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Preface

This book provides sufficient materials for a one-semester linear algebra course
at the sophomore level. It is based on the lecture notes for the linear algebra
course that the author taught several years to undergraduate students in sci-
ence and mathematics at the University of Texas at Dallas. The level and pace
of the course can be adjusted by balancing the time for theoretical illustration
and that for computational aspects of the subject. The author usually taught
up to Chapter 7, spending one lecture per section on average, while the re-
maining two chapters can be left for students’ reading homework or supervised
individual study.

It seems that many undergraduate students have only one linear algebra
course before graduation, and may have missed many important topics of
linear algebra which may be remedied later by self-studying on demand. This
book is written to accommodate the needs for classroom teaching in order
to effectively deliver the essential topics of the subject, and for self-studying
beyond a first linear algebra course.

The following is an introduction to each chapter of the book.

1. Chapter 1 deals with vectors, linear combinations and dot products in
R

n. In Section 1.3 we discuss matrix representations for linear systems
and for elementary row operations.

2. Chapter 2 illustrates Guassian elimination and Gauss–Jordan elimina-
tion for solving linear systems, along with basic matrix theory, LU -
decomposition and permutation matrices.

3. Chapter 3 starts with four subspaces of Rn associated with a real matrix.
Then we discuss bases and dimensions of general vector spaces.

4. Chapter 4 deals with orthogonality between subspaces. Related topics
include matrix representation of orthogonal projection, least squares so-
lutions, Gram–Schmidt process and QR-decomposition.

5. Chapter 5 presents an axiomatic method of determinants which nat-
urally leads to the permutation formula, co-factor expansion, product
formula and Cramer’s rule.

6. In Chapter 6 we introduce the notions of eigenvalues and eigenvectors
which open the door for more applications of linear algebra, including
the immediate application on diagonalizability, spectral decomposition
of symmetric real matrices, quadratic forms, positive definite matrices
and Rayleigh quotient.

ix



x Preface

7. Chapter 7 continues to discuss the application of eigenvalues and eigen-
vectors and presents singular value decomposition of general matrices.
Principal component analysis is also introduced as a real-world applica-
tion of linear algebra.

8. Chapter 8 discusses the matrix representation, range and null spaces
for linear transformations on general vector spaces. Then we introduce
invariant subspaces, decomposition of vector spaces and Jordan normal
form and its computation, where the treatment of the Jordan normal
form does not require a formal exposition of polynomial theory.

9. Chapter 9 presents basic theory of linear programming along with the
simplex method which is another concrete real-world application of lin-
ear algebra and which has been widely used in management and industry.

The book contains typical topics for linear algebra courses and can be used
in many ways depending on the different mathematical background of the
audiences. The book provides limited examples and exercises, while it is best
used for readers who would like to have a broad coverage of the topics of linear
algebra and who are motivated to customize questions for the materials of each
section. Comments and suggestions from readers are highly appreciated and
are welcome to be sent by e-mail to qingwen@utdallas.edu.

Qingwen Hu
January 2017

mailto:qingwen@utdallas.edu


Chapter 1

Vectors and linear systems

1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A central goal of linear algebra is to solve systems of linear equations. We
have seen the simplest linear equation ax = b, where x ∈ R (the symbol “∈”
means “in”) is the unknown variable and a, b ∈ R are constants. It is known
that there are three scenarios for the solutions: 1) if a , 0, there is a unique
solution x = b

a ; 2) if a = 0, b , 0, there is no solution; 3) if a = b = 0, there
are infinitely many solutions. We are then motivated to investigate systems of
equations with multiple unknown variables. The following system







x + 2y + 3z = 3

2x + 5y + 8z = 9

3x + 6y + 18z = 18

(1.1)

is a system of linear equations with three equations and three unknowns. In
this chapter, we learn how to use vectors to represent a linear system and
learn the ideas of elimination which will be applied to solve systems of linear
equations. The general form of linear systems is as follows:







a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm,

(1.2)

where x = (x1, x2, · · · , xn) ∈ Rn is the unknown vector in n-dimensional
Euclidean space; ai, j and bi with i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n} are
constants.

