where the indi-
viduals selected for the subset all had an equal opportunity for selection. 
This does not mean that in any given data-gathering exercise there could not 
be more than one group or class of individuals, but that within a class the 
individuals chosen should not have been chosen with any particular bias.



2 Statistical Methods for Field and Laboratory Studies in Behavioral Ecology

The nature of all three types of procedures can be subdivided into two 
basic classes:

 1. Parametric
 2. Nonparametric

By parametric, we mean that there is some underlying “model” that 
describes the data-generating process (e.g., the normal, or Gaussian, distri-
bution), and that model can be described by a few (usually one to three) 
numerical parameters. By nonparametric, we mean analyses that are not 
dependent on specifying a particular form of model for the data-generating 
process. Both paradigms for statistical analyses are useful and have a place 
in the data analyst’s toolbox. As such, both classes of analyses will be dis-
cussed throughout the text.

Some Probability Concepts

Parametric distributions are described by mathematical functions. The fun-
damental function is called the probability density function for continuous vari-
ables, or in the case of discrete variables, it is often called the probability mass 
function. The idea is to describe the probability that the random variable, 
call it X, could take on a particular value, or have values falling within some 
specified range. In the case of continuous variables, the probability that X 
is exactly equal to a particular value is always zero. This rather curious fact 
is based on a set of mathematical ideas called measure theory. Intuitively, the 
probability of finding an individual with exactly some specific characteristic 
(say, a weight of 2.073192648 kg) is, well, zero. This is not to say that once 
you find such an individual, you must be hallucinating. The notion of zero 
probability (and in fact any probability) relates to a priori determination, that 
is, before any observation. Once an observation is made, the probability of 
observing whatever it is you observed is in fact 1, or 100 percent.

In general, capital letters, like X, will refer to a random variable, whereas 
lower case letters, like x, will refer to a specific value of the random variable, X. 
Often, in order to avoid confusing discrete and continuous variables, the 
symbol fX(x) will refer to the density function for variable X, evaluated at 
the value x, and pX(xk) to a probability mass function for a discrete variable 
X evaluated at the value xk. The notation Pr{} will refer to the probability 
that whatever is inside the curly brackets will happen, or be observed. If the 
symbol “dx” means a very small range of values for X, and xk represents a 
particular value of a discrete random variable, then

 f dx Pr x dx X x dxxX ( ) { }= − ≤ ≤ +
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and

 p X xxX kk( ) = =Pr{ }

There is a particularly important function called the cumulative distribution 
function (CDF) that is the probability Pr{X ≤ x}, which is usually defined in 
terms of density or mass functions, namely

 

F f dxX X

x

( ) ( )=
− ∞
∫ ξ ξ

for continuous variables, and

 

F p xxX X k

x xk

( ) ( )=
≤

∑

for discrete variables.
As mentioned earlier, the functions fX(.) and pX(.) generally have param-

eters, or constants, that dictate something about the particular nature of the 
shape of the density curve. Table 1.1 shows the parameter lists, density or 
mass functions for several common distributions.

In the case of the binomial and beta distributions, the symbol p was used 
to denote a parameter (binomial), or as a value of a random variable (beta), 
and not the mass function itself. The function Γ(x) is called the gamma func-
tion (oddly enough) and has a definition in terms of an integral:

 

Γ( )x e dx x= − −
∞

∫ ξ ξ1

0

Aside from the CDF, there are some other important functions of fX(x) and 
pX(xk). In particular, there is the expected value, or mean:

 

E X

x p

f d

xk X

k

X

k

[ ]
( )

( )

= =














∑

∫
− ∞

+∞µ
ξ ξ ξ

and the variance:
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V X E X

x p x

f d

k X k

k

X

[ ] [ ]
( )

( ) ( )

( )
= − = =

−

−

∑

− ∞

+µ σ

µ

ξ µ ξ ξ

2 2

2

2

∞∞

∫














Commonly the Greek letter μ is used to symbolize the expected value, and 
σ2 is used to represent the variance. The variance is never negative (it is a 
sum of squared values). The square root of the variance is called the stan-
dard deviation, and has its most important role in random variables having 
a normal distribution. The expected value has units that are the same as 

