


The Newman Lectures  
on Mathematics



http://taylorandfrancis.com


John Newman
Vincent Battaglia

The Newman Lectures 
on Mathematics



Published by

Pan Stanford Publishing Pte. Ltd.
Penthouse Level, Suntec Tower 3 
8 Temasek Boulevard  
Singapore 038988

Email: editorial@panstanford.com 
Web: www.panstanford.com

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The Newman Lectures on Mathematics
Copyright © 2018 by Pan Stanford Publishing Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form 
or by any means, electronic or mechanical, including photocopying, recording 
or any information storage and retrieval system now known or to be invented, 
without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through 
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 
USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4774-25-3 (Hardcover)
ISBN 978-1-315-10885-8 (eBook)

www.panstanford.com
mailto:editorial@panstanford.com


Contents

Introduction and Philosophical Remarks ix

 1. Differentiation of Integrals 1

 2. Linear, First-Order Differential Equations 3

 3. Linear Systems 5

 4. Linearization of Nonlinear Problems 7

 5. Reduction of Order 13

 6. Linear, Second-Order Differential Equations 17

 7. Euler’s Equation and Equations with Constant  
Coefficients 21

 7.1 Linear Equations with Constant Coefficients 21
 7.2 Equidimensional Equations 23

 8. Series Solutions and Singular Points 25

 9. Legendre’s Equation and Special Functions 31

 10. Laplace Transformation 37

 11. The Sturm–Liouville System 47

 12. Numerical Methods for Ordinary Differential Equations 51

 13. Vector Calculus 57

 14. Classification and Examples of Partial Differential  
Equations 69

 14.1 Elliptic Equations 71
 14.2 Parabolic Equations 73
 14.3 Hyperbolic Equations 73



vi Contents

 15. Steady Heat Conduction in a Rectangle 77

 16. Coordinate Transformations 89

 17. Disk Electrode in an Insulating Plane 95

 18. Suspension of Charged Drops 103

 19. Transient Temperature Distribution in a Slab 107
 19.1 Solution by Separation of Variables.  

Series Solutions and Superposition 108
 19.2 Similarity Solution for Short Times or  

Thick Slabs 109
 19.3 Solution by the Method of Laplace Transforms 111

 20. Inversion of Laplace Transforms by the Method  
of Residues 115

 21. Similarity Transformations 119

 22. Superposition Integrals and Integral Equations 125
 22.1 Duhamel’s Theorem 127
 22.2 Integral Equations 128
 22.3 Catalytic Reaction at a Surface 130
 22.4 Superposition Integral from Laplace’s Equation 131
 22.5 Wealth of Superposition Integrals 133

 23. Migration in Rapid Double-Layer Charging 141

 24. Fourier Transforms 147
 24.1 Finite Fourier Transform 147
 24.2 Extension to the Fourier Transform 149
 24.3 More General Fourier Transforms 151
 24.4 Diffusion from a Finite Region 152
 24.5 The Convolution Integral 154
 24.6 Finishing the Diffusion Problem 155
 24.7 Formal Connection with Laplace Transforms 157

 25. Conformal Mapping 163
 25.1 A Coordinate Transformation 163
 25.2 Analytic Functions 167
 25.3 Conformal Mapping 169



viiContents

 25.4 Preserving Laplace’s Equation 169
 25.5 The Schwarz–Christoffel Transformation 172
 25.6 Translating the Flux Densities 176
 25.7 Transformations for a Photoelectrochemical Cell 177

 26. Calculus of Variations 181
 26.1 The Euler–Lagrange Formula 182
 26.2 Application to the Shortest Distance 183
 26.3 Optimization with a Constraint 184
 26.4 Optimization with End Points Not Fixed 185
 26.5 Other Examples 188

