

GPS Tracking with
Java EE Components
Challenges of Connected Cars

http://taylorandfrancis.com

GPS Tracking with
Java EE Components
Challenges of Connected Cars

By
Kristof Beiglböck

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20180601

International Standard Book Number-13: 978-1-138-31382-8 (Hardback)
International Standard Book Number-13: 978-1-138-05494-3 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Beiglböck, Kristof, author.
Title: GPS tracking with Java EE Components : challenges of connected cars / by Kristof Beiglböck.
Description: Boca Raton : Taylor & Francis, CRC Press, 2018. |
 Includes index.
Identifiers: LCCN 2018014010| ISBN 9781138054943 (pbk. : alk. paper) |
 ISBN 9781138313828 (hardback)
Subjects: LCSH: Vehicular ad hoc networks (Computer networks)--Data processing. |
Automatic tracking--Equipment and supplies. | Global positioning system. |
 Java (Computer program language)
Classification: LCC TE228.37 .B45 2018 | DDC 629.2/72--dc23
LC record available at https://lccn.loc.gov/2018014010

http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2018014010
http://www.taylorandfrancis.com
http://www.crcpress.com

Contents

Preface xiii

Chapter 1 � Introduction and Overview 1

1.1 GPS TRACKING WITH JAVA EE 1

1.2 THE CHALLENGE OF THE SELF DRIVING CAR 2

1.3 INTENDED AUDIENCE 3

1.4 SKILLS / SKILL LEVEL 4

1.5 THE AUTHOR 4

Section I Data Formats and Relations

Chapter 2 � Message Exchange 7

2.1 GPS PROTOCOLS 7

2.1.1 Message Format Encoding 9

2.1.2 Message Type and ID 11

2.1.3 Message Catalogs 12

2.2 TCP/IP COMMUNICATION 13

2.2.1 TCP with Standard Java 14

2.2.2 OpenGTS DCS 17

2.3 JEE COMPONENTS 19

2.3.1 The Netty Framework 20

2.3.2 Device to Device Implementation 23

Chapter 3 � Device Communication 25

3.1 TRACCAR DCS 25

3.2 DEVICE COMMUNICATION SERVER 26

3.3 DC ARCHITECTURE 27

3.3.1 Traccar Client/s 28

3.3.2 myLiveTracker 29

v

vi � Contents

3.3.3 GPS Test App 29

3.3.4 Debugging a tracking message 29

3.4 CONCLUSION 31

Chapter 4 � Data Modeling 33

4.1 DATA MODEL 33

4.2 MESSAGE TO ENTITY 34

4.3 RELATIONAL MODELS 35

4.4 THE TRACCAR MODEL 37

Chapter 5 � Object Relations 41

5.1 GOOGLE PROTOCOL BUFFERS 41

5.2 BULK MESSAGES 43

5.3 OBJECT RELATIONS 44

5.3.1 Model Implications 45

5.4 ORM AND ERM 46

5.5 DESIGNING ORMS 47

5.6 EXTENDING ORMS 49

5.6.1 Temporary ORM Extensions 50

5.6.2 Harmful ORM Extensions 50

Section II JeeTS Data Formats

Chapter 6 � JeeTS Persistence Unit/s 57

6.1 INTRODUCTION 57

6.2 JAVA PERSISTENCE ARCHITECTURE 58

6.3 HIBERNATE ORM 59

6.4 JEE PERSISTENCE UNIT 61

6.5 FINE TUNING ORM AGAINST ERM 62

6.5.1 Hiding IDs 62

6.5.2 Creating IDs 63

6.5.3 Object Relational Mapping 64

6.5.4 persistence.xml 67

6.6 PU TEST ENVIRONMENT 68

6.7 ERM AND PU UPDATES 70

Contents � vii

Chapter 7 � JeeTS Protocols and Decoders 73

7.1 COMPILE TRACCAR.PROTO 73

7.2 TRACCAR.JAVA 74

7.3 PROJECT DEPENDENCIES 75

7.4 DATA TRANSFORMATIONS 76

7.5 TRACCAR PROTO DECODER 77

7.5.1 Traccar Modifications 77

7.5.2 Implementation 78

Section III JeeTS Client Software

Chapter 8 � The JeeTS Tracker 83

8.1 TRACKING DEVICES 83

8.1.1 Tracker Events 85

8.1.2 Traccar Events 85

8.1.3 JeeTS Events 87

8.2 TCP SOFTWARE 88

8.2.1 String Message 89

8.2.2 Transmit String Message 90

8.2.3 Protobuffer Messaging 90

8.3 TRACKER ARCHITECTURE 92

8.3.1 Implementation 93

8.3.2 Performance 94

8.3.3 Binary Network Format and Size 97

8.4 TRACKER TESTING 98

8.5 CONCLUSION 99

Chapter 9 � The JeeTS Player 101

9.1 INTRODUCTION 101

9.2 GPS PLAYER 102

9.3 DEVELOPMENT CYCLE 102

9.4 IMPLEMENTATION 103

9.4.1 Player API 104

9.4.2 Plausibility 105

9.4.3 Usage 105

9.5 SIMULATION 106

viii � Contents

Chapter 10 � my JeeTS Client 107

10.1 MAVEN ARCHETYPING 107

10.2 IMPLEMENTATION 108

Chapter 11 � JeeTS GTFS Factory 111

11.1 TRAFFIC 111

11.2 GENERATE MAVEN ARCHETYPE 112

