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This book covers vector calculus and ordinary and partial differential  
equations, both with Laplace transforms. However, the treatment 
of ordinary differential equations is somewhat abstract because 
many ordinary differential equations of interest arise in the course 
of solving partial differential equations. Occasionally, a problem 
is reduced to an integral equation or the utility of numerical or 
perturbation methods is indicated. Singular perturbations have been 
detailed further in Volume 3, The Newman Lectures on Transport 
Phenomena, of this book series.
	 The present book emphasizes that readers should be able to 
analyze the problems they encounter in chemical engineering 
courses. It exposes them to methods of mathematical thinking 
and presents selected examples that illustrate the techniques that 
are useful in a typical evening by the fire with a pen and a pad of 
paper. The book does not focus on the rigorous proof of theorems 
such as existence and uniqueness of solutions. However, it does give 
importance to formal manipulations because trivial errors consume 
a lot of time, which can otherwise be devoted to useful activities. 
It suggests the readers to follow these three important steps for 
problem solving:
	 1.	 Formulate the problem in mathematical terms. This may be 

done with varying degrees of completeness or detail, but one 
should always make sure that the important features of the 
physical situation are adequately described. For problems of 
common types, this part may be easy, but some problems are 
new and require careful consideration.

	 2.	 Work through to obtain a solution using the mathematical 
tools at your disposal. You may need to introduce additional 
approximations or assumptions in order to get an answer.

	 3.	 Contemplate the physical meaning of the results. You should be 
able to explain qualitatively why the results behave as they do. 
Be on the lookout for physical absurdities or impossibilities. 
These may result from an incorrect formulation of the problem 
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x Introduction and Philosophical Remarks

with neglect of important factors or from approximations 
or even errors introduced during the solution. It should 
be possible to check, at least a posteriori, the validity of an 
approximation. On the other hand, one may want to live 
with the consequences of an approximation, recognizing the 
limitations of the solution in certain regions.



In the solution to differential equations, either in abstract terms 
or in specific instances, one frequently arrives at an integral of the 
general form
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This is so because the differential equation is considered solved if 
the expression for the unknown can be reduced to such an integral, 
even if the integral cannot be evaluated in the closed form.
	 In order to verify such a solution or to derive its properties, it 
may be necessary to differentiate it. Hence, you should verify that its 
derivative is
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This is called the Leibniz rule.

Problems

	 1.1	 Verify Eq. 1.2.

	 1.2	 Differentiate
2

/2y Dt

e dx x
•

-Ú  with respect to t.
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2 Differentiation of Integrals

	 1.3	 Differentiate the integral of Problem 1.2 with respect to y.
	 1.4	 Can the integral in Eq. 1.2 be evaluated directly, since it is an 

integral of a derivative?



The general form of a linear, first-order differential equation is

	 dy
dx

+ a(x)y = f(x).	 (2.1)

This can be solved by means of an integrating factor F,

	
1

exp
x

L
F a dx

Ï ¸= Ì ˝
Ó ˛Ú ,	 (2.2)

where the lower limit L1 can be selected to make F as simple as 
possible. For example, if a = x, the selection L1= 0 gives

2 /2xF e= . If  
a = 1/x, the selection L1 = 1 gives F = x.
	 Multiplication of Eq. 2.1 by F yields

	 dy dFy
F Fay Ff

dx dx
+ = = .	 (2.3)

The form 2 of the integrating factor F is easy to remember since it 
converts the left side of Eq. 2.3 to a perfect differential. To verify this, 
one needs to make use of Eq. 1.2 for the differentiation of an integral.
	 Integration of Eq. 2.3 gives

	
2

x

L
Fy Ffdx A= +Ú ,	 (2.4)

where A is a constant of integration and where again L2 can be 
selected so as to yield the simplest expression. Thus, the general 
solution for y is
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4 Linear, First-Order Differential Equations

	 1 1 1
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This general solution contains one arbitrary constant A, as is 
appropriate for a first-order equation. Here one recognizes the first 
term in Eq. 2.5 as a particular solution to Eq. 2.1 and the second term 
as the general solution to the corresponding homogeneous equation, 
as discussed in the next section on linear systems.
	 As an example, the general solution to the equation

	 dp
dx

+ 2xp = 1	 (2.6)

is

	
2 2 2

0
.

x
x x xp e e dx Ae- -= +Ú 	 (2.7)

	 One should notice that here we have not been careful to distin-
guish the dummy variable of integration x from the independent  
variable x. If both appeared in the integrand, one would have to 
distinguish the two. For example, Eq. 2.7 should, more properly, be 
written as

	
2 2 2 2 2 2

0 0
.

x x
x x x xp e e d Ae e d Aex xx x- - - -= + = +Ú Ú 	 (2.8)

Problems

	 2.1	 Show that Eq. 2.5 is a solution to Eq. 2.1.
	 2.2	 Write the general solution to Eq. 2.6 with L1 = 1 and L2 = 2 and 

show that the result is equivalent to Eq. 2.7.