1.1 Vectors and linear combinations

Before we discuss how to solve general linear systems, we use system (1.1)
as a prototype to introduce the machinery of vectors. One may rewrite sys-

1



2 Concise Introduction to Linear Algebra

tem (1.1) as

x





1
2
3



+ y





2
5
6



+ z





3
8
18



 =





3
9
18



 . (1.3)

System (1.3) makes sense only if we have defined addition and scalar multi-
plication of vectors in Euclidean spaces, where we have identified the vector
(x1, x2, x3) with the column of numbers





x1

x2

x3



 ,

which is called a column matrix. In what follows we will always regard a
vector in Rn as a column matrix.

Definition 1.1.1. Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) be
vectors in Rn, α a scalar. We define addition x + y and scalar multi-
plication αx by

x + y = (x1 + y1, x2 + y2, · · · , xn + yn),

αx = (αx1, αx2, · · · , αxn).

Definition 1.1.2. Let x1, x2, · · · , xn ∈ R
N be vectors, and

c1, c2 · · · , cn ∈ R be scalars. We call

c1x1 + c2x2 + · · · cnxn

a linear combination of x1, x2, · · · , xn.

System (1.3) now can be interpreted as finding a proper linear combina-
tion of the vectors (1, 2, 3), (2, 5, 6) and (3, 8, 18) to produce the given vector
(3, 9, 18) on the right hand side. Certainly we can also interpret it as finding
the common point (x, y, z) of three planes determined by each of the equa-
tions. If we visualize a linear system with this interpretation of a linear system,
we obtain a row picture, while with the previous one, a column picture.

Example 1.1.3. 1. Let v =

[
1
1

]

, w =

[
1
3

]

. Then

3v + 5w = 3

[
1
1

]

+ 5

[
1
3

]

=

[
8
18

]

is a linear combination of v and w.
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1

2

3

1 2 3 4

A

B

P

O
b

FIGURE 1.1: Slope of
−→
OA = 2−0

1−0 = 2,
−−→
BP = 4−2

2−1 = 2. Slope of
−−→
OB =

3−0
1−0 = 3,

−→
AP = 4−1

3−2 = 3.

2. Let v =

[
1
2

]

. Then {cv : 0 ≤ c ≤ 2} represents a line segment from (0, 0)

to (2, 4) in R2.

3. Let v =

[
1
0

]

and w =

[
0
1

]

. Then {cv + dw : c ∈ R, d ∈ R} represents the

whole two dimensional plane R2.

4. Let v =





1
1
0



 and w =





1
1
1



. Then S = {cv + dw : c ∈ R, d ∈ R}

represents a two dimensional plane in R3, but not the whole space R3,

because there exists the vector





1
2
3



 which is not in S.

�

Example 1.1.4. (The parallelogram law for vector addition) A vector x =

(x1, x2, · · · , xn) ∈ Rn can be visualized by the directed line segment
−→
OA from

the origin O = (0, 0, · · · , 0) to the point A = (x1, x2, · · · , xn) ∈ Rn. If we
denote the end point of the vector y = (y1, y2, · · · , yn) by B and that of x + y
by P , then we have a parallelogram OAP B, with OA parallel to BP and AP
parallel to OB, since the opposite segments have the same slopes.

�

Exercise 1.1.5.

1. Let u =

[
1
1

]

, v =

[
2
3

]

. i) Sketch the directed line segments in R2 that
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represents u and v, respectively; ii) Use the parallelogram law to visualize the
vector addition u + v; iii) Find 2u, 2u + 5v and 2v − 5u; iv) Solve the system

of equations xu + yv =

[
−1

1

]

for (x, y) ∈ R2 and draw the row picture and

the column picture.

2. Let u =

[
1
1

]

, v =

[
2
3

]

. Is w =

[
1

−1

]

a linear combination of u and v?

3. Is it true every vector (x, y) ∈ R2 can be represented as a linear combination
of v = (1, 0) and w = (1, 1)?

4. Find vectors u, v, w ∈ R3 such that the following system







x + z = 1

2x + 5y + 8z = −1

x + y = 1

can be rewritten as xu + yv + zw = b, where b = (1, −1, 1).

