

# Vertioi 111 Design Examples 

$a[3] b[3]$
$a[2] b[2]$

all] b[1]
$a[0] b[0]$

## Joseph Gavanagh


a.


# Venilog inl Design Examples 



## Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

# Verilog FIL Design Examples Joseph Cavanagh 

CRC Press

Taylor \& Francis Group
Boca Raton London New York

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2018 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170918
International Standard Book Number-13: 978-1-138-09995-1 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

## Library of Congress Cataloging-in-Publication Data

Names: Cavanagh, Joseph, author.
Title: Verilog HDL design examples / Joseph Cavanagh.
Description: Boca Raton, FL : CRC Press, 2017. | Includes index.
Identifiers: LCCN $2017022734 \mid$ ISBN 9781138099951 (hardback : acid-free paper)
| ISBN 9781315103846 (ebook)
Subjects: LCSH: Digital electronics--Computer-aided design. | Logic design. |
Verilog (Computer hardware description language)
Classification: LCC TK7868.D5 C3948 2017 | DDC 621.381--dc23
LC record available at https://lccn.loc.gov/2017022734

Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

## To David Dutton

CEO, Silvaco, Inc.
for generously providing the SILOS Simulation Environment software for all of my books that use Verilog HDL and for his continued support


## Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

## CONTENTS

Preface ..... xi
Chapter 1 Introduction to Logic Design Using Verilog HDL ..... 1
1.1 Logic Elements ..... 2
1.1.1 Comments ..... 2
1.1.2 Logic Gates ..... 2
1.1.3 Logic Macro Functions ..... 5
1.1.4 Procedural Flow Control ..... 14
1.1.5 Net Data Types ..... 16
1.1.6 Register Data Types ..... 16
1.2 Expressions ..... 17
1.2.1 Operands ..... 18
1.2.2 Operators ..... 19
1.3 Modules and Ports ..... 28
1.3.1 Designing a Test Bench for Simulation ..... 29
1.4 Built-In Primitives ..... 31
1.4.1 Built-In Primitives Design Examples ..... 35
1.5 User-Defined Primitives ..... 51
1.5.1 Defining a User-Defined Primitive ..... 52
1.5.2 Combinational User-Defined Primitives ..... 52
1.5.3 Sequential User-Defined Primitives ..... 63
1.6 Dataflow Modeling ..... 69
1.6.1 Continuous Assignment ..... 69
1.6.2 Reduction Operators ..... 71
1.6.3 Conditional Operators ..... 74
1.6.4 Relational Operators ..... 77
1.6.5 Logical Operators ..... 79
1.6.6 Bitwise Operators ..... 81
1.6.7 Shift Operators ..... 84
1.7 Behavioral Modeling ..... 87
1.7.1 Initial Statement ..... 87
1.7.2 Always Statement ..... 88
1.7.3 Intrastatement Delay ..... 90
1.7.4 Interstatement Delay ..... 91
1.7.5 Blocking Assignments ..... 91
1.7.6 Nonblocking Assignments ..... 91
1.7.7 Conditional Statements ..... 92
1.7.8 Case Statement ..... 95
1.7.9 Loop Statements ..... 98
1.7.10 Logical, Algebraic, and Rotate Shift Operations ..... 104
1.8 Structural Modeling ..... 108
1.8.1 Module Instantiation ..... 109
1.8.2 Ports ..... 109
1.8.3 Design Examples ..... 111
1.9 Tasks and Functions ..... 129
1.9.1 Task Declaration ..... 129
1.9.2 Task Invocation ..... 130
1.9.3 Function Declaration ..... 134
1.9.4 Function Invocation ..... 135
1.10 Problems ..... 140
Chapter 2 Combinational Logic Design Using Verilog HDL ..... 145
2.1 Number Systems ..... 146
2.1.1 Binary Number System ..... 146
2.1.2 Octal Number System ..... 147
2.1.3 Decimal Number System ..... 147
2.1.4 Hexadecimal Number System ..... 148
2.2 Boolean Algebra ..... 148
2.2.1 Axioms ..... 149
2.2.2 Theorems ..... 150
2.2.3 Other Terms for Boolean Algebra ..... 152
2.3 Logic Equations ..... 154
2.4 Multiplexers ..... 165
2.5 Comparators ..... 176
2.6 Programmable Logic Devices ..... 185
2.6.1 Programmable Read-Only Memories ..... 185
2.6.2 Programmable Array Logic ..... 191
2.6.3 Programmable Logic Array ..... 202
2.7 Additional Design Examples ..... 214
2.8 Problems ..... 238
Chapter 3 Sequential Logic Design Using Verilog HDL ..... 245
3.1 Introduction ..... 245
3.1.1 Definition of a Sequential Machine ..... 245
3.2 Synchronous Sequential Machines ..... 247
3.2.1 Synthesis Procedure ..... 247
3.2.2 Equivalent States ..... 248
3.2.3 Moore Machines ..... 248
3.2.4 Mealy Machines ..... 273
3.2.5 Synchronous Registers ..... 299
3.2.6 Synchronous Counters ..... 311
3.3 Asynchronous Sequential Machines ..... 321
3.3.1 Synthesis Procedure ..... 323
3.3.2 Hazards ..... 324
3.3.3 Oscillations ..... 326
3.3.4 Races ..... 328
3.3.5 Design Examples of Asynchronous Sequential Machines ..... 330
3.4 Pulse-Mode Asynchronous Sequential Machines ..... 354
3.4.1 Synthesis Procedure ..... 356
3.4.2 $S R$ Latches with $D$ Flip-Flops as Storage Elements ..... 356
3.4.3 $T$ Flip-Flops as Storage Elements ..... 372
3.5 Problems ..... 395
Chapter 4 Computer Arithmetic Design Using Verilog HDL ..... 407
4.1 Introduction ..... 407
4.2 Fixed-Point Addition ..... 407
4.2.1 Full Adder ..... 408
4.2.2 Three-Bit Adder ..... 411
4.2.3 Four-Bit Ripple-Carry Adder ..... 415
4.2.4 Carry Lookahead Adder ..... 418
4.3 Fixed-Point Subtraction ..... 423
4.3.1 Four-Bit Ripple Subtractor ..... 425
4.3.2 Eight-Bit Subtractor ..... 428
4.3.3 Four-Bit Dataflow Adder/Subtractor ..... 430
4.3.4 Eight-Bit Behavioral Adder/Subtractor ..... 435
4.4 Fixed-Point Multiplication ..... 439
4.4.1 Behavioral Four-Bit Multiplier ..... 441
4.4.2 Three-Bit Array Multiplier ..... 444
4.4.3 Four-Bit Dataflow Multiplication Using the Multiply Operator ..... 448
4.5 Fixed-Point Division ..... 450
4.6 Arithmetic and Logic Unit ..... 455
4.7 Decimal Addition ..... 459
4.7.1 Decimal Addition with Sum Correction ..... 462
4.7.2 Decimal Addition Using Multiplexers for Sum Correction ..... 466
4.8 Decimal Subtraction ..... 472
4.8.1 Decimal Subtraction Using Full Adders and Built-In Primitives for Four Bits ..... 475
4.8.2 Decimal/Binary Subtraction Using Full Adders and Built-In Primitives for Eight Bits ..... 478
4.8.3 Eight-Bit Decimal Subtraction Unit with Built-In Primitives and Full Adders Designed Using Behavioral Modeling ..... 482
4.9 Decimal Multiplication ..... 491
4.10 Decimal Division ..... 495
4.11 Floating-Point Addition ..... 503
4.12 Floating-Point Subtraction ..... 512
4.12.1 True Addition and True Subtraction ..... 516
4.13 Floating-Point Multiplication ..... 527
4.14 Floating-Point Division ..... 535
4.15 Problems ..... 542
Appendix A Event Queue ..... 551
Appendix B Verilog Project Procedure ..... 567
Appendix C Answers to Select Problems ..... 569
Index ..... 643

