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 The concepts covered in this book offer signifi cant benefi t to professionals with expertise 
in geotechnical engineering, mining engineering and/or geology aiming to understand rock 
mass behaviour associated with mining activities. 

 To predict a geotechnical event in a mine, it is critical to specify type of damage, location 
of damage, severity and time. This book focusses on two elements: (1) inferring type of dam-
age and (2) specifying location of potential damage. 

 The case studies presented in the book demonstrate that in all cases the severities of geo-
technical mining disasters were unimaginable (numerous fatalities and loss in billions of 
dollars), and that timing of the events depended on internal or external triggers which were 
seldom predictable. 

 The book discusses geotechnical indicators and warning signs of impending or progres-
sive damage, collapse or rock mass failure which together with analysis of mining param-
eters could provide guidelines for prevention or mitigation of damage to mining excavations. 

 After fi nishing the book, you should be able to read rock mass behaviour and should be 
able to detect the tell-tale signs of impending rock mass damage. 

 T. Szwedzicki 

 Preface 
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  All failures resulting from human activities are predictable . 
 anonymous 

 Just a few days after I started working at a deep underground hard rock mine as a geotechni-
cal engineer, a double fatality happened. Two miners carrying a heavy pump up a decline 
were killed by a rockfall. Investigation that took place described the accident as “unpre-
dictable” and stated that the support was adequate for the prevailing conditions. One day, 
soon after the rockfall, when I was walking up the decline, I noticed that at that particular 
spot there were some wet patches at the back and some water trickling at one sidewall. 
After a few walks, I noticed the width of the decline was about half a metre wider than in 
other places, which wasn’t clearly visible because of irregular walls caused by blasting. 
After thorough inspection, I realised that the rockfall was in a fault zone. The rock mass 
within the fault (which was about 5 m wide) was similar to the neighbouring country rock 
but was highly jointed. All these observations made me think if that rockfall was really 
unpredictable. That accident was a reminder that the paramount objective of mining geo-
mechanics is to ensure safety of mining personnel. This marked the beginning of my geo-
technical quest – to determine whether we are in fact capable of reading the signs of rock 
mass response to mining . . . and therefore, predicting potential geotechnical hazards such 
as failure of rock around mining excavation or even potential disasters like ground collapse, 
rockburst or inundation? 

 My quest has been pursued globally in mines in Europe (Poland), Africa (Zambia, Zim-
babwe, Republic of South Africa), and Australasia (Papua New Guinea, Indonesia, and 
Australia). 

 *** 

 Identifi cation of mining geotechnical hazard shall be based on observations and monitoring 
of rock mass behaviour under mining-induced stress and on analysis of mining parameters. 
This book deals with the challenge and covers two intertwining topics: factors governing 
rock mass response to mining activities and rock mass behaviour before, during, and after 
failure of rock and rock mass. These two topics are supported by numerous case studies and 
by discussion on modes of rock and rock mass failure. 

  Chapter 1 

 Introduction 
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 Various manifestations of rock mass behaviour as response to mining can be identifi ed in 
all phases of mining activities i.e. during development work and during production activities 
in stopes ( Chapter 2 ). 

 A number of case studies are reviewed on large-scale failures and disasters in under-
ground mines and open pit mines, on instability of tailings dam and waste material dumps 
and on inundation of mining areas. The reviews of the case studies are focused on rock mass 
response during the progressive damage, failure and post-failure rock mass response. The 
case studies on underground mining, in  Chapter 3 , include the following: 

 • surface crown pillars collapse above underground mining excavations, 
 • rockbursts, gas outbursts and geothermal outburst, 
 • uncontrolled caving and pillar collapse, and 
 • damage to underground infrastructures (large excavations, accesses and shafts). 

  Chapter 4  provides case studies on slope failure in open pits, including the following: 

 • failure due to underground mining below, 
 • failure along geotechnical structures, and 
 • collapse of a highwall. 