11.3 TRANSIT FEEDS 113

11.4 GTFS PERSISTENCE UNIT 113

11.5 TRANSIT TERMINOLOGY 114

11.6 TRANSIT FACTORY 114

11.6.1 route_type 115

11.6.2 routes 115

11.6.3 route_stops 115

11.6.4 stops 116

11.6.5 agency 116

11.6.6 calendar and calendar_dates 117

11.6.7 trips 117

11.6.8 shapes 118

11.6.9 Transit API 118

Section IV Enterprise Integration

Chapter 12 � Enterprise Software 121

12.1 STATUS AND OUTLOOK 121

12.1.1 Design Constraints 122

12.2 ENTERPRISE INTEGRATION PATTERNS 123

12.3 MONOLITHIC TRACCAR ARCHITECTURE 124

12.3.1 Traccar’s BasePipeline 125

Chapter 13 � The JeeTS DCS 129

13.1 THE CAMEL INTEGRATION FRAMEWORK 129

13.2 JEETS CAMEL COMPONENTS 130

13.3 IMPLEMENTING WITH CAMEL 131

13.3.1 Components 131

13.3.2 Camel Setup 132

13.3.3 Component Endpoints 132

Contents � ix

13.3.3.1 Component Configuration 134

13.3.4 Building Routes 135

13.3.5 Message Translator 136

13.3.6 Processor 137

13.3.7 Message Exchange 138

13.3.8 Message Direction 139

13.3.9 Camel Endpoints 140

13.3.10 Multi Threading 140

13.3.11 Camel Context 141

13.4 DCS CONFIGURATION 142

Chapter 14 � The JeeTS ETL 145

14.1 THE SPRING FRAMEWORK 146

14.1.1 Camel Spring Setup 147

14.1.2 Startup and Shutdown 148

14.1.3 Camel Context 149

14.1.4 Combining Camel Routes 150

14.2 CAMEL JPA COMPONENT 151

14.2.1 Configuration and Implementation 151

14.2.2 Camel JPA Configuration 152

14.2.3 Message Translator and Data Access 152

14.3 CAMEL GEOCODER COMPONENT 154

14.3.1 Camel’s Simple Expression Language 155

14.3.2 The Splitter EIP 156

14.3.3 The Content Enricher EIP 157

14.3.4 Geocoding Strategies 157

14.4 CREATING CAMEL COMPONENTS 158

14.4.1 Enterprise Development 159

Section V Middleware

Chapter 15 � Java Messaging 163

15.1 INTRODUCTION 163

15.2 MESSAGE ORIENTED MIDDLEWARE ­ MOM 164

15.3 JAVA MESSAGING SERVICE ­ JMS 165

15.4 ACTIVEMQ 166

15.4.1 Messaging with ActiveMQ 166

x � Contents

15.4.2 ActiveMQ Installation and Test 167

15.5 JEETS DCS TO ACTIVEMQ 168

Chapter 16 � Geo Distribution 171

16.1 ENTITY ROUTING 171

16.2 THE JEETS TILE MAPPER 172

16.2.1 Use Case and Risk 174

16.2.2 The Recipient List EIP 174

16.2.3 Camel POJO Messaging 176

16.2.4 Camel Component String 177

16.3 TRAFFIC MONITOR 177

16.4 THE JEETS GEO ROUTER 179

16.4.1 Use Case 179

16.4.2 The Java Topology Suite - JTS 180

16.4.3 The Content Based Router EIP 183

Chapter 17 � JSE Tracking Components 185

17.1 FROM PIPELINES TO ROUTES 186

17.2 TRACCAR HANDLERS AND MANAGERS 187

17.3 HIDING MIDDLEWARE 188

17.3.1 Camel POJO Consumer 189

17.4 ENTITY MANAGEMENT 190

17.4.1 Persistence Context 191

17.4.2 Extending PU and ORM 193

17.4.3 Persistence Tuning 193

17.4.4 Ordered Relations 195

17.4.5 ORM Navigation 196

17.4.6 Query Languages SQL and JPQL 198

17.4.7 End of Persistence Context 200

17.4.8 Persistence and Transactions 201

17.5 GEOFENCE MANAGER 203

17.5.1 Implementation 204

17.5.2 Route Modification 206

17.6 ENTERPRISE STANDARDS 207

17.6.1 Data Formats 207

17.6.2 Message Transformation 208

Contents � xi

17.6.3 GTS Components 210

17.6.3.1 Server Manager 211

17.6.3.2 Data Manager 211

17.6.3.3 Permission Manager 212

17.7 USER INTERFACE 213

17.8 EVENTMANAGER AND RULESENGINE 214

17.9 NOTIFICATIONMANAGER 215

17.10 PUTTING IT ALL TOGETHER 215

Section VI Enterprise Applications

Chapter 18 � Spring to AppServer 223

18.1 SPRING VS. JAVA EE 223

18.2 APPLICATION SERVER 224

18.3 CAMEL AND WILDFLY 226

18.3.1 The WildFly-Camel Subsystem 227

18.4 JAVA MONITORING 228

18.4.1 WildFly Console 228

18.4.2 Mission Control 228

18.4.3 Java Management Extensions 229

18.4.4 Hawt.io 229

18.5 WILDFLY­CAMEL QUICKSTART 230

18.6 DEVELOPMENT WITH ARQUILLIAN 231

18.7 WILDFLY­CAMEL SPRING 231

18.8 WILDFLY­CAMEL ACTIVEMQ 232

18.8.1 ActiveMQ Resource Adapter 232

18.8.2 JeeTS Repository Management 234

Chapter 19 � The JeeTS EAR 235