## PREFACE

The Verilog language provides a means to model a digital system at many levels of abstraction from a logic gate, to a complex digital system, to a mainframe computer. The purpose of this book is to present the Verilog language together with a wide variety of examples so that the reader can gain a firm foundation in the design of digital systems using Verilog HDL. The different modeling constructs supported by Verilog are described in detail.

Numerous examples are designed in each chapter. The examples include logical operations, counters of different moduli, half adders, full adders, a carry lookahead adder, array multipliers, the Booth multiply algorithm, different types of Moore and Mealy machines, including sequence detectors, arithmetic and logic units (ALUs). Also included are synchronous sequential machines and asynchronous sequential machines, including pulse-mode asynchronous sequential machines.

Emphasis is placed on the detailed design of various Verilog projects. The projects include the design module, the test bench module, and the outputs obtained from the simulator that illustrate the complete functional operation of the design. Where applicable, a detailed review of the theory of the topic is presented together with the logic design principles. This includes state diagrams, Karnaugh maps, equations, and the logic diagram.

The book is intended to be tutorial, and as such, is comprehensive and self-contained. All designs are carried through to completion - nothing is left unfinished or partially designed. Each chapter includes numerous problems of varying complexity to be designed by the reader.

Chapter 1 presents an overview of the Verilog HDL language and discusses the different design methodologies used in designing a project. The chapter is intended to introduce the reader to the basic concepts of Verilog modeling techniques, including dataflow modeling, behavioral modeling, and structural modeling. Examples are presented to illustrate the different modeling techniques. There are also sections that incorporate more than one modeling construct in a mixed-design model. The concept of ports and modules is introduced in conjunction with the use of test benches for module design verification.