 Inundation and liquefaction are presented in  Chapter 5  for the following: 

 • water inrush into a colliery, 
 • tailings inrush into an underground mine, 
 • backfi ll liquefaction and inrush, 
 • mud inrush following pillar collapse, and 
 • instability of waste rock dumps and tailings dams. 

 Damage can be stress induced or structurally controlled (or in a prevailing number of cases a 
combination of these). However, the fracture propagation that is caused by stress increase is 
instigated on microfractures. The detection and their effect on rock sample mode of failure 
is discussed in  Chapter 6 . 

 The ability to recognize pre-failure rock mass behaviour may result in predicting and 
averting the potential for geotechnical damage. Precursors to mining failures (like indica-
tors, warning signs and triggers) are reviewed in  Chapter 7 . 

  Chapter 8  covers rock mass response at the onset of failure and duration of failure process. 
The chapter also provides case studies of progressive damage. 

 After failure the rock mass exhibits residual post-failure behaviour. The behaviour 
can be re-occurring and can last a long time. This must be considered when re-entering 
affected areas i.e. for post-event recovery or continuation of mining, as discussed in 
 Chapter 9 . 

 Modes of rock sample failure and modes of rock mass failure on local and mining scale 
are reviewed in  Chapter 10 . 

 Behaviour of fragmented ore and waste rock can affect rock mass response to mining. 
Rock mass fragmented after blasting may provide confi nement to the surrounding rock 
mass. Compacted broken rock can transfer stresses that may result in ground deterioration 
around drawpoints and crosscuts, as discussed in  Chapter 11 . 
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 Case studies demonstrate repeatedly that observation of rock mass response and timely 
implementation of ground control practices can mitigate the effect of stress changes leading 
to damage. However, the critical mitigation factor is the implementation of geotechnical 
quality assurance, as discussed in  Chapter 12 . 

***

 Mining activities result in change in mining-induced stress. Changes in stress around mining 
excavations result in changes in the behaviour of the rock mass, which in turn may lead to 
mining disasters due to damage, failure and consequent collapse of the rock mass. Mining 
disasters may result in multiple fatalities, environmental damage and severe fi nancial losses. 
The type and scale of response depends on  in situ  and mining-induced stress, structural fea-
tures and rock mass strength, as well as mining geometry and the scale of mining operations. 

 Once the fi rst signs of stress are observed, such as, cracking or fracturing of rock mass 
or damage to ground support, the excavations start to deteriorate. Damage to the rock mass 
can pose various geotechnical hazards like collapse of ground (fall of ground, crown or pro-
tective pillar collapse), seismic activities, slope instability, and inundation or instability of 
backfi ll, mine tailings or waste rock. The deterioration can progress linearly or exponentially 
i.e. deterioration begins slowly but then accelerates towards eventual closure or collapse. 
Rapid and violent failures of large-scale geotechnical mining structures cause signifi cant 
safety hazards, material damage and interruption to or even cessation of mining activities. It 
is vital to acknowledge that all mining companies are vulnerable to such geotechnical events. 

 In small mining operations in low-stress environments, the rock mass response is hardly 
visible and such excavations have a very long life. However, with larger mining operations, 
especially in deep mines, the response can indicate mining-induced geotechnical hazards. 
Each rock mass failure is preceded by a precursory manifestation of rock mass behaviour. 

 Analysis of case studies shows that the rock mass responses can escalate in scale and 
fi nally end up in progressive damage, failure and/or collapse. Response to change of stress 
around mining excavations can be noticed long before failure. During the failure, different 
modes of rock mass failure take place and, fi nally, there is post-failure (residual) behaviour. 
Assessment of post-failure behaviour is required when making a decision on the timing of 
entering rescue teams, continuation of mining operations near affected areas, and even the 
surface utilization of a collapsed mine. 