19.1 JEE ENTERPRISE ARCHIVE 236

19.1.1 ejb-in-ear 237

19.1.2 war-in-ear 238

19.1.3 amq-in-ear 239

19.1.4 jpa-in-ear 240

19.2 PUTTING IT ALL TOGETHER 242

19.2.1 Client Software (Simulation) 242

19.2.2 Client Hardware 243

xii � Contents

19.2.3 JSE Server Middleware 243

19.2.4 JEE Server Application Scenario 244

19.3 APPLICATION SCENARIOS 245

19.3.1 Camel Routing 245

19.3.2 Application Core 246

19.4 JEETS OUTLOOK 248

Appendix A � Development Environment 249

A.1 PREREQUISITES 249

A.2 IDE 250

Appendix B � Install Traccar Sources 251

B.1 SOURCE INSTALLATION 251

B.2 POSTGRESQL INSTALLATION 253

B.3 TRACCAR UPDATE 254

B.4 TRACCAR IMPORT TO ECLIPSE 255

Appendix C � Install JeeTS Sources 257

C.1 BUILDING THE JEETS REPOSITORY 257

C.2 ECLIPSE SOURCE IMPORT 258

C.3 PROTOBUFFER COMPILER 258

C.4 ACTIVEMQ INSTALLATION AND TESTS 259

Appendix D � Install GTFS Sources 261

D.1 DISCLAIMER 261

D.2 FINDING YOUR GTFS DATASET 261

D.3 GTFS INSTALLER 262

D.4 INSTALL GTFSDB 263

Appendix E � Install WildFly with Camel 265

E.1 INSTALL WILDFLY 265

E.2 INSTALL CAMEL SUBSYSTEM 266

E.2.1 Wildfly-Camel Configuration File 267

E.2.2 Hawtio Web Console 267

Recommended Readings 268

Index 273

Preface

The times of proprietary products dominating the software industry are over.
Today more than 80% of all software applications are compiled of open source
components and with the combination of Java and Open Source Software
(OSS) alone there is practically nothing you can not program. The Apache
Maven Build Tool has emerged to an automated project manager. The archi-
tect of a new application is in charge of composing the overall Project Object
Model (POM). Once the project is defined each developer can create the soft-
ware from scratch and begin to implement code with his domain knowledge.

Maven Central is hosting millions of artifacts and serving tens of million
downloads per week, tens of billion per year, with growing demand. A Maven
Server can easily be setup inside your company to support distributed software
development for your team. Maven is machine automation of development,
integration, testing, documentation and deployment. The infinite number of
Java OSS Components is the modern challenge for software architects to com-
pose an application.

Choosing the right OSS components already is a challenge and this book
will demonstrate how to select Java and Java EE Components and compose
the technical framework for your application before you start adding business
code. Our business domain is GPS Tracking and we will see how to create indi-
vidual components for a GPS Tracking System (GTS) and put them together
to a running system. This process of picking Jee components and adding GTS
features can be expressed in the pseudo equation

Jee + GTS = JeeTS

where JeeTS is pronounced like G.T.S., i.e. Jee T.S.

The book’s index provides an overview over Jee and JeeTS components.
Instead of a Bibliography the book provides a ’Recommended Readings’ Sec-
tion of freely available Internet sources to be used while you are reading the
JeeTS code. In the recommended readings you can find book recommenda-
tions to explore each component in full depth – after you have gone through
the book for a complete picture.

xiii

xiv � Preface

Instead of creating an application from scratch, which exceeds the limit
and purpose of a book, we will work with the Open Source Tracking System
Traccar. Traccar is a popular Java GTS that you can install out of the box
and start tracking with your smartphone immediately. Traccar is a proven
product, maintained very well and upgraded frequently by Anton Tananaev.
Once Traccar is up and running we will take it as the running production
system and put ourselves in the position to customize and replace GTS func-
tionalities with new modules. This is a realistic situation for most professional
developers.

