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Preface

This volume considers the analysis and design of nonreplicated
experiments. It is very important that such experiments be designed
efficiently and analyzed correctly, since these kinds of experiments are
often much more expensive to conduct, and proper interpretation of the
results is often. very critical to decision making. It has been estimated
that nearly 50% of all experiments are of the “nonreplicated” type and
many of these are not being analyzed statistically because researchers
are not aware of existing statistical methods which can be used. This
book tries to provide researchers with statistical methods appropriate for
nonreplicated experiments as well as some ways to make the required
statistical computation feasible using existing statistical software.

Many experiments are very expensive to conduct, and requiring
independent replications of all of the treatment combinations can
be overly burdensome to experimenters. For example, suppose an
automobile engineer wishes to determine optimal locations for seatbelt
anchors. Locations must be determined so that safety and comfort are
assured for drivers and occupants of many different sizes. Running an
experiment which uses all possible combinations, the influential treatment
factors may require 200 to 300 different runs for a single replication.
Each run may cost several thousand dollars because simulated automobile
crashes are expensive to conduct. Obviously even a single replication of
such an experiment would be much too expensive to run.

The basic purpose of this book is to introduce several techniques and
methods for analyzing experiments in which there are no independent
replications of the treatment combinations being studied. Occasionally
there have been clients who have several measurements on each
experimental unit which they had planned to analyze as though these
measurements represented independent replications of their treatment
combinations. Some of the techniques presented in this book have helped
to salvage information from these kinds of experiments. Many of the
techniques discussed in this book are not currently available in any other
books.

Users of this book will learn the following:

1. How to recognize whether replications are independent replications
or dependent replications
2. How to test for interaction in nonreplicated experiments

3. How to obtain reasonable estimates of the experimental error variance
in nonreplicated experiments
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4. How to determine whether Tukey’s model or Mandel’s model can
be used to model the data collected in an experiment

5. When to use a multiplicative interaction model and how to use it
6. How to use existing statistical software to fit these models

7. How to determine which treatment combinations are the primary
causes of significant interactions

8. How to construct interaction plots and how to use them to interpret
data

9. Simplified procedures for constructing half-normal plots
10. How to use half-normal plots to your advantage
11. How to use 2" factorial experiments for exploratory purposes

12. How to use blocking to conduct 27 factorial experiments more
efficiently

13. How to use fractional replications of factorial experiments for
exploratory purposes

14. How to use polynomial models to model certain kinds of
nonreplicated experiments

15. How to use quadratic response surface models and contour plots to
advantage when developing new products or improving old products

The approach used in this book is similar to that used in the first
volume. That is, each topic is covered from a practical viewpoint,
emphasizing the implementation of the methods much more than the
theory behind the methods. Many real-world examples are used to
illustrate the techniques introduced. Formulas are included for those
readers who would like to program the techniques on their personal
computers.

The book is intended for everyone who analyzes data. The reader
should have a knowledge of analysis of variance techniques as well as
basic statistical ideas. Although a knowledge of the contents of Analysis
of Messy Data Vol. 1—Designed Experiments would be useful, such
knowledge is not required.

The book contains several tables that are not available in many
other books and examples that will help readers recognize the need for
a particular method and show how the method should be correctly used
for their own situations.

We would like to express our appreciation to Linda Kaufholz who
did the initial typing of this manuscript, and we especially appreciate her
willingness to learn word processing while working on this book. Her
expertise played a major role in the final project. We would also like to
thank Retha Parker for using her talents in the revisions of the original
manuscript.
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1.1
INTRODUC-
TION

Many experiments are very expensive to conduct so that ex-
perimenters are often forced to limit the number of treatment
combinations that can be studied in order to have adequate resources
available to replicate the treatment combinations under study. The
replication of treatment combinations is necessary in order to be able to
have an independent estimate of the experimental error variance, which
is denoted by ¢Z in this book. Having a good estimate of a2 is very
important when the major objective of the experiment is confirmatory.
However, if the major objective of the experiment is exploratory, it is
often more desirable to study many different treatment combinations,
each performed once, rather than a few treatment combinations each
replicated many times. This book is devoted to methods that can help to
extract the relevant information in experiments that are not replicated .