The chapter introduces gate-level modeling using built-in primitive gates. Verilog has a profuse set of built-in primitive gates that are used to model nets, including and, nand, or, nor, xor, xnor, and not, among others. This chapter presents a design methodology that is characterized by a low level of abstraction, in which the logic hardware is described in terms of gates. This is similar to designing logic by drawing logic gate symbols.

The chapter also describes different techniques used to design logic circuits using dataflow modeling. These techniques include the continuous assignment statement, reduction operators, the conditional operator, relational operators, logical operators, bitwise operators, and shift operators.

This chapter also presents behavioral modeling, which describes the behavior of a digital system and is not concerned with the direct implementation of logic gates, but more on the architecture of the system. This is an algorithmic approach to hardware implementation and represents a higher level of abstraction than previous modeling methods.

Also included in this chapter is structural modeling, which consists of instantiating one or more of the following design objects into the module:

- Built-in primitives
- User-defined primitives (UDPs)
- Design modules

Instantiation means to use one or more lower-level modules - including logic primitives - that are interconnected in the construction of a higher-level structural module.

Chapter 2 presents combinational logic design using Verilog HDL. Verilog is used to design multiplexers, comparators, programmable logic devices, and a variety of logic equations in this chapter. A combinational logic circuit is one in which the outputs are a function of the present inputs only. This chapter also includes number systems and Boolean algebra. The number systems are binary, octal, decimal, and hexadecimal. Boolean algebra is a systematic treatment of the logic operations AND, OR, NOT, exclusive-OR, and exclusive-NOR. The axioms and theorems of Boolean algebra are also presented. The programmable logic devices include programmable read-only memories, programmable array logic devices, and programmable logic array devices.

Chapter 3 presents the design of sequential logic using Verilog HDL. The examples include both Moore and Mealy sequential machines. Moore machines are synchronous sequential machines in which the output function produces an output vector which is determined by the present state only, and is not a function of the present inputs. This is in contrast to Mealy synchronous sequential machines in which the output function produces an output vector which is determined by both the present input vector and the present state of the machine.

This chapter describes three types of sequential machines: synchronous sequential machines which use a system clock and generally require a state diagram or a state table for its precise description; asynchronous sequential machines in which there is no system clock - state changes occur on the application of input signals only; and pulse-mode asynchronous sequential machines in which state changes occur on the application of input pulses which trigger the storage elements, rather than on a system clock signal.

Chapter 4 presents arithmetic operations for the three primary number representations: fixed-point, binary-coded decimal (BCD), and floating-point. For fixedpoint, the radix point is placed to the immediate right of the number for integers or to
the immediate left of the number for fractions. For binary-coded decimal, each decimal digit can be encoded into a corresponding binary number; however, only ten decimal digits are valid. For floating-point, the numbers consist of the following three fields: a sign bit, an exponent $e$, and a fraction $f$, as shown below for radix $r$. Addition, subtraction, multiplication, and division will be applied to all three number representations.

$$
A=f \times r^{e}
$$

For fixed-point addition, the two operands are the augend and the addend. The addend is added to the augend to produce the sum. Addition of two binary operands treats both signed and unsigned operands the same - there is no distinction between the two types of numbers during the add operation. If the numbers are signed, then the sign bit can be extended to the left indefinitely without changing the value of the number.

For fixed-point subtraction, the two operands are the minuend and the subtrahend. The subtrahend is subtracted from the minuend to produce the difference. Subtraction can be performed in all three number representations: sign magnitude, diminished-radix complement, and radix complement; however, radix complement is the easiest and most widely used method for subtraction in any radix.

For fixed-point multiplication, the two operands are the multiplicand and the multiplier. The $n$-bit multiplicand is multiplied by the $n$-bit multiplier to generate the $2 n$-bit product. In all methods of multiplication the product is usually $2 n$ bits in length. The operands can be either unsigned or signed numbers in 2 s complement representation.

For fixed-point division, the two operands are the dividend and the divisor. The $2 n$-bit dividend is divided by the $n$-bit divisor to produce an $n$-bit quotient and an $n$ bit remainder, as shown below.

$$
2 n \text {-bit dividend }=(n \text {-bit divisor } \times n \text {-bit quotient })+n \text {-bit remainder }
$$

For binary-coded decimal addition, and other BCD calculations, the highest-valued decimal digit is 9 , which requires four bits in the binary representation (1001). Therefore, each operand is represented by a 4-bit BCD code. Since four binary bits have sixteen combinations $(0000-1111)$ and the range for a single decimal digit is 0 -9 , six of the sixteen combinations ( $1010-1111$ ) are invalid for BCD. These invalid BCD digits must be converted to valid digits by adding six to the digit. This is the concept for addition with sum correction. The adder must include correction logic for intermediate sums that are greater than or equal to 1010 in radix 2.