5. Show that R2 =

{

x

[
1
0

]

+ y

[
0
1

]

: x ∈ R, y ∈ R
}

.

1.2 Length, angle and dot products

In order to discuss geometry in Euclidean spaces, we introduce the notions
of length and angle, which can be defined with dot products.

Definition 1.2.1. Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) be vectors
in Rn; the dot product x · y is defined by

x · y = x1y1 + x2y2 + · · · + xnyn =
n∑

i=1

xiyi.

Example 1.2.2. 1. Let v =

[
1
1

]

, w =

[
2
3

]

. Then

v · w =

[
1
1

]

·
[
2
3

]

= 1 · 2 + 1 · 3 = 5.

2. Let v =





1
1
0



 and w =





1
1
1



. Then v · w = 1 · 1 + 1 · 1 + 1 · 0 = 2.
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3. Let v =

[
1
1

]

, w =

[
1

−1

]

. Then

v · w = 1 · 1 + 1 · (−1) = 0.

We say v and w are orthogonal to each other and write v ⊥ w.

4. Consider the distance from A = (1, 2) to the origin O. We have

‖−→
OA‖ =

√

(1 − 0)2 + (2 − 0)2

=
√

1 · 1 + 2 · 2.

If we denote by v the vector
−→
OA, we have the length of v

‖v‖ =
√

v · v.

5. Consider unit vectors u, v ∈ R2. Then there exist α, β ∈ [0, 2π) such
that

u = (cos α, sin α), v = (cos β, sin β).

Then we have

u · v = cos α cos β + sin α sin β = cos(α − β).

�

One can check directly that dot product satisfies the following

Lemma 1.2.3. Let u, v, w ∈ Rn be vectors. Then

u · v =v · u,

u · (v + w) =u · v + u · w.

Definition 1.2.4. Let v = (v1, v2, · · · , vn) be a vector in Rn. The length ‖v‖
of v is defined by

‖v‖ =
√

v · v =

(
n∑

i=1

v2
i

) 1
2

.

A vector with unit length is called a unit vector.

Example 1.2.5.

Consider unit vectors u, v ∈ R2. Then there exist α, β ∈ [0, 2π) such that

u = (cos α, sin α), v = (cos β, sin β).

Then we have

u · v = cos α cos β + sin α sin β = cos(α − β).

There exists θ ∈ [0, π] such that cos θ = cos(α − β). Then we call θ the angle
between the vectors u and v.
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Consider nonzero vectors u, v ∈ R2. Then u
‖u‖ and v

‖v‖ are unit vectors and

there exist α, β ∈ [0, 2π) such that

u

‖u‖ = (cos α, sin α),
v

‖v‖ = (cos β, sin β).

We have

u

‖u‖ · v

‖v‖ = cos(α − β) = cos θ, (1.4)

where θ ∈ [0, π] is the angle between u
‖u‖ and v

‖v‖ . Notice that u and u
‖u‖ have

the same direction, so do v and v
‖v‖ . θ ∈ [0, π] is also the angle between u and

v. By (1.4) we have
u · v = ‖u‖‖v‖ cosθ,

where u and v can be zero. Then we have derived

Lemma 1.2.6. (Cosine formula) Let u, v ∈ R2. We have

u · v = ‖u‖‖v‖ cosθ,

where θ ∈ [0, π] is the angle between u and v.

An immediate consequence of the cosine formula is that |v · w| =
‖u‖‖v‖| cosθ| ≤ ‖u‖‖v‖ which is the Schwarz inequality in R2. We show the
general version of the Schwartz inequality in Rn:

Lemma 1.2.7. (Schwarz inequality) Let u, v ∈ Rn. We have

|u · v| ≤ ‖u‖‖v‖.

Proof. The inequality is true if v = 0. We assume that v , 0 and let w = u+tv,
t ∈ R. Then ‖w‖ ≥ 0 for every t ∈ R. We have

0 ≤ ‖w‖ = (u + tv) · (u + tv)

= u · u + 2(u · v)t + (v · v)t2,

for every t ∈ R. Therefore the discriminant of the quadratic polynomial (u +
tv, u + tv) of t satisfies

4(u · v)2 − 4(u · u)(v · v) ≤ 0,

which is equivalent to |u · v| ≤ ‖u‖‖v‖. �
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With the Schwarz inequality, we can then define angles between vectors in
R

n:

Definition 1.2.8. Let u, v ∈ Rn. We define θ ∈ [0, π] such that

u · v = ‖u‖‖v‖ cosθ,

the angle between u and v.