The first three chapters of this book are specifically devoted to
analyzing two-way treatment structure experiments that have not been
replicated. That is, there is only one independent observation for
each treatment combination. If the cost of conducting the experiment
is relatively insignificant, one cannot generally recommend designing
experiments in this fashion. That is, if cost is not a factor, then one can
almost always obtain better information from replicated experiments than
from nonreplicated experiments.

Suppose an experimenter wants to study the effect of temperature and
humidity on the growth of a particular variety of sorghum when there
are 12 growth chambers within which both the level of humidity and
temperature can be controlled. The experimenter decides to study the
effects of these two factors on sorghum growth by studying the 12
Temperature*Humidity combinations that are generated by considering
all possible combinations of three temperature levels with four humidity
levels. Typically, the experimenter places several plants of the specified
variety within each growth chamber. Some researchers incorrectly
analyze the observations on these plants as though they are independent
replications of the 12 Temperature*Humidity treatment combinations.
However, such observations are merely subsamples or repeated measures
on the growth chambers rather than independent replications of the 12
Temperature+ Humidity treatment combinations. The experimental units
for this experiment are the 12 growth chambers; the fact that there
are several plants within each growth chamber merely means that each
growth chamber is being measured several times. With 12 treatment
combinations and 12 experimental units, the experimenter has only one
observation for each treatment combination and the usual methods for
statistical analysis of the observed results do not apply because there
are no independent replications from which to estimate o2. Thus, the
experimenter is faced with several alternatives, none being very desirable .
The alternatives are:

2
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1. Decrease the number of Temperature*Humidity treatment combina-
tions to be studied. For instance, if the number of combinations is
reduced to 6, each combination could be assigned to two growth
chambers resulting in two independent replications of each treatment
combination.

2. Plan to repeat the experiment again at a later time using the
same growth chambers, but rerandomizing the Temperature *Humidity
combinations that are to be assigned to these growth chambers. This
may be a viable alternative for fast-growing plants, but may not be
realistic for slow-growing plants.

3. Conduct the experiment as planned, and use some of the analysis
techniques described in this book.

This experiment illustrates a situation where it is possible to rep-
licate the experiment even though the experiment may not actually get
replicated. There are other situations where replicating the experiment is
impossible. One such case is where an experimenter wants to compare
the protein content of several varieties of wheat grown at many different
locations. Such an experiment is impossible to replicate, since locations
cannot be replicated. The methods described in this book will often enable
experimenters to obtain usable information from experiments that are only
replicated once.

Many experimenters have been observed to conduct experiments
involving two-way treatment structures where the resulting data provides
only one observation per treatment combination: These single-observation
experiments often occur by accident. That is, the experimenter thought
he or she was replicating the experiment while, in reality, the so-
called replicates were really subsamples. Many experimenters have
difficulty seeing the difference between true independent replications and
subsampling. Those readers who have difficulty seeing the difference
are advised to read Chapters 4 and 5 of Milliken and Johnson (1984).
These chapters discuss split-plot and/or repeated-measures experiments.
Subsampling is similar to a split-plot experiment except that no new
treatments are applied to the subplot experimental units. An example
involving only one independent replication per treatment combination is
described in the next section.

Next, we give a numerical example. The example, complete with data,
is used in subsequent sections to demonstrate some of the techniques for
analyzing nonreplicated two-way experiments.