For binary-coded decimal subtraction, the BCD code is not self-complementing as is the radix 2 fixed-point number representation; that is, the $r-1$ complement cannot be acquired by inverting each bit of the 4 -bit BCD digit. Therefore, a 9 s complementer must be designed that provides the same function as the diminished-radix complement for the fixed-point number representation. Thus, subtraction in BCD is essentially the same as in fixed-point binary.

For binary-coded decimal multiplication, the algorithms for BCD multiplication are more complex than those for fixed-point multiplication. This is because decimal digits consist of four binary bits and have values in the range of 0 to 9 , whereas fixed-point digits have values of 0 or 1 . One method that is commonly used is to perform the multiplication in the fixed-point number representation; then convert the product to the BCD number representation. This is accomplished by utilizing a binary-to-decimal converter, which is used to convert a fixed-point multiplication product to the decimal number representation.

For binary-coded decimal division, the division process is first reviewed by using examples of the restoring division method. Then a mixed-design (behavioral/ dataflow) module is presented. The dividend is an 8-bit vector, $a[7: 0]$; the divisor is a 4-bit vector, $b[3: 0]$; and the result is an 8-bit quotient/remainder vector, $r$ slt [7:0].

For floating-point addition, the material presented is based on the Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic IEEE Std 754-1985 (Reaffirmed 1990). Floating-point numbers consist of the following three fields: a sign bit $s$, an exponent $e$, and a fraction $f$. Unbiased and biased exponents are explained. Numerical examples are given that clarify the technique for adding floating-point numbers. The floating-point addition algorithm is given in a step-by-step procedure. A floating-point adder is implemented using behavioral modeling.

For floating-point subtraction, several numerical examples are presented that graphically portray the steps required for true addition and true subtraction for float-ing-point operands. True addition produces a result that is the sum of the two operands disregarding the signs; true subtraction produces a result that is the difference of the two operands disregarding the signs. A behavioral module is presented that illustrates subtraction operations which yield results that are either true addition or true subtraction.

For floating-point multiplication, numerical examples are presented that illustrate the operation of floating-point multiplication. In floating-point multiplication, the fractions are multiplied and the exponents are added. The fractions are multiplied by any of the methods previously used in fixed-point multiplication. The operands are two normalized floating-point operands. Fraction multiplication and exponent addition are two independent operations and can be done in parallel. Floating-point multiplication is defined as follows:

$$
A \times B=\left(f_{\mathrm{A}} \times f_{\mathrm{B}}\right) \times r^{(e \mathrm{~A}+e \mathrm{~B})}
$$

For floating-point division, the operation is accomplished by dividing the fractions and subtracting the exponents. The fractions are divided by any of the methods presented in the section on fixed-point division and overflow is checked in the same manner. Fraction division and exponent subtraction are two independent operations and can be done in parallel. Floating-point division is defined as follows:

$$
A / B=\left(f_{\mathrm{A}} / f_{\mathrm{B}}\right) \times r^{(e \mathrm{~A}-e \mathrm{~B})}
$$

Appendix A presents a brief discussion on event handling using the event queue. Operations that occur in a Verilog module are typically handled by an event queue.

Appendix B presents a procedure to implement a Verilog project.
Appendix C contains the solutions to selected problems in each chapter.
The material presented in this book represents more than two decades of computer equipment design by the author. The book is not intended as a text on logic design, although this subject is reviewed where applicable. It is assumed that the reader has an adequate background in combinational and sequential logic design. The book presents the Verilog HDL with numerous design examples to help the reader thoroughly understand this popular HDL.

This book is designed for practicing electrical engineers, computer engineers, and computer scientists; for graduate students in electrical engineering, computer engineering, and computer science; and for senior-level undergraduate students.

A special thanks to David Dutton, CEO of Silvaco Incorporated, for allowing use of the SILOS Simulation Environment software for the examples in this book. SILOS is an intuitive, easy-to-use, yet powerful Verilog HDL simulator for logic verification.

I would like to express my appreciation and thanks to the following people who gave generously of their time and expertise to review the manuscript and submit comments: Professor Daniel W. Lewis, Department of Computer Engineering, Santa Clara University who supported me in all my endeavors; Geri Lamble; and Steve Midford. Thanks also to Nora Konopka and the staff at Taylor \& Francis for their support.


## Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

By the Same Author

SEQUENTIAL LOGIC and VERILOG HDL FUNDAMENTALS X86 ASSEMBLY LANGUAGE and C FUNDAMENTALS COMPUTER ARITHMETIC and Verilog HDL Fundamentals DIGITAL DESIGN and Verilog HDL Fundamentals

VERILOG HDL: Digital Design and Modeling
SEQUENTIAL LOGIC: Analysis and Synthesis

DIGITAL COMPUTER ARITHMETIC: Design and Implementation

THE COMPUTER CONSPIRACY
A novel


## Taylor \& Francis

Taylor \& Francis Group
http://taylorandfrancis.com

1.1 Language Elements<br>1.2 Expressions<br>1.3 Modules and Ports<br>1.4 Built-in Primitives<br>1.5 User-Defined Primitives<br>1.6 Dataflow Modeling<br>1.7 Behavioral Modeling<br>1.8 Structural Modeling<br>1.9 Tasks and Functions<br>1.10 Problems

## Introduction to Logic Design Using Verilog HDL

This chapter provides an introduction to the design methodologies and modeling constructs of the Verilog hardware description language (HDL). Modules, ports, and test benches will be presented. This chapter introduces Verilog in conjunction with combinational logic and sequential logic. The Verilog simulator used in this book is easy to learn and use, yet powerful enough for any application. It is a logic simulator called SILOS - developed by Silvaco Incorporated for use in the design and verification of digital systems. The SILOS simulation environment is a method to quickly prototype and debug any application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), or complex programmable logic device (CPLD) design.

Language elements will be described, which consist of comments, logic gates, logic macro functions, parameters, procedural control statements which modify the flow of control in a program, and data types. Also presented will be expressions consisting of operands and operators. Built-in primitives are discussed which are used to describe a net. In addition to built-in primitives, user-defined primitives (UDPs) are presented which are at a higher-level logic function than built-in primitives.

This chapter also presents dataflow modeling which is at a higher level of abstraction than built-in primitives or user-defined primitives. Dataflow modeling corresponds one-to-one with conventional logic design at the gate level. Also introduced is behavioral modeling which describes the behavior of the system and is not concerned with the direct implementation of the logic gates but more on the architecture of the machine. Structural modeling is presented which instantiates one or more lower-level modules into the design. The objects that are instantiated are called instances. A
module can be a logic gate, an adder, a multiplexer, a counter, or some other logical function. Structural modeling is described by the interconnection of these lower-level logic primitives of modules.

Tasks and functions are also included in this chapter. These constructs allow a behavioral module to be partitioned into smaller segments. Tasks and functions permit modules to execute common code segments that are written once then called when required, thus reducing the amount of code needed.

### 1.1 Logic Elements

Logic elements are the constituent parts of the Verilog language. They consist of comments, logic gates, parameters, procedural control statements which modify the flow of control in a behavior, and data types.

### 1.1.1 Comments

Comments can be inserted into a Verilog module to explain the function of a particular block of code or a line of code. There are two types of comments: single line and multiple lines. A single-line comment is indicated by a double forward slash (//) and may be placed on a separate line or at the end of a line of code, as shown below.

```
//This is a single-line comment on a dedicated line
assign z}\mp@subsup{z}{1}{}=\mp@subsup{x}{1}{}|\mp@subsup{x}{2}{}\mathrm{ //This is a comment on a line of code
```

A single-line comment usually explains the function of the following block of code. A comment on a line of code explains the function of that particular line of code. All characters that follow the forward slashes are ignored by the compiler.

A multiple-line comment begins with a forward slash followed by an asterisk (/*) and ends with an asterisk followed by a forward slash ( $* /$ ), as shown below. Multipleline comments cannot be nested. All characters within a multiple-line comment are ignored by the compiler.

```
/*This is a multiple-line comment.
    More comments go here.
    More comments. */
```


### 1.1.2 Logic Gates

Figure 1.1 shows the logic gate distinctive-shape symbols. The polarity symbol "O" indicates an active-low assertion on either an input or an output of a logic symbol.


Figure 1.1 Logic gate symbols for logic design: (a) AND gate, (b) OR gate, (c) NOT function (inverter), (d) NAND gate, (e) NAND gate for the OR function, (f) NOR gate, (g) NOR gate for the AND function.

The AND gate can also be used for the OR function, as shown below.

AND gate for the AND function


AND gate for the OR function


The OR gate can also be used for the AND function, as shown below.

OR gate for the OR function


OR gate for the AND function


An exclusive-OR gate is shown below. The output of an exclusive-OR gate is a logical 1 whenever the two inputs are different.

## Exclusive-OR gate



An exclusive-NOR gate is shown below. An exclusive-NOR gate is also called an equality function because the output is a logical 1 whenever the two inputs are equal.

## Exclusive-NOR gate



Truth tables for the logic elements are shown in Table 1.1, Table 1.2, Table 1.3, Table 1.4, Table 1.5, and Table 1.6.