We will analyze the Traccar GTS architecture to identify functional com-
ponents like Device Communication Servers (DCS) and then create a JeeTS

DCS component that can run stand alone or be embedded inside an Jee

Application Server. With this approach you will learn how to decompose a
monolithic application into independant modules and then apply integration
technologies to put the pieces back together with explicit endpoints to run
them as one system.

At the end of the book we will have created a Maven Repository with well
aligned JeeTS components that you can use as seed components. Hopefully
we will meet at jeets.org to create integration tests and improve the JeeTS

components according to your requirements. You will able able to create your
own Java components and combine them to a new application or with your
running production system. You should also become aware of the paradigm
shift from large Jee application servers to micro services that can be scaled
individually. You will be able to create an Enterprise Application running on
an AS or you can create many components and assemble them to one server
backend application or both.

The Self Driving Car (SDC) is the latest global challenge of steering a
real car with software. You could not navigate a car through a city without
information about the traffic situation. GPS Tracking has to be taken to a
higher level to be able to track many cars at the same time and provide
the aggregated traffic situation to each car. This constellation is referred to as
Connected Car Technology and we will look at the impact on classical tracking
systems.

http://www.jeets.org
http://www.jeets.org

C H A P T E R 1

Introduction and
Overview

CONTENTS

1.1 GPS Tracking with Java EE . 1
1.2 The Challenge of the Self Driving Car . 2
1.3 Intended Audience . 3
1.4 Skills / Skill Level . 4
1.5 The Author . 4

1.1 GPS TRACKING WITH JAVA EE

Vehicle and fleet tracking has become a large industry over the last decade
and the market offers innumerable trackers for different appliances. With the
smartphone a new tracker type was introduced as a multipurpose well per-
forming Client computer with full connectivity to any sensor.

On the Server different GPS Tracking Systems (GTS) have evolved to
track people, assets, vehicles . . . anything. A vehicle tracking system can be
used to observe a fleet and locate vehicles on a map in a browser frontend. The
system can raise individual events to improve logistics, monitor fuel consump-
tion, create travel reports etc. A transport company couldn’t persist in the
market today without a GTS and the software industry provides full fledged
solutions to run a business.

Since the automotive industry has recognized tracking technologies as the
live data source to actually direct cars through a complex environment the
classical GTS architecture has to consider many new aspects. This book ana-
lyzes how the challenges of the Self Driving Car (SDC) exceed the limits of a
classical GPS Tracking System. For a thorough analysis the widely accepted
and well designed Open Source Traccar GTS [1] is reverse engineered in detail
to dissect the major GTS constituents. Traccar is a monolithic application in
Standard Java (JDK) running in a single JVM and we will re/model individual
GTS components to reusable Java EE,i.e. Jee Modules.

1

2 � Introduction and Overview

The readers can witness the prototyping and modeling process and modify
their own software. This book can help you to set up your tracking system
by customizing the components. Every component is introduced in detail and
includes a number of design decisions for development. The modules are com-
bined into a customizable GTS – the Jee Tracking System JeeTS . And they
can be used as seed components to enrich existing systems including Java mid-
dleware and Jee application servers with live tracking. JeeTS is a toolbox
of GTS components combined to a bare bone level that you can also use in
conjunction with Traccar.

1.2 THE CHALLENGE OF THE SELF DRIVING CAR

Navigation systems and digital maps have become extremely precise to local-
ize a vehicle on a digital map with GPS coordinates. It was only a matter of
time before tracking and mapping will be merged to actually guide the ve-
hicle toward becoming a Self Driving Car (SDC). This challenge is currently
changing the automotive industry from programming embedded software to
hosting services and data crunching – in real time with really Big Data. The
Internet has grown rapidly to serve people. Now it is being prepared to assist
cars, sometimes within seconds, as they move.

The main goal in development of a self-driving car is to provide a calcu-
lated route and to actually control the car to follow it. At the first impression
the SDC seems like a logical continuation of automotive developments. Ex-
isting intelligent Parking Assist Systems are noteworthy, since they actually
take complete control over the car for a complex maneuver: heavy sensitive
steering, driving forward and backward with high precision – without human

interaction. This book will not explore the internal control of a vehicle but
rather focuses on client server programming to provide useful information fast.

So the SDC is not really a revolutionary idea? Is it simply a normal evolu-
tion of technology? It is much more. The challenge is the live coordination of
moving cars and the prediction of coincidences that could trigger events for
cars approaching each other and avoid accidents.

The main difference of the SDC scenario to a classical GTS is that the
latter only processes the tracking information of a single device! In the SDC
scenario we need to evaluate submitted values of different vehicles and provide
fast feedback to each vehicle as it moves. The system has to first evaluate
and classify each vehicle message before comparing and aggregating different
vehicles and finally supplying conclusions to each vehicle.