A linear problem is to determine y from the equation

	 L {y} = F,	 (3.1)

where F is given and L  is a linear operator. A linear operator has  
the following properties:

	 1.	 L {ay} = a L {y}, where a is a scalar constant. (From this, it 
follows that L {0} = 0.)

	 2.	 L {y + z} = L {y} + L {z}.

For example, differentiation is a linear operation.
	 Because linear problems are more tractable than nonlinear 
problems, considerable attention is devoted in applied mathematics 
to their solution. This relative simplicity is related to the property of 
superposition of solutions. A linear problem is homogeneous if F = 0:

	 L  {y} = 0.	 (3.2)

This is also said to be the homogeneous equation corresponding to 
Eq. 3.1. It follows from the properties of a linear operator that if y 
and z are each a solution to a linear, homogeneous problem, then 
Ay + Bz is also a solution, where A and B are arbitrary constants. For 
example, y = x and y = 1 are both solutions to the equation

	
2

2 0d y

dx
= .	 (3.3)
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6 Linear Systems

Hence, the general solution to this equation is

	 y = Ax + B.	 (3.4)

We know this to be the general solutions because two independent 
constants are appropriate to a second-order equation. The principle 
of superposition can then be applied to the linear problem 1 because 
the general solution to that problem can be expressed as

	 y = yp + yh,	 (3.5)

where yp is any particular solution to Eq. 3.1 and yh is the general 
solution to the corresponding homogeneous Eq. 3.2. Thus, the 
original problem can be decomposed into two simpler problems. 
This explains the terminology used to describe the solution given by 
Eq. 2.5. The concept of superposition of solutions to linear problems 
will be used repeatedly in this book.

Problems

	 3.1	 Is L  a linear operator if it is defined as
	 a.	 L  {y} = y2 ?
	 b.	 L  {y} = y + 2 ?
	 c.	 L  {y} = dy/dx ?
	 d.	 L  {y} = a1(x)y ?
	 e.	 L  {y} = (d/dx)[a1(x)y] ?
	 3.2	 If L  is a linear operator, which of the following problems are 

linear problems?
	 a.	 L  {y} = 3y
	 b.	 L  {y} = 2x + b
	 c.	 L  {y} = ey



The relative ease of treating linear problems frequently leads one 
to introduce approximations that produce a linear problem. There 
is something of an art in the formulation of mathematical models 
since the model is useless if it is intractable and equally useless if 
it fails to describe the salient features of the physical system. One 
recommended procedure would be to formulate a detailed and 
relatively precise model into which one can subsequently introduce 
approximations of a mathematical nature. It is usually possible to 
use the approximate solution thereby obtained to assess the validity 
of the approximations that have been made. Thus, the contemplation 
of an approximate solution is an important part of analysis.
	 If an approximate solution is slightly in error or is significantly in 
error, but only in a restricted domain, it may be possible to make a 
correction. This leads to the very important perturbation methods, 
which give a sound mathematical basis to many approximate 
solutions. One can state, as a general principle, that if the nature of 
the approximations is well understood, it should always be possible 
to use the approximate solution as a basis for a perturbation 
expansion.
	 While perturbation methods are strictly outside the scope of this 
book, we shall, from time to time, draw attention to cases where an 
approximate solution might be examined in detail and a perturbation 
expansion would be appropriate.
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8 Linearization of Nonlinear Problems

	 Linearization of nonlinear problems finds widespread use. In 
the examination of the stability of Poiseuille flow in a tube, it is 
only necessary to examine whether a small, arbitrary disturbance 
superposed on the basic, steady velocity profile will grow or 
decay in time or distance down the tube. In process dynamics and 
control, the response of a system at a given steady state to minor 
fluctuations in input variables or external conditions can be analyzed 
by linearization. In electronic amplification, vacuum tubes and 
transistors can be treated as linear elements, and the useful range of 
the equipment is thus defined.
	 Linearization is also used widely in the numerical solution to 
nonlinear problems where, by iteration or successive approxima-
tions, it is frequently possible to obtain the desired solution to the 
original problem. A simple example is the Newton–Raphson method 
for determining the root of a function y(x) = 0. This is illustrated 
graphically in Fig. 4.1. For an initial value x0, one calculates y0 and 
the derivative dy/dx. By linearization, one next calculates a second 
approximation:

	 0 1 0( ) 0dyy y x x
dx

= + - = .	 (4.1)

	 x1 = x0 – y0/(dy/dx).	 (4.2)

	 When this method works, it converges very rapidly. Many 
successive approximation methods are generalizations of this 
concept (see, for example, Chapter 12).
	 Let us illustrate how a particular problem might be linearized 
to yield useful results. An experimental flow loop is sketched in  
Fig. 4.2. The hydraulic characteristics of the experimental apparatus 
are approximated by the resistance of an orifice. The problem is that 
the pump introduces pulsations in the flow rate. A closed air cavity 
has been installed between the pump and the experimental appara-
tus in order to damp these pulsations. On an intuitive basis, we might 
anticipate that low-frequency pulsations would be little damped, 
while high-frequency pulsations might be effectively eliminated. 
How should the air cavity be designed without the solution to a com-
plicated nonlinear problem? We shall neglect inertial effects here, 
although they can alter significantly the damping characteristics.  
We shall also neglect the hydrostatic head in the air cavity and take 
pc = p1 (see Fig. 4.2).
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Figure 4.1  Use of the Newton–Raphson method to find x such that y(x) = 0.
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Figure 4.2  The use of an air cavity to damp pulsations in a flow loop.

	 Let the various flow quantities be represented as sums of their 
average values and oscillating parts, presumed to be small:

	

u u u
u u u

= + ¸
Ô= + Ô
˝= + Ô
Ô= + ˛

1 1

2 2

c

c

.
p p p

V V V

′

′

′

′

	 (4.3)
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	 The resistance of the orifice is described by the equation

	 r
u u

Ê ˆ
- = -Á ˜

Ë ¯

2
T

c O 1 12 2
O

1 | |,
2

A
p p

C A
	 (4.4)

where AO is the area of the orifice opening, AT is the cross-sectional 
area of the tubing, and C is the orifice coefficient. The pressure in the 
air cavity is described by an equation for adiabatic expansion

	 c cp V g  = constant,	 (4.5)

where g  is the polytropic coefficient of the gas. The material balance 
on the liquid is

	 u u= -c
T 1 2( )

dV
A

dt
.	 (4.6)

With Eq. 4.3, Eq. 4.4 for the orifice becomes

	 ( )r
u uu u

Ê ˆ
- + = - +Á ˜

Ë ¯

2
2T

O 1 12 2
O

1 2
2

A
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′ ′ + ( ′ ) .	 (4.7)

	 The square of the small term u1¢ is to be neglected in the 
linearization. Then the steady components of Eq. 4.7 can be equated

	 r
u

Ê ˆ
- = -Á ˜

Ë ¯

2
2T

O 2 2
O

1
2

A
p p

C A
,	 (4.8)

and the nonsteady components can be equated

	 r
uu

Ê ˆ
= -Á ˜
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2
T

12 2
O

1 2
2

A
p

C A
′ ′ .	 (4.9)

	 Equation 4.5 can be linearized by differentiation

	 1
c c c 0dp dV

V p V
dt dt

g gg -+ =
′ ′ .	 (4.10)

When the squares of the small, oscillating terms are neglected, this 
becomes

	 dV V dp
dt p dtg

= -
′ ′ .	 (4.11)

Equation 4.6 is already linear and can be written as

	 u u= -T 1 2( )dV
A

dt
′

′ ′ .	 (4.12)
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	 Combination of Eqs. 4.9, 4.11, and 4.12 gives

	
2
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T 1 2 2 2
O

( ) 1A ddV V dp VA
dt p dt p dtC A

uru u u
g g
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or

	
u

t u u
¢
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1 2

d
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,	 (4.14)

where

	
2
T

2 2
T O

1AV
pA C A

rut
g

Ê ˆ
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Ë ¯
.	 (4.15)

	 Suppose now that the pump output can be represented as

	 u ¢2  = A sin wt.	 (4.16)

After transients have decayed, the oscillating velocity through the 
orifice will be

	 u ¢1  = B sin (wt+f).	 (4.17)

The ratio of the amplitude of the oscillation of the velocity in the 
orifice to that in the velocity of the pump output will be

	
u
u w t

¢
= =

¢ +
1

2 22

| | 1
| | 1

B
A

.	 (4.18)

We see from these results that high-frequency oscillations will be 
more strongly damped than low-frequency oscillations. Further-
more, better damping occurs for a large volume of the air cavity 
and a high resistance of the orifice and will also depend on the flow  
velocity.
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