Table 1.1 Truth Table for the AND Gate

| $x_{1}$ | $x_{2}$ | $z_{1}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Table 1.3 Truth Table for the OR Gate

| $x_{1}$ | $x_{2}$ | $z_{1}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

Table 1.2 Truth Table for the NAND Gate

| $x_{1}$ | $x_{2}$ | $z_{1}$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Table 1.4 Truth Table for the NOR Gate

| $x_{1}$ | $x_{2}$ | $z_{1}$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

Table 1.5 Truth Table for the Exclusive-OR Function

| $x_{1}$ | $x_{2}$ | $z_{1}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Table 1.6 Truth Table for the Exclusive-NOR Function

| $x_{1}$ | $x_{2}$ | $z_{1}$ |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Fan-In Logic gates for the AND and OR functions can be extended to accommodate more than two variables; that is, more than two inputs. The number of inputs available at a logic gate is called the fan-in.

Fan-Out The fan-out of a logic gate is the maximum number of inputs that the gate can drive and still maintain acceptable voltage and current levels. That is, the fan-out defines the maximum load that the gate can handle.

### 1.1.3 Logic Macro Functions

Logic macro functions are those circuits that consist of several logic primitives to form larger more complex functions. Combinational logic macros include circuits such as multiplexers, decoders, encoders, comparators, adders, subtractors, array multipliers, array dividers, and error detection and correction circuits. Sequential logic macros include circuits such as: $S R$ latches; $D$ and $J K$ flip-flops; counters of various moduli, including count-up and count-down counters; registers, including shift registers; and sequential multipliers and dividers. This section will present the functional operation of multiplexers, decoders, encoders, priority encoders, and comparators.

Multiplexers A multiplexer is a logic macro device that allows digital information from two or more data inputs to be directed to a single output. Data input selection is controlled by a set of select inputs that determine which data input is gated to the output. The select inputs are labeled $s_{0}, s_{1}, s_{2}, \cdots, s_{i}, \cdots, s_{n-1}$, where $s_{0}$ is the low-order select input with a binary weight of $2^{0}$ and $s_{n-1}$ is the high-order select input with a binary weight of $2^{n-1}$. The data inputs are labeled $d_{0}, d_{1}, d_{2}, \cdots, d_{j}, \cdots, d_{n-1}$. Thus, if a multiplexer has $n$ select inputs, then the number of data inputs will be $2^{n}$ and will be labeled $d_{0}$ through $d_{n-1}$. For example, if $n=2$, then the multiplexer has two select inputs $s_{0}$ and $s_{1}$ and four data inputs $d_{0}, d_{1}, d_{2}$, and $d_{3}$.

The logic diagram for a $4: 1$ multiplexer is shown in Figure 1.2. There can also be an enable input which gates the selected data input to the output. Each of the four data inputs $x_{0}, x_{1}, x_{2}$, and $x_{3}$ is connected to a separate 3 -input AND gate. The select inputs
$s_{0}$ and $s_{1}$ are decoded to select a particular AND gate. The output of each AND gate is applied to a 4 -input OR gate that provides the single output $z_{1}$. Input lines that are not selected cannot be transferred to the output and are treated as "don't cares."


Figure 1.2 Logic diagram for a 4:1 multiplexer.

Figure 1.3 shows a typical multiplexer drawn in the ANSI/IEEE Std. 91-1984 format. Consider the 4:1 multiplexer in Figure 1.3. If $s_{1} s_{0}=00$, then data input $d_{0}$ is selected and its value is propagated to the multiplexer output $z_{1}$. Similarly, if $s_{1} s_{0}=01$, then data input $d_{1}$ is selected and its value is directed to the multiplexer output.

The equation that represents output $z_{1}$ in the $4: 1$ multiplexer is shown in Equation 1.1. Output $z_{1}$ assumes the value of $d_{0}$ if $s_{1} s_{0}=00$, as indicated by the term $s_{1}{ }^{\prime} s_{0}{ }^{\prime} d_{0}$. Likewise, $z_{1}$ assumes the value of $d_{1}$ when $s_{1} s_{0}=01$, as indicated by the term $s_{1}{ }^{\prime} s_{0} d_{1}$.

$$
\begin{equation*}
z_{1}=s_{1}{ }^{\prime} s_{0}{ }^{\prime} d_{0}+s_{1}{ }^{\prime} s_{0} d_{1}+s_{1} s_{0}{ }^{\prime} d_{2}+s_{1} s_{0} d_{3} \tag{1.1}
\end{equation*}
$$

There is a one-to-one correspondence between the data input numbers $d_{i}$ of a multiplexer and the minterm locations in a Karnaugh map. Equation 1.2 is plotted on the Karnaugh map shown in Figure 1.3(a) using $x_{3}$ as a map-entered variable. Minterm location 0 corresponds to data input $d_{0}$ of the multiplexer; minterm location 1 corresponds to data input $d_{1}$; minterm location 2 corresponds to data input $d_{2}$; and minterm location 3 corresponds to data input $d_{3}$. The Karnaugh map and the multiplexer implement Equation 1.2, where $x_{2}$ is the low-order variable in the Karnaugh map. Figure 1.3(b) shows the implementation using a 4:1 multiplexer.

$$
\begin{equation*}
z_{1}=x_{1} x_{2}\left(x_{3}^{\prime}\right)+x_{1} x_{2}^{\prime}\left(x_{3}\right)+x_{1}^{\prime} x_{2} \tag{1.2}
\end{equation*}
$$



Figure 1.3 Multiplexer using a map-entered variable: (a) Karnaugh map and (b) a 4:1 multiplexer.