 Ability to recognise indicators and warning signs may result in predicting or averting the 
potential for geotechnical failure and thus avoiding substantial losses. Unfortunately, pre-
cursors are not always recognised before the occurrence but are rather recalled in hindsight, 
during investigations into the disasters. In many occurrences, geotechnical failures were 
classifi ed as “accidental”, “occurrence without precedent”, “sudden failure without warn-
ing”, “never anticipated or foreseen” or “unexpected” – yet on scrutiny were found to be 
not completely unpredictable. Instead, they could have been averted or at least the effects of 
failure could have been mitigated. Such failures often exceed engineering expectations of 
rock mass behaviour due to the large scale and severity of damage, which may be one of the 
reasons why they were often considered unexpected. 

 A variety of defi ciencies may arise during the planning and design stages, and the most 
common are caused by incorrect siting of the development and by designing excavations of 
inappropriate size and shape. Damage to rock mass structures like pillars, stopes, chambers, 
magazine and secondary developments could be progressive or violent and may end up in 
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closure or collapse. Mining history has clearly demonstrated disasters involving the collapse 
of pillars due to high extraction ratio, water or tailings inrush into mines as a result of the 
incorrect siting of surface water reservoirs and tailing dumps. Shafts have been abandoned 
because of damage to linings due to deformation caused by the unsatisfactory design of the 
shaft pillars. 

 When rock mass failure is accompanied by substantial uncontrolled rock movement, it 
is referred to as a collapse, for example, discontinuous subsidence, caving, rockfalls, slope 
instability or pillar disintegration. If rock mass failure is accompanied by an abrupt large 
energy release, it is referred to as a rockburst. If accompanied by abrupt large gas release, it 
is referred to as a gas outburst. When accompanied by a large increase in water infl ow, it is 
referred to as inundation. 

 In large tailings dams or waste rock dumps, the failure takes place by slippage or fl ow of 
liquefi ed material. This is referred to as waste material instability. 

 Even with all the indicators and warning signs, mining companies seldom see the geo-
technical failures coming. Even the most sophisticated and well-managed operations are 
frequently caught unaware by disastrous events – events that could have been anticipated 
and prepared for. 

 Anticipating and avoiding geotechnical events requires understanding of rock mass 
response to mining activities. Failure to do so will leave a company vulnerable to potentially 
devastating events.    



  Geotechnical failures are events that should be seen coming . 
 anonymous 

 Understanding factors affecting ground behaviour and prediction of rock mass response 
allows for assessment of vulnerability of mining infrastructure and mineral extraction pro-
cesses. Once rock mass responses to mining are identifi ed and risks determined, it is pos-
sible to implement appropriate mitigation actions. Understanding and foreseeing rock mass 
response and behaviour is needed for the mine design process, to select mining methods and 
to apply ground control techniques to ensure safe and effi cient mining practices. 

 The consideration deals primarily with rock mass response where damage around mining 
structures occurs and where confi ning stresses are very low or tensile. 

 Under stress (which can be mining-induced or externally triggered by blasting or seismic 
events) a rock mass is subject to damage. Although the damaged rock mass may transfer 
stress and maintains its integrity, there is always risk of failure and collapse. Geotechnical 
failure of mining structures is defi ned as fracturing or disintegration resulting in loss of bear-
ing capacity and loss of ability to perform its function. Although rock mass failure process 
is a function of rock properties, structural features and mining geometry, the failure itself 
is driven by stress changes. The loss of bearing capacity happens because of uncontrolled 
ground movement or energy release. When failure is accompanied by substantial discontinu-
ous displacement of rock, it is referred to as rock mass collapse. Another form of rock mass 
response is progressive deterioration. Progressive deterioration takes place when the rock 
mass behaves in a ductile way. During such deterioration excavations change their shape 
without failure i.e. are able to continuously transfer stress until such deformation is achieved 
that a new stress balance is achieved. Mode of failure is defi ned as a manner, form or mecha-
nism of rock or rock mass fracturing leading to failure under induced stress. 