EXAMPLE 1.1: Growth Rate of Sorghum Plants

1.2
AN EXAMPLE

An experimenter has 20 growth chambers and conducts an experiment
to study the effects of five temperature levels combined with each of four
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Table 1.1 Mean Height of 10 Sorghum Plants

Humidity, %
Temperature,°F 20 40 60 80
50 12.3 19.6 25.7 30.4
60 13.7 16.9 27.0 31.5
70 17.8 20.0 26.3 359
80 12.1 17.4 36.9 43 .4
90 6.9 18.8 35.0 53.0

humidity levels on the growth rate of sorghum plants. The experimenter
places 10 sorghum plants of the same species in each of the 20 growth
chambers and assigns Temperature*Humidity combinations randomly to
the 20 chambers. The data given in Table 1.1 represent average heights
in centimeters of the 10 plants from each growth chamber. These heights
were measured after growing the plants for 4 weeks in the growth
chambers. The average height of the 10 plants is used as the response
because the experimental units for the Temperature*Humidity treatment
combinations are the growth chambers. There is only one independent
replication of each growth chamber. The variability existing between
the 10 plants within a growth chamber does not measure the variability
between growth chambers. That is, variability between plants growing
within the same growth chamber may be much different than variability
between plants growing in different growth chambers even if different
growth chambers had been assigned the same Temperature*Humidity
combinations.

As noted for split-plot and repeated-measures experiments, the
within-growth-chamber variability is not an appropriate measure of
variability with which to compare the effects of the treatments observed
on the growth chambers. Several methods for analyzing this type of data
are presented in the following sections.

A means model for experiments such as the one described in Example
1.1 is given by

Yij = Mij + € i=1,2,...,¢t, j=12,...,b (1.3.1)
where
e,~j~i.i.d.N(0,a'2) i=12,...,t, j=12,...,b

where i.i.d. means independently and identically distributed. In
this model there are br parameters and bt observations. The best esti-
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mate of w; is Gy =y, =12,...¢, j=1,2,...b. However,
no estimate of ¢? is available, unless one is able to make some
assumptions about the u;;’s. One assumption made by many statistical
analysts is that the two sets of treatments do not interact. This is equiv-
alent to assummg [l e e = 0 for all possible values
of i,i’,j, and j'. As stated 1n Chapter 7 of Milliken and Johnson
(1984), it is also true that there is no interaction between the levels
of the two sets of treatment combinations in an experiment if and
only if there exist parameters u, 7y, T, ..., 7, Bi, B2 .. .. B such
that

,]=}L+’T,'+Bj i=1,2,...,t, j=l,2,...,b

If it is true that there is no interaction between the levels of the
treatments, the best estimate of o2 is

Z Z(yu =3 =3, + 3.0 - D - 1)

=1j=1

The assumption of no interaction should not be made without
some justification for it being true. However, we have found many
experimenters more than willing to assume their treatments do not
interact, especially when such an assumption enables them to calculate
some test statistics. In fact, some experimenters do not put interaction
terms in their models because they think they are not interested in
the interaction. In reality, they have no choice but to be interested in
interaction, if it exists; hence it is important to determine whether or not
interaction exists.

What can an experimenter do when interaction is suspected to be present
in the data or when the experimenter wants to test for it? Several methods
are available to help answer this question. Unfortunately, no method
1s best for all situations, and most of the available methods assume
that the w;’s can be described by some sort of model other than a
simple additive model. Because of this assumption, most available tests
for interaction are good for certain types of interaction but not for all
types.

Each of the remaining sections of this chapter presents a test for
interaction for the two-way treatment structure with one observation per
treatment combination.

The test being considered in this section was presented by Milliken and
Rasmuson (1977). One advantage this test has over the remaining tests
presented in this chapter is that it does not require any assumptions about

14
WHAT CAN
BE DONE?
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the form of the interaction; however, a disadvantage is that there are
some forms of interaction that the method cannot detect.
The procedure can be described as follows:

1. Partition the observations by the levels of factor T into the ¢ sets,

R ZTS 2P TIRINNS TS B 0, VYIRS Y TRNUG U ISR 5 A1 7 SR,

2. Determine the variance of the observations in each set. That is, let
v2 =37 (v -F.)Yb-1),i =12, ..., Next note that if there

is no interaction, then pu; = u + 7; + B; and each »? is an unbiased
estimate of

b
S _B.F
R DI ER

However, when there is interaction, then p;; = u+ 7; + 8; + v;;, and
each v? is an unbiased estimate of

b
o+ _Z(B/ Ak i ’)’i.)z = 8 (say)

1
b-173
Hence, if one tests Hy: 8% = 8% = ... = 5,2 and rejects, then one
can conclude that there is interaction in the data.