Linear-select multiplexers The multiplexer examples described thus far have been classified as linear-select multiplexers, because all of the variables of the Karnaugh map coordinates have been utilized as the select inputs for the multiplexer. Since there is a one-to-one correspondence between the minterms of a Karnaugh map and the data inputs of a multiplexer, designing the input logic is relatively straightforward. Simply assign the values of the minterms in the Karnaugh map to the corresponding multiplexer data inputs with the same subscript.

Nonlinear-select multiplexers Although the logic functions correctly according to the equation using a linear-select multiplexer, the design may demonstrate an inefficient use of the $2^{p}: 1$ multiplexers. Smaller multiplexers with fewer data inputs could be effectively utilized with a corresponding reduction in machine cost.

For example, the Karnaugh map shown in Figure 1.4 can be implemented with a 4:1 nonlinear-select multiplexer for the function $z_{1}$ instead of an 8:1 linear-select multiplexer. Variables $x_{2}$ and $x_{3}$ will connect to select inputs $s_{1}$ and $s_{0}$, respectively. When select inputs $s_{1} s_{0}=x_{2} x_{3}=00$, data input $d_{0}$ is selected; therefore, $d_{0}=0$. When select inputs $s_{1} s_{0}=x_{2} x_{3}=01$, data input $d_{1}$ is selected and $d_{1}$ contains the complement of $x_{1}$; therefore, $d_{1}=x_{1}{ }^{\prime}$. When select inputs $s_{1} s_{0}=x_{2} x_{3}=10$, data input $d_{2}$ is selected; therefore, $d_{2}=1$. When $s_{1} s_{0}=x_{2} x_{3}=11$, data input $d_{3}$ is selected and contains the same value as $x_{1}$; therefore, $d_{3}=x_{1}$. The logic diagram is shown in Figure 1.5

The multiplexer of Figure 1.5 can be checked to verify that it operates according to the Karnaugh map of Figure 1.4; that is, for every value of $x_{1} x_{2} x_{3}$, output $z_{1}$ should generate the same value as in the corresponding minterm location.


Figure 1.4 Karnaugh map for an example which will be implemented by a $4: 1$ nonlinear-select multiplexer.


Figure 1.5 A 4:1 nonlinear-select multiplexer to implement the Karnaugh map of Figure 1.4.

Decoders A decoder is a combinational logic macro that is characterized by the following property: For every valid combination of inputs, a unique output is generated. In general, a decoder has $n$ binary inputs and $m$ mutually exclusive outputs, where $2^{n} \geq m$. An $n: m$ ( $n$-to- $m$ ) decoder is shown in Figure 1.6, where the label DX specifies a demultiplexer. Each output represents a minterm that corresponds to the binary representation of the input vector. Thus, $z_{i}=m_{i}$, where $m_{i}$ is the $i$ th minterm of the $n$ input variables.

For example, if $n=3$ and $x_{1} x_{2} x_{3}=101$, then output $z_{5}$ is asserted. A decoder with $n$ inputs, therefore, has a maximum of $2^{n}$ outputs. Because the outputs are mutually exclusive, only one output is active for each different combination of the inputs. The decoder outputs may be asserted high or low. Decoders have many applications in digital engineering, ranging from instruction decoding to memory addressing to code conversion.

Figure 1.7 illustrates the logic symbol for a 2:4 decoder, where $x_{1}$ and $x_{2}$ are the binary input variables and $z_{0}, z_{1}, z_{2}$, and $z_{3}$ are the output variables. Input $x_{2}$ is the low-order variable. Since there are two inputs, each output corresponds to a different minterm of two variables.


Figure 1.6 An $n: m$ decoder.


Figure 1.7 Logic symbol for a 2:4 decoder.

A 3:8 decoder is shown in Figure 1.8 which decodes a binary number into the corresponding octal number. The three inputs are $x_{1}, x_{2}$, and $x_{3}$ with binary weights of $2^{2}, 2^{1}$, and $2^{0}$, respectively. The decoder generates an output that corresponds to the decimal value of the binary inputs. For example, if $x_{1} x_{2} x_{3}=110$, then output $z_{6}$ is asserted high. A decoder may also have an enable function which allows the selected output to be asserted.