 2.1  GEOTECHNICAL FACTORS AFFECTING ROCK MASS 
RESPONSE 

 Factors contributing to rock mass response leading to damage are structural features and 
rock mass mechanical properties, and  in situ  and mining-induced stress ( Fig. 2.1) . The fi g-
ure also incorporates the role of failure criteria and refers to ground control techniques. 
Rock mass response can indicate stability or instability. Stability refers to open span of 

  Chapter 2 

 Factors affecting rock mass 
response to mining 
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excavations, self-support, optimal distance between excavations, stable pillars, etc. Instabil-
ity, for example, can result in ground collapse, rock mass fragmentation, seismic activity, 
closure of excavations, slope movement, inundation, and failure of tailings storage facilities. 

 Two general modes of damage can be distinguished: structurally controlled gravity-driven 
and stress-induced failure with spalling or slabbing (or any combination of them). Struc-
turally controlled modes of failures are most frequently observed at shallow depths, and 
stress-induced failure is commonly found at greater depth. At shallow depth, slip along dis-
continuities or shearing of the rock matrix dominates the failure process, while at depth 
stress-induced fracturing is most common (Kaiser,  et al ., 2000).  

 Mechanical properties are determined by laboratory testing of rock samples. Rock mass 
is described by the Rock Quality Designation/Fracture frequency number, fi eld testing and 
structural mapping. All these factors allow for geotechnical classifi cation of the rock mass 
(Brady & Brown, 1993). Blasting, stress fracturing and water often reduce rock mass proper-
ties in the vicinity of mining excavations. Rock mass behaviour, in each geotechnical domain, 
also depends on combination of often contiguous very poor and good ground domains. Large 
structural features like faults, folds and joints can control the mode of failure. However, dam-
age is often instigated by stress concentration around microfractures (see  Chapter 6 ). 

 2.2  MINING FACTORS AFFECTING ROCK MASS RESPONSE 

 Stress is considered as superimposed  in situ  stress and mining-induced stress and is deter-
mined by measurement of the absolute values of stress and by measurements of stress 
changes. Although  in situ  stress doesn’t change during the life of a mine, the mining-induced 
stress changes during mining activities. Mining-induced stress depends on mining geometry, 

  Figure 2.1  Geotechnical input to determine rock mass response. 
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geometry of mining excavation and compaction of fragmented rocks. Mining geometry, 
when referring to mine production, includes the extraction ratio, pillar width-to-height ratio, 
sequencing of extraction and ground control measures such as backfi ll or support. Geometry 
of mining excavations includes shape and open span, pillar size, interaction between neigh-
bouring excavations, etc. When using caving, open-stoping or shrinkage methods, there is 
one more factor – broken rocks. Rock mass fragmented after blasting, when left in stopes, 
cave zones or orepasses, provides confi nement to the surrounding rock mass that may be 
affected by abutment stress. Compacted broken rock can transfer stresses that may result in 
ground deterioration around drawpoints and crosscuts. 

   Failure criteria like numerical modelling, heuristic methods or analytical solutions deter-
mine if the rock mass is susceptible to failure i.e. its response results in stability or instability 
but is not used to determine the mode of failure. 

 Predicted instability is indicative of rock mass collapse, fall of ground, seismic 
activities, dilution, fragmentation and rock mass damage; when instability is foreseen, 
ground control measures such as appropriate mine design, ground support or backfill 
must be considered. 

 Various manifestations of rock mass behaviour as response to mining can be identi-
fied in all phases of mining activities. Damage to the rock mass can be described by 
defining the extent (local or mine scale), location of the damage (pillar, floor or back 
or larger scale), mode of failure (tension, shear or coupled) and rock mass response 
(brittle or ductile). 

 Rock mass response can be controlled during design and planning stage, development 
stage and production (Fig.  2.2;   Szwedzicki,  et al. , 2007 ). 

  Figure 2.2  Mining factors affecting rock mass response (Szwedzicki et al., 2007). 