TABLE 1.1

Some Probability Density and Mass Functions

Name Parameters Density or Mass Function Range of Values

Normal μ, σ
1

2

1
2

2

π σ
µ

σ
exp − −















x
−∞ < x < +∞

Gamma n, λ λ λ
n

n

n
x x

Γ( )
exp− −1 ( )

x > 0

Chi-Squared ν
( )

exp
1 2

2

1
2

2
2

1/
ν

ν

νΓ






−






−
x x

x > 0

Student’s t ν
Γ

Γ

1
2

1

1
2

1
2

1
2

( ) ( )ν

πν ν
ν

ν+












+












− +

x

−∞ < x < +∞

F ν1, ν2

Γ

Γ Γ

ν ν

ν ν

ν1 2

1 2

2
1

2
1
2

1
2

+























−
x

(11 1 2 2+ +x)( )ν ν /

x > 0

Poisson λ λ λke
k

−

!

k = 0, 1, 2, …

Binomial n, p
n
k

p pk n k






− −( )1

k = 0, 1, 2, 3,…n

Beta α, β Γ
Γ Γ

( )
( ) ( )

( )
α β

α β
α β+ −− −p p1 11

0 < p ≤ 1
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individual measurements or observations. The variance has squared units, 
so that the standard deviation has the same units as the measurements.

Often we must deal with more than one random variable simultaneously. 
The density or mass function of one variable might depend on the value of 
some other variable. Such dependency is referred to as conditioning. We sym-
bolize the conditional density of X, given another variable, say Y, is equal to 
a particular value, say y, using the notation:

 f x Y yX Y =( )
Typically, the fact that Y = y will affect the particular values of parameters. 

Also, we will usually drop the subscript X|Y, since the conditional nature of 
the density is made obvious by the “|” notation.

It is possible that the value of one random variable, say Y, has no effect on 
the probability distribution of another, X. It turns out that any two random 
variables have what is called a joint density function. The joint density of X 
and Y could be defined as

 f x y dxdy x dx X x dx AND y dy Y y dyXY( ), { ,       }= − ≤ ≤ + − ≤ ≤ +Pr

The joint density quantifies the probability that random variable X falls 
in a given range and at the same time random variable Y falls in some other 
given range.

It turns out that this joint density can be expressed in terms of conditional 
densities:

 f x y f x y f yXY X Y Y( ) ( ) ( ), |= |

The marginal density of one variable (say X) is the density of X without the 
effect of Y, and is computed as

 

f f x y dyxX XY( ) ( ),=
− ∞

+ ∞

∫

When X and Y are independent of each other, then

 
f x y f xX Y X( ) = ( )

So that

 f x y f fx yXY X Y( ) ( ) ( ), =
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In other words, when X and Y are independent, their joint density is the 
product of their marginal densities.

In addition to joint distributions, the expected values and variances of 
sums and differences of random variables find themselves in many applica-
tions. So, if X and Y are two random variables:

 E X Y E X E Y[ ] [ ] [ ]± = ±

If X and Y are independent, then

 V X Y V X V Y[ ] [ ] [ ]± = +

While the sign of the operator (±) follows along with the expected values, 
the variance of the difference is the sum of the variances.

Another set of facts we will use relating to conditional densities or mass 
functions is based on something called Bayes’ theorem. Briefly, Bayes’ theo-
rem states that if X is a random variable with density f, and Y is a random 
variable with density g, then

 

g x Y y
g y f x Y y

f x Y g d
=( ) =

=( )
=( )

− ∞

+ ∞

∫
( )

( )ξ ξ ξ

As long as Y is continuous, this particular formula holds even if X is dis-
crete, and f is the mass function of X. If, however, Y is discrete, and g is its 
mass function, then the integral is replaced with a summation:

 

g x Y y
g y f x Y y

f x Y gk k
k

=( ) =
=( )

=( )∑
( )

( )ξ ξ

It should be noted that it is possible for a random variable to not actually 
have a density function associated with it. However, that situation probably 
never exists in nature, so we will assume the density always exists.