3. Totest Hy: 83 =83= ... = &2, Milliken and Rasmuson recommend
using any of the tests for homogeneity of variance given in Chapter 2
of Milliken and Johnson (1984).

For the interested reader, the Viz’s are multiples of noncentral
chi-square random variables, rather than central chi-square random
variables as required for the tests in Milliken and Johnson. Thus,
the homogeneity tests are only approximate for the situation described
here.

One unfortunate aspect of the above test is that even when one
accepts H,, one is still not able to conclude that the data are additive.
This is true since it is possible for there to be interaction in the data and
still have all the 67 equal. Thus, if H, is rejected, there is interaction
in the data, but if Hy is accepted, one cannot guarantee no interaction.
When Hj is accepted, one could partition the data according to the levels
of B, and test for equality of variances in the & sets of r observations
each, using the procedure described above.

Unfortunately, even if this hypothesis is also accepted, one still
cannot conclude that the data are additive. This can be illustrated by
examining the following set of true cell means.
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B
Mij 1 2 3 Row Variance
1 8 6 4 4
T 2 4 8 6 4
3 6 4 8 4
Column
Variance 4 4 4

For the above data, all row variances are equal and all column
variances are equal, and thus the heuristic test for interaction will not
detect the interaction which actually exists between the two sets of
treatment factors.

As an example, consider the data in Table 1.1. The column variances
are 15.268, 1.828, 28.407, and 88.763, respectively. Hartley’s F-max
statistic is

Frax = 88.763 = 48.56

1.828

which is significant at, approximately, the 1% level [F max.4.4(.01) = 49.0].

Critical points for this statistic are tabled in Milliken and Johnson (1984).
Bartlett’s test statistic is equal to

¥ = 10.48

which is also almost significant at the 1% level (x5, ; = 11.345).
Thus, one would conclude that interaction exists between the levels
of the two sets of treatments in these data.

Tukey (1949) was the first writer to propose a test for interaction in
the two-way treatment structure experiment with one observation per
treatment combination. Although Tukey did not consider any particular
model when he proposed the test, other authors, Ward and Dick (1952),
Scheffé (1959), and Graybill (1961, 1977), showed that the test is most
easily motivated by assuming that the cell means can be expressed as

Mij = p+ 7+ B+ AT,
i=1,2,....1, j=1,2,....b (1.6.1)

That is, it is assumed that the interaction term 7;; in the usual effects
model

My =pt+T+ Bty
i=1,2,....0, j=12,....b (1.6.2)

1.6

TUKEY’S
SINGLE-
DEGREE-OF-
FREEDOM
TEST FOR
NONAD-
DITIVITY
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is a scalar multiple of the product of the row and column main effects;
ie, v=AnB, i=12,...,t, j=1,2,...,b. Atest for interaction
is made by testing Hy: A = O versus Hy: A=0.

Tukey proposed using the sum of squares

S G =306, = 3.)05 =5 = 5., + 3]

[
SSN = — = = —
Z ,‘(yi. —y..)zzli()’.j —)’..)2

(1.6.3)

as a measure of nonadditivity. When Hy: A = 0 is true, SSN/o? has a
sampling distribution that is chi-square with | degree of freedom. The
residual sum of squares after fitting the interaction term is

SSR = > (v —¥i — ., +¥..)2 - SSN (1.6.4)

ij

When Hy: A = 0 is true, SSR/o? has a chi-square distribution with
(b—1)(z—1)—1 degrees of freedom, and SSR is distributed independently
of SSN. Tukey’s single-degree-of-freedom test for nonadditivity is:
Reject Hy: A = 0 if

F, = SSN/[SSR/(bt ~ b — )] > F ;1 4y

Once again, if we fail to reject Hy, we can conclude there is no
interaction of the form AT;8;, but still cannot really conclude the data are
additive.