By properties of dot products and the Schwarz inequality, we have

Lemma 1.2.9. (Triangle inequality) Let u, v ∈ Rn. We have

‖u + v‖ ≤ ‖u‖ + ‖v‖.

Proof. We have

‖u + v‖2 =(u + v) · (u + v)

=u · u + 2u · v + v · v

≤u · u + 2‖u‖ · ‖v‖ + v · v

=‖u‖2 + 2‖u‖ · ‖v‖ + ‖v‖2

=(‖u‖ + ‖v‖)2.

Therefore we have ‖u + v‖ ≤ ‖u‖ + ‖v‖. �

Exercise 1.2.10.

1. Let u =

[
1
1

]

, v =

[
2
3

]

. i) Find u · v; ii) Find ‖u‖ and ‖v‖; iii) Find the

angle θ between u and v; iv) Verify that |u · v| ≤ ‖u‖‖v‖; v) Verify that
‖u + v‖ ≤ ‖u‖ + ‖v‖.

2. Find all possible real values of a such that the quadratic polynomial x2 +
ax + 1 has i) two positive roots; ii) two negative roots; iii) one negative and
one positive root; iv) no real roots, respectively.

3. Let u =

[
1
1

]

. Find all possible vectors w such that u ⊥ w, i.e., u · w = 0.

4. Let u =





1
1
1



, v =





−1
1
0



 and w =





1
1

−1



. i) Find u · v and v · w. ii) Is it

possible to find (x, y) , (0, 0) such that v = xu + yw? Justify your answer.

5. Let u, v ∈ Rn. Show that

|u · v| = ‖u‖‖v‖,

if and only if v = 0 or there exists a scalar t ∈ R such that u = tv.
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1.3 Matrices

Recall that system (1.3) can be interpreted as finding a proper linear com-
bination of the vectors u = (1, 2, 3), v = (2, 5, 8) and w = (3, 6, 18) to
produce the given vector b = (3, 9, 18) on the right hand side. That is, we
are looking for scalars x, y, z such that

xu + yv + zw = b,

which looks to be a certain product between (u, v, w) and (x, y, z). To wit,
we write

[u v w]





x
y
z



 = b,

which is a “row” multiplied by a “column.” The reason why we put the letters
for vectors horizontally becomes clear when we recover the values of u, v, w
and b:





1 2 3
2 5 8
3 6 18









x
y
z



 =





3
9
18



 , (1.5)

where we obtain a rectangular array of numbers called a matrix, and if u, v, w
were placed vertically, we would not know how to place their values!

Let

A =





1 2 3
2 5 8
3 6 18



 , x =





x
y
z



 , b =





3
9
18



 .

System (1.3) becomes the familiar form of

Ax = b. (1.6)

By comparing system (1.3) with system (1.5), we know that the so far unde-
fined product Ax between matrices A and x essentially consists of rows of A
taking dot products with x. That is,





(Row 1 of A) · x
(Row 2 of A) · x
(Row 3 of A) · x



 = b.

Example 1.3.1.

[
1 2 3

−2 −4 6

]




4
−1

0



 =

[
(1, 2, 3) · (4, −1, 0)

(−2, −4, 6) · (4, −1, 0)

]

=

[
2

−4

]

.
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



3 −2
−1 0

2 5





[
2
1

]

=





(3, −2) · (2, 1)
(−1, 0) · (2, 1)

(2, 5) · (2, 1)



 =





4
−2

9



 .





1 0 0
0 1 0
0 0 1









x1

x2

x3



 =





x1

x2

x3



 .

�

Remark 1.3.2.

For an m × n matrix A, we write A = (ai j) when we emphasize the general
form of its entries. We also write (A)i j , A(i, j) or simply Ai j to denote the
entry at the (i, j)-position.