This SDC challenge requires a remodeling of a classical GTS to more in-
dependent components. We will combine these components on a higher level
to form individual use cases which can be processed in parallel. In order to
achieve this the JeeTS will be modeled following some major guidelines:

Intended Audience � 3

Don’t look into the past.
A classical GTS usually makes frequent use of database lookups to de-
termine where the vehicle was previous to the submitted position.

Don’t speculate on the future.
Some GTS keep up a connection dialog to wait for incoming events.

Don’t wait for external resources.
The response time of an external resource is generally unpredictable. An
external database represents a hardware resource and can easily become
the main bottle neck of the complete system.

1.3 INTENDED AUDIENCE

Another main topic of this book is the reflection of Jee technology itself.
Containers have diminished and can be created on the fly to execute a single
method – and then be dropped again . . .Jee technology is slowly moving away
from application servers to smaller independent Java (EE) components which
are combined to a system. Many of these components will be introduced and
applied for the creation of stand alone JeeTS components.

In Java EE we usually speak of the architect and developer roles, which
does not reflect the modern software development completely. The build tool
and sophisticated test frameworks have become a core part of the development
process. The Java EE platform is ’only’ a higher level specification of many
globally accepted API specifications related to each other, to the Java world
and the network. Before actually starting an implementation the architect has
to work as a software composer to create the built environment. All Jee client-
and server modules developed in this book can be found in the GIT repository
and can be compiled, tested, packaged and installed with Maven.

One typical problem to upgrade a standard Java GTS to a Java EE GTS
is the direct connection to the hardware. Tracking messages arrive at the
ports of a computer, a hardware. On the other hand in the JEE runtime
environment, the application server implementation is designed for inversion
of control (IoC) and the business logic should not include any code to interact
with server, operating- nor file system. Otherwise scalability over different
machines will not work!

Therefore this book can also help Java developers not only interested in
GPS tracking, but in modern software design from many individual modules.
The complete system design process is described bottom up beginning with
the creation of data formats. The reader should be able to sense the funda-
mental importance of a persistence unit and a compatible network data format
for data transmission, which actually pre/define the system and dictate each
component’s design. Since it is merely impossible to completely define data
formats before creating a system we will describe how to create formats, which

4 � Introduction and Overview

can be modified during the development and according to new requirements
to an existing system.

Since SDC development in the automotive industry is highly competitive
and therefore taking place under non disclosure we will focus on applying Java
EE technology to existing GPS tracking systems. By providing live tracking
information to Entity Java Beans (EJBs) a GTS developer can easily break
the isolation of his GTS and combine it with other systems of the enterprise.
Just imagine clicking on a truck icon on the map frontend to retrieve the
actual truck load from the warehouse and other logistic systems.

1.4 SKILLS / SKILL LEVEL

This book does not introduce Java EE and you are expected to. . .

install the JSE Traccar GTS

install the Postgres database (with PostGIS)

download / clone a GIT repository

apply the build tool Maven (clean compile test package install ..)

install the application server Wildfly

install ActiveMQ

configure the ActiveMQ resource adapter for WildFly

The book’s source code and sample application are available to the reader
on the book’s website jeets.org. The book should be used as a hands-on
instruction accompanying the source code. The reader is expected to download
and compile the sources in a personal development environment. You can go
through the appendixes all at once to setup your environment or you will be
asked to setup required software by single appendixes as you read.

1.5 THE AUTHOR

The author is specialized on Geographic Data Processing and has worked for
the automotive industry for more than a decade and witnessed the develop-
ments from GPS, digital maps, routing to navigation. The author has setup
commercial GPS tracking systems with open source components and has been
architect and developer in large automotive tracking projects. With the goal
of a Self Driving Car GTS technologies were applied for real time tracking.

http://www.jeets.org

I
Data Formats and Relations

5

http://taylorandfrancis.com

C H A P T E R 2

Message Exchange

CONTENTS

2.1 GPS Protocols . 7
2.1.1 Message Format Encoding . 9
2.1.2 Message Type and ID . 11
2.1.3 Message Catalogs . 12

2.2 TCP/IP Communication . 13
2.2.1 TCP with Standard Java . 14
2.2.2 OpenGTS DCS . 17

2.3 JEE Components . 19
2.3.1 The Netty Framework . 20
2.3.2 Device to Device Implementation 23

2.1 GPS PROTOCOLS

The new challenge of handling crowd sourced data flow of smartphones, cars
and connected things is the reduction of data to streams without losing in-
formation. In the context of the SDC every single bit and every millisecond
eventually define the information limit to support every car – for a single
highly frequented traffic node – as well and fast as possible.