Some Statistical Concepts

Earlier we mentioned that statistical problems could be classified into the 
categories:

 1. Estimation
 2. Inference and decision making
 3. Model building: Discrimination and prediction
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Estimation is the process of using data to guess at the value of param-
eters or some feature of a probability distribution assumed to be governing 
the data-generating process. Probably the most common is estimating the 
expected value of a distribution. The expected value of the random variable’s 
distribution is

 

E X

x p

f d

xk X

k

X

k

[ ]
( )

( )

= =














∑

∫
− ∞

+ ∞µ
ξ ξ ξ

One of the useful mathematical properties of expected value is that it is a 
linear operator, namely:

 E X X X E X E X E Xn n[ ] [ ] [ ] [ ]1 2 1 2+ + … + = + + … +

and

 E aX aE X[ ] [ ]=

when a is a non-random constant. An estimate based on a sample of observa-
tions from the data-generating process is

 
µ̂ =

=
∑1

1
n

xi

i

n

We use the notation µ̂  instead of a perhaps more well-recognized symbol 
x , to emphasize the fact that we are using the data to estimate the expected 
value. There are many such estimation formulae (called estimators), and 
many are used in different contexts for different reasons. The main point 
is that data can be used to estimate parameters or other features of prob-
ability distributions. The other point is that, since estimators use data, they 
themselves are random variables. Thus, if two researchers studying the 
same population of finches each make independent observations on either 
two sets (samples) of birds or even on the same sample, but at two differ-
ent times, and each researcher calculates an average, the two averages most 
likely won’t be exactly the same.

There are different methods used to derive estimator formulas for various 
parameters. Perhaps the best known is called the method of maximum like-
lihood. The idea is that if you have a random sample of measurements (X), 
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you can find values of parameters that maximize something called the like-
lihood function, which generally depends on assuming the form of the dis-
tribution for the data-generating process. Suppose that the values x1, x2, …, 
xn represent n values sampled from a normally distributed data-generating 
process, with unknown expected value and variance the density function 
evaluated at xi, say, would be given by

 
f x ei

xi

( ) =
− −



1

2

1
2

2

σ π

µ
σ

The likelihood function for the sample would be the product of all the 
valuations of the density function:
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Of course, this likelihood function cannot be computed without know-
ing μ and σ. The idea of maximum likelihood is to find values µ̂  and σ̂  
that maximize L. Usually the log of the likelihood function is taken before 
attempting to solve the maximization. Maximizing the log of L is equivalent 
to maximizing L, since the log is a monotonic increasing function. The log of 
a product is the sum of the logs of the factors:

 
log log ( )L f xi

i

n

= ( )
=

∑
1

Maximizing the sum is easier mathematically than maximizing the 
product.

What is important to note is that first we had to pick a parametric form for 
the density function of the random variable from which we were sampling, 
the parameter values are unknown, and our guess for the parameter values 
is based on a criterion that gives us the best guess. It turns out that for the 
normal model, the maximum likelihood estimators for μ and σ2 are
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and

 

ˆ ˆσ µ2 2
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Some may notice that the maximum likelihood estimator for σ2 differs from 
the formula used in most elementary texts, in that it divides by n and not 
n – 1. Dividing the sum by n – 1 to estimate σ2 gives the formula a property 
known as unbiasedness. While this is important, in the case of this estimator 
the effects are fairly small. Another estimation method is called least squares. 
Rather than maximize a likelihood function, least squares chooses estima-
tors that minimize an “error” function. A common context for least squares 
estimation is linear regression. More will be said about least squares. For 
now, just recognize it as a method for estimating parameters.