Tukey’s test statistic for nonadditivity can be obtained using many
existing statistical packages. The procedure requires two steps. The first
step consists of fitting the additive model

Yp=ptT+ B+ e (1.6.5)

and selecting the solution of the normal equations [see Milliken and
Johnson (1984), Chapter 6] that satisfies > 7; = 0 and > B_,- =0.In
this case, 7; and Bj are given by 7, =y,, -¥.., i = 1,2, ...,t and
B =73.,-¥..j=12,...,b. Then equation (1.6.3) simplifies to

2
Z 1A'i,Bqu} / [Z(%ifgj)z}

i

SSN =

where
Zij =Y — Vi, —f.j + ..

Secondly, one may obtain SSN using a statistical computing package by
fitting the model
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2i; = AT + ey

Fitting this model is similar to fitting a simple linear regression model
without an intercept. Hence,

z 7A'iBjZi,]/

iy

~

/\:

DIRHE

i

and the sum of squares due to regression is

2
> %,-sz,,} / {Z %?B}} = SSN

ij ij

The quantity SSR needed for the F-test is obtained by subtracting
SSN from the residual sum of squares obtained from fitting the additive
model (1.6.5). It is interesting to note that if one replaces z;; in the above
two equations by y;;, the results are the same.

Tukey’s test can be obtained with SAS® by following the steps below:
Step 1: Fit model (1.6.5) by using

PROC GLM; CLASSES T B;
MODEL Y = T B/SOLUTION;

The solution vector given by SAS® satisfies 7, =0 and B, =
0 rather than > ’}"A =0 and X B = 0. A new solution vector

a*, #1, ..., #, Bi,....BY, whichsatisfies ¥ #;=0and 3 B =
0 can be obtained from the SAS® solution by letting:

pr=p+7,+ B

&\.:‘=%i_;. i=]-927 ’t

[3.}?‘:[3], B. j=1,2,...,b (1.6.6)

Step 2: Construct a new set of data by adding both 7 and ] to the
data card, which contains the treatment combination T; and B, and then
fit the model,

yi =t T+ B+ AR B + e
by using
PROC GLM; CLASSES T B;
MODEL Y = T B THAT*BHAT/SOLUTION;

1.6.2
Computing
Tukey’s Test
Using SAS®

9
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The F-test given by either the Type I or Type III analysis that
corresponds to the row labeled by THAT*BHAT is Tukey’s single-
degree-of-freedom test for nonadditivity.

Consider the data in Table 1.1. The data were first analyzed with SAS®
GLM using the statements:

PROC GLM;
CLASSES TEMP HUMIDITY;
MODEL HEIGHT = TEMP HUMIDITY / SOLUTION;

The results obtained from the SOLUTION option are shown in Table
1.2.

The estimates given in Table 1.2 are substituted into equation (1.6.6)
to find the sum-to-zero solutions. First note that

= -3.395 and B, = —13.810
Then
Q7 =42.235 + (-3.395) + (-13.810) = 25.03
#]=-6.425 - (-3.395) = -3.030
#5,=—6.150 — (-3.395) = -2.755
73=-3.425 - (-3.395) = -.030
#4=—.975 — (~3.395) = 2.420
#5=.000 — (—3.395) = 3.395
Bi=-26.280 - (-13.81) = -12.47
B;=-20.30 - (-13.81) = —6.49
B;=-8.66—(-13.81) = 5.15
By=.00-(-13.81) = 13.81

The data set to be analyzed next is given in Table 1.3 and is
equivalent to the original data set augmented by the 7- and B

The data in Table 1.3 are analyzed with SAS® GLM by using the
commands:

PROC GLM;
CLASSES TEMP HUMIDITY;

MODEL HEIGHT = TEMP HUMIDITY THAT*HHAT/SOLUTION;