In the course of this book we will develop different Jee components es-
pecially for GPS tracking purposes. To start the development from scratch
we will look at the basic information bits of tracking: GPS coordinates. GPS
was thoroughly introduced in the first book and broken down to the following
fields needed to describe a point in time and space:

longitude:]− 180◦, 180◦] decimal degrees east/west +/-

latitude: [−90◦, 90◦] decimal degrees north/south +/-

altitude: meters above (+) or below (-) see level (0) [default]

timestamp: UTC1 time and date

1Universal Time Coordinated, formerly Greenwich Mean Time (GMT)

7

8 � Message Exchange

event: The cause of sending this GPS coordinate

Tracking information, i.e. events should always be tagged with a coordinate
GPS(lat,lon,alt,time) to describe what has happened where and when. For
the time being the event stands for any (sensor) information to be transferred
to describe the meaning or cause of a transmission. The submitted fields are
transformed into Plain Old Java Objects (POJO) to become entities of a
tracking system. (see Figure 2.1).

Let’s look at these four fundamental GPS fields to gain an understanding
of different data formats and how much space, i.e. bits, they require. As Java
developers we want to handle the submitted values defined by Java primitives
or -types as the server target format. Although a 32-bit representation in
a float would be sufficient lat, lon and alt are commonly used as 64-bit
double primitives. A vital question in a tracking context is how to transfer
the GPS data over the network with a minimum number of bits without losing
precision?

For the ease of use many trackers transfer information in a human readable
text (ASCII csv) format:

keys time lon lat alt

values ..,170312123644,120589,490234,0,..

formats YYMMDDHHMMSS ddmmmm ..

29 bytes +---------+---------+---------

The first field represents a time stamp followed by lat and lon represented
as digits and finally the altitude relative to sea level. This is useful for dis-
play purposes or to send tracking messages via SMS and many other human
interactions. For an SDC scenario this format is a disaster.

GPS Event

-eventType: enum = KEY_ALARM

+...

+...

GPS Position

-projection: CONST = WGS84

-latitude: double

-longitude: double

-altitude: double

-time: Date

+getters / setters()

GPS Event

-eventType: enum = KEY_ALARM

+...

+...

GPS Event

-eventType: enum = KEY_ALARM

+...

+...

Figure 2.1 The server transforms the messages into related POJOs. GPS

and events can be modeled in one or more system entities. Their rela-

tion can be modeled as 1:1 or 1:n as needed.

GPS Protocols � 9

TABLE 2.1 Integer Coordinates with a Precision Field

longitude dir integer precision double

121.1234567 East +1211234567 7 +121.1234567
121.1234567 West -1211234567 7 -121.1234567
21.1234567 East +211234567 7 +21.1234567

21.1234 East +211234 4 +21.1234

In a text format at least one byte is needed for every digit (or in this case
for every character) and separator which adds up to 29 bytes. Also it is unclear
whether the altitude of zero is a default value or real (unlikely). The lat and
lon values are restricted to 6 digits to fix their overall precision.

From the data processing perspective it’s a good idea to use integers in-
stead of decimals, if you compare FLOPS and MIPS performances of com-
puter systems. The problem emerging from the SDC is the precision of lat
and lon. Digital maps were used to provide an accuracy in meters and were
subsequently refined for ADAS2. Since this is still insufficient for autonomous
driving a new type of map is coming up with centimeter precision: the HD
Map for machine reading.

On the other hand not every location is provided in centimeter precision.
Therefore we could define lat and lon as integers and add a precision field
(see Table 2.1). The precision value 4 represents the divider 104, i.e. multi-
plier 10−4 and allows defaulting to a precision or specifying it explicitly for
any coordinate. The space needed for java variables is a 16-bit short for the
integer, a 8-bit byte for the precision and a 64-bit double for the targeted
variable in the server code. Now we have a 24 bit representation for lat and
lon, which is much better than the text values listed above.

Depending on your application you might even consider submitting a small
route, i.e. a collection of related position infos. This opens the possibility to
tag each position with small deltas for lat, lon, alt. Yet this is a very project
dedicated approach which can also introduce risks. In a networking context
we don’t have Java types and there is still room for compression by looking
at the single bits. . .

2.1.1 Message Format Encoding

If you buy a tracker you usually don’t have the chance to define a protocol
and you must reverse engineer the one provided. Therefore we will look at
a few tracking protocol formats and some typical implementation problems
they pose. Afterwards we’ll define our own JeeTS data format with clear
structures for fast prototyping.

2Advanced Driver Assistance System

10 � Message Exchange

We will now look at the tk102 (or tk103 etc.) as it is human readable (see
[5]). A typical message String encoded by the tracker looks something like
this:

008238008589BO01141129A2302.7532N07232.2461E000

.0092142349.381000000AL000000F1

The server application receiving the message has to know the format in order
to parse it into the final variables of your application:

008238008589 - trackerid / mobile number

BO01 - alarm event

141129 - YYMMDD date

A - valid data / V - invalid data

2302.7532 - latitude, format ddmm.mmmm

N - N = north, S = south

07232.2461 - longitude, format (d)ddmm.mmmm

E - E = east, W = west

000.0 - speed k/m

092142 - UTC time HHMMSS

349.38 - altitude in meters (cm precision?)