Statistical estimates, since they are based on a finite sample of observa-
tions or measurements made on individuals taken from some population 
or data-generating process, have themselves a random variation component. 
Inasmuch as a statistical estimate is attempting to help make a guess about 
a parameter, it would be good to know that the formula used to compute the 
estimate has a reasonable chance of getting close to the actual value of the 
parameter. One such property has already been described, namely, maxi-
mum likelihood. Another property that is desirable is unbiasedness, which 
was also mentioned earlier. An estimation formula is said to be unbiased if 
its expected value is equal to the parameter to be estimated. For example, 
assuming a random sample, x1, x2, …, xn, then the expected value of each xi is 
the population mean, μ, and
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Thus, our arithmetic mean estimator for μ is in fact unbiased. Conversely, 
the maximum likelihood estimate of σ2 is not unbiased (or, in other words, 
biased). It turns out that
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Thus, the maximum likelihood estimator of σ2 slightly underestimates the 
variance. The point of the discussion about unbiasedness is that estimation 
formulae are themselves random variables, and as such we will need to con-
sider their probabilistic characteristics.
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Inference is about making a priori guesses about parameter values and then 
using data to decide if you were correct. Suppose, for example, you guessed 
that the average duration of a courtship display was 30 seconds. How would 
you decide whether to believe your guess, or not? First you would gather data, 
by timing courtship displays of several individuals, say n. Then you would 
probably compute the maximum likelihood estimates of mean and variance. 
Suppose the estimate of the mean was 31.5 seconds, and the standard devia-
tion (square root of variance) estimate was three seconds. OK, so it wasn’t 30. 
Were you wrong? The question becomes one of how much variation there 
might be if the experiment were repeated. The idea of statistical inference is 
to make a decision about what to believe, and not what actually is the truth. 
Our decision has risk associated with it, namely the risk (or probability) of 
saying our guess is wrong when in fact it is correct, and the risk of saying our 
guess is correct when in fact it is not. There is a formalism for expressing the 
notions of inference. There are two competing hypotheses, or guesses, about 
the parameter or parameters of interest. One is called the “null” hypothesis, 
symbolized as H0. The logical negation of the null hypothesis is called, not 
surprisingly, the alternate hypothesis, and is often symbolized as H1. So, in 
the example of the courting display question, we might have
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The error of deciding that H0 is false when in fact it was true is called a 
Type I error. The error of believing H0 is true when it is not is called a Type 
II error. The next thing required is a rule, based on data, that lets the deci-
sionmaker decide whether to believe H0 or H1. Since data are subject to varia-
tion, the rule is necessarily probabilistic. It turns out that, conveniently, the 
calculation

 

t

n

= −ˆ
ˆ

µ
σ

30

has a known probability distribution, the familiar Student’s t, provided 
that the null hypothesis is actually correct (i.e., that μ = 30). This formula 
is known as a test statistic, because it is the quantity we will use to decide 
whether to believe (accept) the null hypothesis, or disbelieve it (reject). In fact, 
a common feature of all inference is determining the distribution of the test 
statistic if H0 were actually true. The probability of making a Type I error is 
symbolized with the letter α. The probability of a Type II error is tradition-
ally symbolized with the letter β. We can find a range of values that t would 
fall in between with probability 1 – α, given that H0 is true, even before we 
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gathered any data. In fact, the range of possible values only depends on the 
sample size, n, and the desired probability content of the range. If, for exam-
ple, the sample size was n = 10, and we wanted the probability content to be 
100(1 – α)% = 95 percent, then the range of values for t we would expect if the 
null hypothesis was correct would be approximately ±2.228. The range (t ≤ 
–2.228, t ≥ +2.228) is called the critical region of size α. If the value of the test 
statistic falls in the critical region, we say that the test statistics is significant, 
and we REJECT the null hypothesis is favor of the alternative. The particular 
region for this example is partially based on the presumption that we com-
puted the maximum likelihood estimate for standard deviation. If after get-
ting data we computed the value of t using the formula above, and its value 
fell within the range ±2.228, we would continue to believe the null hypoth-
esis, because there is a fairly “high” (95 percent) chance of t falling inside 
this range if H0 is correct. Conversely, there is a relatively “low” chance that 
t would fall outside the “critical” range if H0 was correct. Unfortunately, we 
cannot make the same statement about the alternative hypothesis, H1, since 
there are an infinite number of possible values (anything other than 30) 
that would make it correct. Thus, it is easier to fix the chance of making the 
mistake of deciding that H0 is false when in fact it is true. Once this risk is 
decided upon, the decision rule for either believing H0 or not believing it is 
fairly easy to compute, provided we know something about the distribution 
of the test statistic, given that the null hypothesis is true.