The Type I and Type III analysis of variance tables generated by

SAS® GLM are given in Table 1.4 and the results from the SOLUTION
option are given in Table [.5.
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Table 1.2 Results from SOLUTION Option of SAS® GLM

T for Hy: STD Error of
Parameter Estimate Parameter =0 PR> ITI Estimate
Intercept 42.23500000 B 11.56 0.0001 3.65352341
Temp 50 - 6.42500000 B —-1.57 0.1417 4.08476336
60 —6.15000000 B —-1.51 0.1580 4.08476336
70 —3.42500000 B —-0.84 0.4181 4.08476336
80 —0.97500000 B -0.24 0.8154 4.08476336
90 0.00000000 B . . .
Humidity 20 —26.28000000 B -7.19 0.0001 3.65352341
40 —20.30000000 B —5.56 0.0001 3.65352341
60 — 8.66000000 B —-2.37 0.0354 3.65352341
80 0.00000000 B
Table 1.3 Data for Tukey’s Model
Temp Humidity Y THAT HHAT
50 20 12.3 —3.030 —12.47
50 40 19.6 —3.030 —6.49
50 60 25.7 —3.030 5.15
50 80 30.4 —3.030 13.81
60 20 13.7 —2.755 —12.47
60 40 16.9 —2.755 —6.49
60 60 27.0 —2.755 5.15
60 80 31.5 -2.755 13.81
70 20 17.8 —0.030 —12.47
70 40 20.0 —0.030 —6.49
70 60 26.3 —0.030 5.15
70 80 359 —0.030 13.81
80 20 i2.1 2.420 —12.47
80 40 17.4 2.420 —6.49
80 60 36.9 2.420 5.15
80 80 434 2.420 13.81
90 20 6.9 3.395 —12.47
90 40 18.8 3.395 —6.49
90 60 35.0 3.395 5.15
90 80 53.0 3.395 13.81
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Table 1.4 Type I and Type III Analysis of Variance Tables
Generated by SAS® GLM

Source DF
Model 8
Error 11
Corrected

Total 19
Model F = 30.74
R-square C.V.
0.957189 12.7366
Source DF
Temp 4
Humidity 3
THAT*HHAT 1
Source DF
Temp 4
Humidity 3
THAT*HHAT 1

Sum of squares
2499.56700865
111.79499135

2611.36200000

Root MSE
3.18797444

Type I SS
136.61700000
2074.29800000
288.65200865

Type III SS
136.61700000
2074.29800000
288.65200865

F value

3.36
68.03
28.40

F value
3.36
68.03
28.40

Mean square

312.44587608

10.16318103

PR > F =0.0001

Y mean
25.03000000

PR > F
0.0498
0.0001
0.0002

PR>F
0.0498
0.0001
0.0002

From Table 1.4 we see that Tukey’s single-degree-of-freedom test
for nonadditivity is F = 28.40 and Hy: A = 0 is rejected at the o = .0002
significance level. Also the value of SSN in (1.6.3) is 288.652 and the
value of SSR in (1.6.4) is 111.795 and has 11 degrees of freedom. From
the last row of Table 1.5, the estimate of A in the model (1.6.1) is

A = .14273.

with Tukey’s Model

Results from SOLUTION Option of SAS® GLM

T for Hy: STD Error of
Parameter Estimate Parameter=0 PR > |T| Estimate
Intercept 42.23500000 B 20.95 0.0001 2.01625207
Temp 50 —6.42500000 B —2.85 0.0158 2.25423834
60 —6.15000000 B —-2.73 0.0196 2.25423834
70 —3.42500000 B —-1.52 0.1569 2.25423834
80 —0.97500000 B —-0.43 0.6737 2.25423834
90 0.00000000 B . . .
Humidity 20 —26.28000000 B —13.03 0.0001 2.01625207
40 —20.30000000 B —10.07 0.0001 2.01625207
60 — 8.66000000 B —4.30 0.0013 2.01625207
80 0.00000000 B . . .
THAT*HHAT 0.14272970 5.33 0.0002 0.02678193