1000000A - bit representation of several events:

power on/off/external, ignition on/off, ...

L000000F1 - mileage

We won’t go into the details, yet it’s worth noting that lat, lon and time have
the format of NMEA sentences and indicate that these values are propagated
from the GPS processor output. Here is a Decoding Algorithm into a Java
target format which should provide an impression of a Decoding Process:

2302.7284 = latitude, format is ddmm.mmmm

N = north, S = south

>>> (d)dd + mm.mmmm. >>> 23 + 02.7284

>>> 02.7284/60 = 0.0454733333333333

>>> 23 + 0.0454733333333333 = 23.04547333333333

>>> Then multiply the result by -1 if the direction is S

>>> as N so 1*23.04547333333333 = 23.04547333333333

This sample conversion of the latitude indicates processing time, which
again is something we should not waste for the SDC scenario. It may seem
picky, but we want a precise look at transferred data to identify the bottle-
necks. Another transformation could be required to calculate the local time

from the UTC time and geocoordinates etc.
You should be aware of the altitude source. If altitude is important for

your application you should not rely on the value supplied by the GPS unit!
The height is determined from the satellites and highly depends on their con-
stellation. Every time the GPS switches to other satellites the altitude preci-
sion increases or decreases depending on the geometry. The original NAVS-
TAR GPS from 1984 simply wasn’t made for this. If you need to rely on

GPS Protocols � 11

accurate altitude values you should look for a tracker with a built in barome-
ter. If you are building your own tracker you can get a barometer component
with centimeter precision starting somewhere around 10 US dollars.

In the end every protocol is defined by groups (message definitions) of
key-value pairs while the actual message is composed only of values. Due to
data reduction client and server software have to agree on the (current) format
of all sentences that define a protocol. The tk102 position message indicates
some more challenges of data protocols.

If you take another look at the message string on page 10 it is obvious that
the string length is vital information for decoding. If any value is missing, how
could you decode the message? In the next chapter about TCP communication
we will look at another GPS message string – this time with comma separated
values (csv) which allows to submit empty fields as

"imei:359587010124900,,,13554900601,F,132909.397,,,"

A tracker specifies a certain protocol format for events triggered by exter-
nal sensors or internal states like the battery level. The actual GPS processor
protocol is usually the NMEA 103 format which was introduced for the very
first GPS units around 1984. As we could see some trackers provide a setting to
transfer NMEA sentences in a (complicated) raw format, like (d)ddmm.mmmm.

Later we will look at tracker architectures to understand how NMEA plays
an important role inside the tracker controller to evaluate the GPS output and
select high quality locations by taking accuracy, satellite constellation etc. into
account. A tracker logic is responsible for selecting good events and formatting
them into a tracker protocol format.

2.1.2 Message Type and ID

Sending a tracking message with a position and an event is the basis of track-
ing. Tracker protocols define different messages to submit event details. To set
up a device communication software for a dedicated device you need to apply
different value encoders and decoders repeatedly. Values for a certain key, i.e.
latitude appears in different messages.

Commonly device communication software is designed for various messages
of a tracker protocol and have many switch .. case constructs in their code
to switch to message types and then field definitions. Many devices provide
a header containing only message Id or place the Id as the first field in the
message sentence. Many protocols tag the message Id with a $. As an example
we’ll look at some NMEA sentence formats

GLL - Geographic Latitude and Longitude:

$GPGLL,4916.45,N,12311.12,W,225444,A,*1D

GGA - essential fix data with 3D location and accuracy data:

$GPGGA,123519,4916.45,N,12311.12,W,1,08,0.9,545.4,M,46.9,M,,*47

to find that the messages $GPGLL and $GPGGA share some fields.

12 � Message Exchange

2.1.3 Message Catalogs

The tk102 protocol format is helpful for a textbook and is sufficient to describe
the process of encoding and decoding messages. For higher network traffic and
smaller data sizes more sophisticated devices apply byte and bit manipulations
for every data field.

To get an impression of a complex device you should have a look at
Garmins Fleet Management Interface (FMI) [6]. FMI units provide a large
number of features, i.e. messages used for fleet management solutions with
navigation and messaging. Garmins FMI devices represent a connector for
external truck sensors like a chat interface or a dash camera and much more.

The complete FMI functionality is specified by a large message catalog [7]
where you will find message IDs for many different appliances:

A607 Waypoint Management and Driver Status

A611 Server to Client Long Text Message Protocol

A622 CAM 1.0 (Dash Camera Protocol)

The implementation details can be found in the Garmin Device Interface
Specification [8] which has about 70 pages of technical details for encoding
and decoding. We will not go into the specifics of extracting information from
a decoded field and this specification can serve as a substitute for you to get a
good impression of a complex device communication. The document describes
data types, protocol layers and application protocols that you can study as
needed.