Another way of determining a rule for rejecting or accepting the null 
hypothesis is to compute a probability of observing the data you got IF the null 
hypothesis was actually correct. This probability is usually referred to as a 
p-value. Thus, in our example, if in fact μ = 30, then the test statistic
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has a Student’s t distribution with degrees-of-freedom parameter equal to n 
(since we used the maximum likelihood estimate of σ). Suppose we had data 
that yielded a sample estimate of μ, say,
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and an estimate of σ2:
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If n = 25, then the sample test statistic would be

 

t = − ≈31 5 30
3

25

2 50
.

.

Since the alternative hypothesis is μ ≠ 30, we compute the probability that 
the test statistic would be outside the range (–2.50, +2.50). To compute this, we 
can use the R function pt():

 pt q df lower.trail TRUE)( . , , .= − = = ≈2 5 25 0 01934

and

 pt q df lower.trail FALSE)( . , , .= + = = ≈2 5 25 0 01934

The “two-sided” p-value is 0.01934 + 0.01934 = 0.03868.
Since Student’s t distribution is symmetric about zero, the probability for 

the “lower tail” of –t is equal to the probability for the “upper tail” of +t.
If our threshold of p-values is α = 0.05, then since 0.03868 is less than 0.05, 

we will no longer believe that the null hypothesis is correct, and reject it. 
With a sample size of n = 25, and 1 – α = 0.95, then the critical region is t ≤ 
–2.06, t ≥ +2.06. Since t = 2.50 > +2.06, we would reject the null hypothesis. 
Regardless of whether you determine a critical region of size α, or choose α 
to be a threshold for p-values, the conclusions would be identical.

Another methodology that is somewhere between estimation and infer-
ence is called confidence interval building. The confidence interval again 
employs that risk level, α, but in a slightly different manner. Suppose we 
wanted to know that value of the parameters that would correspond to the 
limits of the critical range for the test statistic. Using the previous example, 
let
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Solving for μlow and μhigh gives:

 
µ µ σ

low
n

= −ˆ
ˆ

.2 06

and

 
µ µ σ

high
n

= +ˆ
ˆ

.2 06

The range of values (μlow, μhigh) is called the 100(1 – α)% “confidence inter-
val” for parameter μ. It can be thought of as a feasible range for the unknown 
values of μ. That is, we are not certain about the actual value of μ, but we are 
nearly certain (100(1 – α)% certain) that it lies somewhere in the interval (μlow, 
μhigh). So, in our example with ˆ . ,µ = 31 5  σ̂ = 3, and n = 25, the 95-percent confi-
dence interval would be

 
µlow = − ≈31 5 2 06

3

25
30 26. . .

 
µhigh = + ≈31 5 2 06

3

25
32 74. . .

Since the hypothetical value for μ, namely 30, is not contained in the confi-
dence interval (30.26, 32.74), we do not believe that 30 is a feasible value for μ.

When the null hypothesis is rejected, we say that the difference between 
our estimate of the parameter and the null value is statistically significant at 
the 100α% level. Another way of stating the same thing is that if we reject 
the null hypothesis, we would believe that the results of our analyses are 
repeatable.

Model building is a special application of estimation, but it usually has 
some inference associated with it. The idea is to postulate some mathemati-
cal relationship between some variables, some random and some without 
any random component. Then we estimate the values of model parameters. 
Finally, we test to see if we should believe that the form of the model we 
postulated was reasonable. Models can be predictive or discriminatory/
classificatory. A simple example of a predictive model would be a simple 
linear regression. Suppose there is a continuously valued random variable, Y, 
and another continuously valued nonrandom variable, X. Y could be things 
such as response time, elapsed time, distance traveled, or other random vari-
ables that can be expressed as a decimal number. In this simple case, we 
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are assuming the X variable is not random. In other words, X is something 
whose value would have no random variation, and whose value is known 
perfectly without error. Y is referred to as the response variable, and X is the 
predictor or regressor variable. The general form of the linear model is

 Y X= + +β β ε0 1

The coefficients β0 and β1 are unknown, and need to be estimated. The 
variable ε represents random “noise,” indicating that the value of Y is on the 
average a linear function of X, but the actual observed values may have some 
perturbations, or noise, or sometimes-called errors associated with them.