Further Readings 199

Index: Mathematics 201
Index: Physics 205



http://taylorandfrancis.com


This book covers vector calculus and ordinary and partial differential  
equations, both with Laplace transforms. However, the treatment 
of ordinary differential equations is somewhat abstract because 
many ordinary differential equations of interest arise in the course 
of solving partial differential equations. Occasionally, a problem 
is reduced to an integral equation or the utility of numerical or 
perturbation methods is indicated. Singular perturbations have been 
detailed further in Volume 3, The Newman Lectures on Transport 
Phenomena, of this book series.
 The present book emphasizes that readers should be able to 
analyze the problems they encounter in chemical engineering 
courses. It exposes them to methods of mathematical thinking 
and presents selected examples that illustrate the techniques that 
are useful in a typical evening by the fire with a pen and a pad of 
paper. The book does not focus on the rigorous proof of theorems 
such as existence and uniqueness of solutions. However, it does give 
importance to formal manipulations because trivial errors consume 
a lot of time, which can otherwise be devoted to useful activities. 
It suggests the readers to follow these three important steps for 
problem solving:
 1. Formulate the problem in mathematical terms. This may be 

done with varying degrees of completeness or detail, but one 
should always make sure that the important features of the 
physical situation are adequately described. For problems of 
common types, this part may be easy, but some problems are 
new and require careful consideration.

 2. Work through to obtain a solution using the mathematical 
tools at your disposal. You may need to introduce additional 
approximations or assumptions in order to get an answer.

 3. Contemplate the physical meaning of the results. You should be 
able to explain qualitatively why the results behave as they do. 
Be on the lookout for physical absurdities or impossibilities. 
These may result from an incorrect formulation of the problem 
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x Introduction and Philosophical Remarks

with neglect of important factors or from approximations 
or even errors introduced during the solution. It should 
be possible to check, at least a posteriori, the validity of an 
approximation. On the other hand, one may want to live 
with the consequences of an approximation, recognizing the 
limitations of the solution in certain regions.



In the solution to differential equations, either in abstract terms 
or in specific instances, one frequently arrives at an integral of the 
general form
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This is so because the differential equation is considered solved if 
the expression for the unknown can be reduced to such an integral, 
even if the integral cannot be evaluated in the closed form.
 In order to verify such a solution or to derive its properties, it 
may be necessary to differentiate it. Hence, you should verify that its 
derivative is
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This is called the Leibniz rule.

Problems

 1.1 Verify Eq. 1.2.

 1.2 Differentiate
2

/2y Dt

e dx x
•

-Ú  with respect to t.
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2 Differentiation of Integrals

 1.3 Differentiate the integral of Problem 1.2 with respect to y.
 1.4 Can the integral in Eq. 1.2 be evaluated directly, since it is an 

integral of a derivative?



The general form of a linear, first-order differential equation is

 dy
dx

+ a(x)y = f(x). (2.1)

This can be solved by means of an integrating factor F,
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where the lower limit L1 can be selected to make F as simple as 
possible. For example, if a = x, the selection L1= 0 gives

2 /2xF e= . If  
a = 1/x, the selection L1 = 1 gives F = x.
 Multiplication of Eq. 2.1 by F yields

 dy dFy
F Fay Ff

dx dx
+ = = . (2.3)

The form 2 of the integrating factor F is easy to remember since it 
converts the left side of Eq. 2.3 to a perfect differential. To verify this, 
one needs to make use of Eq. 1.2 for the differentiation of an integral.
 Integration of Eq. 2.3 gives

 
2

x

L
Fy Ffdx A= +Ú , (2.4)

where A is a constant of integration and where again L2 can be 
selected so as to yield the simplest expression. Thus, the general 
solution for y is
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4 Linear, First-Order Differential Equations

 1 1 1
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This general solution contains one arbitrary constant A, as is 
appropriate for a first-order equation. Here one recognizes the first 
term in Eq. 2.5 as a particular solution to Eq. 2.1 and the second term 
as the general solution to the corresponding homogeneous equation, 
as discussed in the next section on linear systems.
 As an example, the general solution to the equation

 dp
dx

+ 2xp = 1 (2.6)

is
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x
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 One should notice that here we have not been careful to distin-
guish the dummy variable of integration x from the independent  
variable x. If both appeared in the integrand, one would have to 
distinguish the two. For example, Eq. 2.7 should, more properly, be 
written as

 
2 2 2 2 2 2
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x x
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Problems

 2.1 Show that Eq. 2.5 is a solution to Eq. 2.1.
 2.2 Write the general solution to Eq. 2.6 with L1 = 1 and L2 = 2 and 

show that the result is equivalent to Eq. 2.7.