If A = (ai j) is an n × n square matrix, we call the entries aii, i = 1, 2, · · · , n
the main diagonal entries. If every main diagonal entry of A is one, and every
other entries are zero, that is,

ai j =

{

1 if i = j

0 if i , j,

we call A an identity matrix and denote it by I. Note that

Ix = x for every x ∈ Rn.

Example 1.3.3. Let u = (1, 0, 0), v = (1, 1, 0) and w = (1, 1, 1). b =
(b1, b2, b3). We solve system

Ax = b,

where

A = [u v w] =





1 1 1
0 1 1
0 0 1



 , x =





x
y
z



 .

That is, we solve




1 1 1
0 1 1
0 0 1









x
y
z



 =





b1

b2

b3



 .

We notice that A is a triangular matrix in the sense that the nonzero entries
are above the main diagonal. Such type of matrix is convenient for solving the
system by back substitution. Namely, we first solve for z, then y and x. We
obtain 



x
y
z



 =





b1 − b2 − b3

b2 − b3

b3



 .
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To have a solution resembling the solution x = a−1b of the single variable
linear equation ax = b, a , 0, we wish to write (x, y, z) in terms of b =
(b1, b2, b3). We rewrite the solution as follows:





x
y
z



 =





b1 − b2 − b3

b2 − b3

b3





=





b1

0
0



+





−b2

b2

0



+





−b3

−b3

b3





=b1





1
0
0



+ b2





−1
1
0



+ b3





−1
−1

1





=





1 −1 −1
0 1 −1
0 0 1









b1

b2

b3



 .

Let

B =





1 −1 −1
0 1 −1
0 0 1



 .

We have the solution x = Bb. We write B = A−1 and x = A−1b. Note
that we did not specify the values of b. The system in question has a unique
solution for every given b ∈ R3. �

Example 1.3.4. Let u = (1, 0, 0), v = (1, 1, 0) and w∗ = (0, 1, 0). b =
(b1, b2, b3). We solve system

Ax = b,

where

A = [u v w∗] =





1 1 0
0 1 1
0 0 0



 , x =





x
y
z



 .

That is, we solve




1 1 0
0 1 1
0 0 0









x
y
z



 =





b1

b2

b3



 .

We notice that A is also a triangular matrix but we cannot solve the system
by back substitution. The third equation of the system is

0 = b3,

which may or may not be true depending on the value of b3.

If b3 , 0, system Ax = b has no solution.
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If b3 = 0, system Ax = b becomes

[
1 1 0
0 1 1

]




x
y
z



 =

[
b1

b2

]

,

which has a free variable z that can be parameterized by z = t, t ∈ R. Then
we have





x
y
z



 =





b1 − b2 + t
b2 − t

t



 =





b1 − b2

b2

0



+ t





1
−1

1



 , t ∈ R, (1.7)

which represents infinitely many solutions on a straight line in R3. �

Let us make some observations on the previous two examples. In Exam-
ple 1.3.4, for arbitrary b ∈ R3, we have a unique solution x = A−1b. That is,
the vector equation

xu + yv + zw = b

always has a unique solution for the linear combination coefficients (x, y, z).
This implies that the set of vectors {u, v, w} can span the whole space R3.

In Example 1.3.3, there exists b = (b1, b2, b3) ∈ R3 with b3 , 0, which is
not a linear combination of {u, v, w∗}. That is, the set of vectors {u, v, w∗}
cannot span the whole space R3. But why can {u, v, w}, while both sets have
three different vectors? The answer is that {u, v, w∗} has redundant vectors,
but {u, v, w} does not. Namely, the role of some vectors in {u, v, w∗} can be
replaced by other vectors. To identify the redundancy, we set up the following
model:

x1u + x2v + x3w∗ = 0,

solving for (x1, x2, x3). By (1.7), we have at least one nonzero solution
(x1, x2, x3) = (1, −1, 1). That is,

1u + (−1)v + 1 w∗ = 0 ⇐⇒ v = u + w∗.

That is, v can be replaced with u + w∗. Therefore, the spanning role of
{u, v, w∗} is the same as that of {u, w∗}, which cannot span a three di-
mensional space.