Once the values of the parameters are estimated, a predicted value of Y can 
be computed for a given value of X. We would not usually consider X to have 
random noise associated with it. That is, when we get a value for X, we are 
(mostly) certain that the value would not vary if we measured or observed 
it a second time under exactly the same conditions. Rather, we suppose that 
given the value of X, we can predict on the average what Y would be, with 
the understanding that Y might vary from this average.

Another closely related type of model is also linear, but is classificatory 
or discriminatory. The X variables are not continuous, but are discrete 
categories. The goal is to determine if particular groupings of individu-
als actually discriminate between individuals. In other words, we want 
to know if individuals in different groups actually differ from each other 
with respect to Y. Perhaps the simplest example is the one-way analysis 
of variance (ANOVA). In this case, the single X variable is a set of discrete 
categories, and Y is the continuous random variable response. The ques-
tion is not to find a prediction of Y for a given value of X, per se. Rather, 
the question is to estimate the difference in the average Y between the 
different categories. In the case of ANOVA, often the inferential part of 
modeling is of greater interest, namely, whether the difference in aver-
age values of Y between the different groups of X categories is in fact 
repeatable.

There are certainly more types of both predictive and classificatory mod-
eling. The key notion here is that data can be used to create these sorts of 
models, through a combination of estimation and inference.

This is the classical parametric methodology for statistical inference. There 
is another set of methods, sometimes called nonparametric or distribution-
free, of which neither term is strictly true. The idea is that the distribution of 
test statistics should not depend on the distribution of the data-generating 
process. The basic idea is still the same; you formulate a test statistic, you 
determine the “critical range” or “critical value” based on α, you get some 
data, and then you compute the test statistic to decide if you should accept or 
reject the null hypothesis.
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A special set of nonparametric techniques is sometimes referred to as 
resam pling methods. This book will in fact emphasize resampling methods 
where appropriate. The resampling techniques will generally fall into the 
bootstrap estimation process or the permutation hypothesis testing process. 
Both of these methods are computer-based, but given modern computing 
software such as R, they are fairly easy to perform.

Bayesian statistics is an alternate view of parameters, not as particular 
values to estimate or about which to make a guess about their true values, 
but treating them as if they themselves are random variables. Like the clas-
sic “frequentist” approach, Bayesian methods employ a likelihood function. 
However, these methods incorporate prior information about the parameters 
of interest. “Prior” to making observations, the analyst posits a distribution 
of the parameters of interest. The “prior” distribution expresses the knowl-
edge about the parameter prior to performing the “next” experiment. So, for 
example, perhaps the mean response time to a stimulus is guessed to be most 
likely 10 seconds, but it could be as fast as 5 seconds and as delayed as 15 sec-
onds. Rather than simply hypothesizing that the mean is exactly 10 seconds, 
the Bayesian method is to postulate a distribution that expresses the current 
level of knowledge and uncertainty in the parameter. Then, once data are 
gathered, Bayes’ theorem is used to combine the prior distribution with the 
likelihood function, to update the prior knowledge. The updated distribu-
tion for the parameter is called the posterior distribution. So, if fold( )µ  rep-
resents the prior density function for the parameter µ, and L x x xn[ ,  ,  , ]1 2 … µ  
the likelihood function for the sample, given a particular value of µ, then the 
updated density function (called the posterior density) is
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Key Points for Chapter 1

• The primary concept for probability in our context is the random 
variable; it is generally defined in terms of measurements or obser-
vations made, where the values of those measurements or observa-
tions cannot be deduced exactly before they are made.

• Random variables come in two flavors: discrete and continuous.
• While the actual value of a random variable cannot be known a 

priori, statements can be made about the probability that a random 