A linear problem is to determine y from the equation

 L {y} = F, (3.1)

where F is given and L  is a linear operator. A linear operator has  
the following properties:

 1. L {ay} = a L {y}, where a is a scalar constant. (From this, it 
follows that L {0} = 0.)

 2. L {y + z} = L {y} + L {z}.

For example, differentiation is a linear operation.
 Because linear problems are more tractable than nonlinear 
problems, considerable attention is devoted in applied mathematics 
to their solution. This relative simplicity is related to the property of 
superposition of solutions. A linear problem is homogeneous if F = 0:

 L  {y} = 0. (3.2)

This is also said to be the homogeneous equation corresponding to 
Eq. 3.1. It follows from the properties of a linear operator that if y 
and z are each a solution to a linear, homogeneous problem, then 
Ay + Bz is also a solution, where A and B are arbitrary constants. For 
example, y = x and y = 1 are both solutions to the equation
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6 Linear Systems

Hence, the general solution to this equation is

 y = Ax + B. (3.4)

We know this to be the general solutions because two independent 
constants are appropriate to a second-order equation. The principle 
of superposition can then be applied to the linear problem 1 because 
the general solution to that problem can be expressed as

 y = yp + yh, (3.5)

where yp is any particular solution to Eq. 3.1 and yh is the general 
solution to the corresponding homogeneous Eq. 3.2. Thus, the 
original problem can be decomposed into two simpler problems. 
This explains the terminology used to describe the solution given by 
Eq. 2.5. The concept of superposition of solutions to linear problems 
will be used repeatedly in this book.

Problems

 3.1 Is L  a linear operator if it is defined as
 a. L  {y} = y2 ?
 b. L  {y} = y + 2 ?
 c. L  {y} = dy/dx ?
 d. L  {y} = a1(x)y ?
 e. L  {y} = (d/dx)[a1(x)y] ?
 3.2 If L  is a linear operator, which of the following problems are 

linear problems?
 a. L  {y} = 3y
 b. L  {y} = 2x + b
 c. L  {y} = ey



The relative ease of treating linear problems frequently leads one 
to introduce approximations that produce a linear problem. There 
is something of an art in the formulation of mathematical models 
since the model is useless if it is intractable and equally useless if 
it fails to describe the salient features of the physical system. One 
recommended procedure would be to formulate a detailed and 
relatively precise model into which one can subsequently introduce 
approximations of a mathematical nature. It is usually possible to 
use the approximate solution thereby obtained to assess the validity 
of the approximations that have been made. Thus, the contemplation 
of an approximate solution is an important part of analysis.
	 If	an	approximate	solution	is	slightly	in	error	or	is	significantly	in	
error, but only in a restricted domain, it may be possible to make a 
correction. This leads to the very important perturbation methods, 
which give a sound mathematical basis to many approximate 
solutions. One can state, as a general principle, that if the nature of 
the approximations is well understood, it should always be possible 
to use the approximate solution as a basis for a perturbation 
expansion.
 While perturbation methods are strictly outside the scope of this 
book, we shall, from time to time, draw attention to cases where an 
approximate solution might be examined in detail and a perturbation 
expansion would be appropriate.
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8 Linearization of Nonlinear Problems

	 Linearization	 of	 nonlinear	 problems	 finds	 widespread	 use.	 In	
the	 examination	 of	 the	 stability	 of	 Poiseuille	 flow	 in	 a	 tube,	 it	 is	
only	necessary	 to	examine	whether	a	 small,	 arbitrary	disturbance	
superposed	 on	 the	 basic,	 steady	 velocity	 profile	 will	 grow	 or	
decay	in	time	or	distance	down	the	tube.	In	process	dynamics	and	
control,	 the	 response	of	a	 system	at	a	given	steady	state	 to	minor	
fluctuations	in	input	variables	or	external	conditions	can	be	analyzed	
by	 linearization.	 In	 electronic	 amplification,	 vacuum	 tubes	 and	
transistors	can	be	treated	as	linear	elements,	and	the	useful	range	of	
the	equipment	is	thus	defined.
	 Linearization	 is	 also	 used	widely	 in	 the	 numerical	 solution	 to	
nonlinear	 problems	where,	 by	 iteration	 or	 successive	 approxima-
tions,	it	is	frequently	possible	to	obtain	the	desired	solution	to	the	
original	problem.	A	simple	example	is	the	Newton–Raphson	method	
for	 determining	 the	 root	 of	 a	 function	y(x)	 =	 0.	 This	 is	 illustrated	
graphically	in	Fig.	4.1.	For	an	initial	value	x0,	one	calculates	y0	and	
the	derivative	dy/dx.	By	linearization,	one	next	calculates	a	second	
approximation:

 0 1 0( ) 0dyy y x x
dx

= + - = .	 (4.1)

 x1 = x0 –	y0/(dy/dx).	 (4.2)

	 When	 this	 method	 works,	 it	 converges	 very	 rapidly.	 Many	
successive	 approximation	 methods	 are	 generalizations	 of	 this	
concept	(see,	for	example,	Chapter	12).
	 Let	us	 illustrate	how	a	particular	problem	might	be	 linearized	
to	 yield	 useful	 results.	 An	 experimental	 flow	 loop	 is	 sketched	 in	 
Fig.	4.2.	The	hydraulic	characteristics	of	the	experimental	apparatus	
are	approximated	by	the	resistance	of	an	orifice.	The	problem	is	that	
the	pump	introduces	pulsations	in	the	flow	rate.	A	closed	air	cavity	
has	been	installed	between	the	pump	and	the	experimental	appara-
tus	in	order	to	damp	these	pulsations.	On	an	intuitive	basis,	we	might	
anticipate	 that	 low-frequency	 pulsations	 would	 be	 little	 damped,	
while	 high-frequency	 pulsations	 might	 be	 effectively	 eliminated.	
How	should	the	air	cavity	be	designed	without	the	solution	to	a	com-
plicated	nonlinear	problem?	We	shall	neglect	 inertial	 effects	here,	
although	 they	 can	 alter	 significantly	 the	 damping	 characteristics.	 
We	shall	also	neglect	the	hydrostatic	head	in	the	air	cavity	and	take	
pc = p1	(see	Fig.	4.2).
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Figure 4.1 Use of the Newton–Raphson method to find x such that y(x) = 0.
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Figure 4.2  The use of an air cavity to damp pulsations in a flow loop.

	 Let	the	various	flow	quantities	be	represented	as	sums	of	their	
average	values	and	oscillating	parts,	presumed	to	be	small:

 

u u u
u u u

= + ¸
Ô= + Ô
˝= + Ô
Ô= + ˛

1 1

2 2

c

c

.
p p p

V V V

′

′

′

′

 (4.3)
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	 The	resistance	of	the	orifice	is	described	by	the	equation

 r
u u

Ê ˆ
- = -Á ˜

Ë ¯

2
T

c O 1 12 2
O

1 | |,
2

A
p p

C A
 (4.4)

where AO	is	the	area	of	the	orifice	opening,	AT is the cross-sectional 
area of the tubing, and C	is	the	orifice	coefficient.	The	pressure	in	the	
air cavity is described by an equation for adiabatic expansion

 c cp V g  = constant, (4.5)

where g	 is	the	polytropic	coefficient	of	the	gas.	The	material	balance	
on the liquid is

 u u= -c
T 1 2( )

dV
A

dt
. (4.6)

With	Eq.	4.3,	Eq.	4.4	for	the	orifice	becomes
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 The square of the small term u1¢ is to be neglected in the 
linearization. Then the steady components of Eq. 4.7 can be equated
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and the nonsteady components can be equated
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uu
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 Equation 4.5 can be linearized by differentiation

 1
c c c 0dp dV

V p V
dt dt

g gg -+ =
′ ′ . (4.10)

When the squares of the small, oscillating terms are neglected, this 
becomes

 dV V dp
dt p dtg

= -
′ ′ . (4.11)

Equation 4.6 is already linear and can be written as

 u u= -T 1 2( )dV
A

dt
′

′ ′ . (4.12)
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 Combination of Eqs. 4.9, 4.11, and 4.12 gives
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where
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 Suppose now that the pump output can be represented as

 u ¢2  = A sin wt. (4.16)

After transients have decayed, the oscillating velocity through the 
orifice will be

 u ¢1  = B sin (wt+f). (4.17)

The ratio of the amplitude of the oscillation of the velocity in the 
orifice to that in the velocity of the pump output will be

 
u
u w t

¢
= =

¢ +
1

2 22

| | 1
| | 1

B
A

. (4.18)

We see from these results that high-frequency oscillations will be 
more strongly damped than low-frequency oscillations. Further-
more, better damping occurs for a large volume of the air cavity 
and a high resistance of the orifice and will also depend on the flow  
velocity.
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