Another good reason to look at the FMI devices in the SDC context is
the fact that it is not a tracker! Although it does have a GPS unit and even
more a digital map for navigation it does not hold a GSM unit. In order to
communicate with a GTS or Fleet Management System the device has to be
connected to a tracker with a GSM unit. The FMI device communicates with
the tracker via physical protocols like the RS-232 or USB Standards. This is
similar to the constellation of a tracker in a (self driving) car. The tracker is
merely the device to submit messages and add a time and place stamp. We
will look at some implementation details to deal with two devices a little later.

Now that we have a good idea of fields, messages and message catalogs
we proceed to create a device communication server for dedicated message
catalogs representing a device and its external sources or sensors.

TCP/IP Communication � 13

2.2 TCP/IP COMMUNICATION

Generally we can assume that a tracking system is designed to receive live GPS
information and telematics from a remote tracking device over the air (OTA).
Since a modern tracking system should also be able to handle indoor tracking
we don’t want to restrict the system to OTA. The most general approach is to
focus the Internet protocol TCP/IP and ignore the transport media – which
is the actual benefit of TCP.

Transmission Control Protocol3

The Transmission Control Protocol (TCP) is one of the main protocols
of the Internet protocol suite. It originated in the initial network implemen-
tation in which it complemented the Internet protocol (IP). Therefore, the
entire suite is commonly referred to as TCP/IP. TCP provides reliable, or-
dered, and error-checked delivery of a stream of octets between applications
running on hosts communicating by an IP network.

For developers this information is concisely focusing on the implementa-
tion. We associate TCP communication with a port and an IP address on
client- and on server side. And most important: an IP address always defines
a hardware endpoint to software!

Port (computer networking)4

In the internet protocol suite, a port is an endpoint of communication

in an operating system. While the term is also used for hardware devices,
in software it is a logical construct that identifies a specific process or a
type of network service. A port is always associated with an IP address of
a host and the protocol type of the communication, and thus completes
the destination or origination address of a communication session. A port
is identified for each address and protocol by a 16-bit number, commonly
known as the port number.

For our software design we can simplify the complete communication by
specifying IP:port combination at least for the server and, if available (i.e.
online), for the client. You may miss the other common protocol UDP, which
is also applied in various tracking devices. Anyway TCP/IP is a useful constel-
lation we can work with and you can treat UDP implementations in a similar
way. The data flow for the new system JeeTS can be simplified to:

Tracking Device > TCP > Tracking Server > JeeTS

3From Wikipedia, the free encyclopedia
4From Wikipedia, the free encyclopedia

14 � Message Exchange

This is a pragmatic model to start an implementation and as we move on
we’ll see how to transfer data back to the Self Driving Car via JEE services.
Note that the ’tracking server’ is actually a Device communication Server
(DCS). A DCS represents a single component of the tracking server and is
coded to communicate with well known messages of the trackers Message
Catalog.

By looking only at the TCP communication we can also cover the fact
that indoor tracking is usually based on various different technologies, since
GPS is not available. Besides indoor tracking we should keep a new emerging
industry in mind, the Internet of Things (IoT), Industry 4.0 and so on. In the
end we only need values for time, longitude and latitude for tracking.

For indoor tracking the altitude is sometimes used in a different way. Ab-
stractly speaking buildings have one or more floors with a constant altitude
and the altitude might store the floor number, which is used to load its ground
plan. Check out the Minneapolis Mall of America in Google maps to get an
idea of map matched ground plans.

2.2.1 TCP with Standard Java

Java was invented as the network- and Internet programming language and
Java objects in general can communicate directly via TCP (or UDP) by de-
sign. Distributed systems, like the tracker and tracking server, need reliable
communication. A Java server application can bind a socket to a specified
port and exchange information via a point-to-point channel. During this ses-
sion data can be exchanged in both directions.

Some tracking systems simply keep up the connection to a car as long as
possible although most of the time the connection is idle and virtual. This
model is usually driven by the GMS provider fees. For an existing connection
the provider charges the actual bytes being transfered while every new con-
nection requires additional data packets. It is most expensive to transfer every
tracking message over a new connection with much more overhead than the
actual information.

The Java developer does not have to deal with TCP layers when using the
java.net package. While TCP is a generic protocol many more customized
protocols like http and ftp are implemented on top of TCP and specified by
the port in the URL. The Java URL class offers many methods to deal with
these protocols to establish connections and exchange data. A simple position
message could be transmitted via http URL encoding:

http://host:5055/?id=401258&lat=49.158&lon=12.864×tamp=192412

The other important class to know is the Socket. After establishing a
client server connection each side communicates to a local socket which can
be associated with an instance, a session or channel of the relevant software
logic. Sockets provide the ability to establish and distinguish multiple client
server connections at the same time.

http://host:5055/?id=401258&lat=49.158&lon=12.864×tamp=192412
http://www.java.net