Next we verify that there is no redundancy in {u, v, w} for spanning R3.
We also set up the following model:

x1u + x2v + x3w = 0,

solving for (x1, x2, x3). By the solution in Example 1.3.4, we have the only
solution (x1, x2, x3) = (0, 0, 0). This means that none of the vectors in
{u, v, w} can be replaced by a linear combination of the other ones. They
are linearly independent.
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Definition 1.3.5. Let {u1, u2, · · · , um} be a set of vectors in Rn. If
the vector equation

x1u1 + x2u2 + · · · + xnun = 0

has only the trivial solution x1 = x2 = · · · = xn = 0, {u1, u2, · · · , um}
is said to be linearly independent. Otherwise, {u1, u2, · · · , um} is said
to be linearly dependent.

We finish this chapter with examples on matrix multiplication with ele-
mentary matrices.

Example 1.3.6. Elementary matrices

• Consider Ex = b, where b =

[
b1

b2

]

, x =

[
x1

x2

]

, E =

[
1 0
l 1

]

. Then Ex =
[

x1

x2 + lx1

]

. Note that the effect of multiplication by E from the left of x is

“adding l-multiple of row 1 to row 2.” The solution is

x =

[
b1

b2 − lb1

]

=

[
1 0

−l 1

] [
b1

b2

]

.

Denote by E−1 =

[
1 0

−l 1

]

. We have the solution x = E−1b. The effect of

multiplication by E−1 from the left of b is “subtracting l-multiple of row 1
from row 2.” Moreover, using x = E−1b and the original system Ex = b, we
have

E(E−1b) = b, E−1(Ex) = x.

That is, the multiplication actions from the left of a vector by E and E−1

are canceling each other. If we treat the action A : x 7→ Ax as a function
determined by the matrix A, then the effect from E−1 ◦ E and E ◦ E−1 is the
same as the identity matrix I.

• Consider Ex = b, where b =

[
b1

b2

]

, x =

[
x1

x2

]

, E =

[
0 1
1 0

]

. Then Ex =

[
x2

x1

]

.

Note that the effect of multiplication by E from the left of x is “exchanging
positions of row 1 and row 2.” The solution is

x =

[
b2

b1

]

=

[
0 1
1 0

] [
b1

b2

]

.
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Denote by E−1 =

[
0 1
1 0

]

, which is identical to E itself. We have the solution

x = E−1b. The effect of multiplication by E−1 from the left of b is “exchang-
ing positions of row 1 and row 2.” Moreover, using x = E−1b and the original
system Ex = b, we have

E(E−1b) = b, E−1(Ex) = x.

That is, the multiplication actions from the left of a vector by E and E−1 are
canceling each other. The multiplication effects from E−1 ◦ E and E ◦ E−1

are the same as the identity matrix I.

• Consider Ex = b, where b =

[
b1

b2

]

, x =

[
x1

x2

]

, E =

[
1 0
0 c

]

with c , 0. Then

Ex =

[
x1

cx2

]

. Note that the effect of multiplication by E from the left of x is

“multiplying row 2 by c”. The solution is

x =

[
b1
1
c b2

]

=

[
1 0
0 1

c

] [
b1

b2

]

.

Denote by E−1 =

[
1 0
0 1

c

]

. We have the solution x = E−1b. The effect of

multiplication by E−1 from the left of b is “dividing row 2 by c”. Moreover,
using x = E−1b and the original system Ex = b, we have

E(E−1b) = b, E−1(Ex) = x.

That is, the multiplication actions from the left of a vector by E and E−1

are canceling each other. If we treat the action A : x 7→ Ax as a function
determined by the matrix A, then the effect from E−1 ◦ E and E ◦ E−1 is the
same as the identity matrix I.

The aforementioned three type of matrices are called elementary ma-
trices which can be obtained by operating on the identity matrices with the
elementary row operation in question. �

Exercise 1.3.7.

1. Let A =





1 0 0
1 1 0
1 1 1



 and B =





1 0 0
−1 1 0

0 −1 1



. Compute i) A + B, A + 2B

and A − 3B; ii) AB and BA.

2. Let A =

[
1 2
3 4

]

and B =

[
0 1
1 0

]

. i) Compute AB and BA; ii) Is AB =

BA?