Figure 1.8 A binary-to-octal decoder.

The internal logic for the binary-to-octal decoder of Figure 1.8 is shown in Figure 1.9. The Enable gate allows for additional logic functions to control the assertion of the active-high outputs.


Figure 1.9 Internal logic for the binary-to-octal decoder of Figure 1.8.

Encoders An encoder is a macro logic circuit with $n$ mutually exclusive inputs and $m$ binary outputs, where $n \leq 2^{m}$. The inputs are mutually exclusive to prevent errors from appearing on the outputs. The outputs generate a binary code that corresponds to the active input value. The function of an encoder can be considered to be the inverse of a decoder; that is, the mutually exclusive inputs are encoded into a corresponding binary number.

A general block diagram for an $n: m$ encoder is shown in Figure 1.10. An encoder is also referred to as a code converter. In the label of Figure 1.10, X corresponds to the
input code and Y corresponds to the output code. The general qualifying label $\mathrm{X} / \mathrm{Y}$ is replaced by the input and output codes, respectively, such as, OCT/BIN for an octal-to-binary code converter. Only one input $x_{i}$ is asserted at a time. The decimal value of $x_{i}$ is encoded as a binary number which is specified by the $m$ outputs.


Figure 1.10 An $n: m$ encoder or code converter.

An 8:3 octal-to-binary encoder is shown in Figure 1.11. Although there are $2^{8}$ possible input combinations of eight variables, only eight combinations are valid. The eight inputs each generate a unique octal code word in binary. If the outputs are to be enabled, then the gating can occur at the output gates.


Figure 1.11 An octal-to-binary encoder.

The low-order output $z_{3}$ is asserted when one of the following inputs are active: $x_{1}, x_{3}$, $x_{5}$, or $x_{7}$. Output $z_{2}$ is asserted when one of the following inputs are active: $x_{2}, x_{3}, x_{6}$,
or $x_{7}$. Output $z_{1}$ is asserted when one of the following inputs are active: $x_{4}, x_{5}, x_{6}$, or $x_{7}$. The encoder can be implemented with OR gates whose inputs are established from Equation 1.3 and Figure 1.12.


Figure 1.12 Logic diagram for an 8:3 encoder.

Priority encoder It was stated previously that encoder inputs are mutually exclusive. There may be situations, however, where more than one input can be active at a time. Then a priority must be established to select and encode a particular input. This is referred to as a priority encoder.

Usually the input with the highest valued subscript is selected as highest priority for encoding. Thus, if $x_{i}$ and $x_{j}$ are active simultaneously and $i<j$, then $x_{j}$ has priority over $x_{i}$. The truth table for an octal-to-binary priority encoder is shown in Table 1.7. The outputs $z_{1} z_{2} z_{3}$ generate a binary number that is equivalent to the highest priority input. If $x_{3}=1$, the state of $x_{0}, x_{1}$, and $x_{2}$ is irrelevant ("don't care") and the output is the binary number 011.

Comparators A comparator is a logic macro circuit that compares the magnitude of two $n$-bit binary numbers $X_{1}$ and $X_{2}$. Therefore, there are $2 n$ inputs and three outputs that indicate the relative magnitude of the two numbers. The outputs are mutually exclusive, specifying $X_{1}<X_{2}, X_{1}=X_{2}$, or $X_{1}>X_{2}$. Figure 1.13 shows a general block diagram of a comparator.

If two or more comparators are connected in cascade, then three additional inputs are required for each comparator. These additional inputs indicate the relative magnitude of the previous lower-order comparator inputs and specify $X_{1}<X_{2}, X_{1}=X_{2}$, or $X_{1}>X_{2}$ for the previous stage. Cascading comparators usually apply only to commercially available comparator integrated circuits.

Table 1.7 Octal-to-Binary Priority Encoder

| $x_{0}$ | Inputs |  |  |  |  |  |  | Outputs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $z_{1}$ | $z_{2}$ | $z_{3}$ |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| - | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| - | - | - | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| - | - | - | - | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| - | - | - | - | - | 1 | 0 | 0 | 1 | 0 | 1 |
| - | - | - | - | - | - | 1 | 0 | 1 | 1 | 0 |
| - | - | - | - | - | - | - | 1 | 1 | 1 | 1 |



Figure 1.13 General block diagram of a comparator.

Designing the hardware for a comparator is relatively straightforward - it consists of AND gates, OR gates, and exclusive-NOR circuits as shown in Equation 1.4. An alternative approach which may be used to minimize the amount of hardware is to eliminate the equation for $X_{1}=X_{2}$ and replace it with Equation 1.5. That is, if $X_{1}$ is neither less nor greater than $X_{2}$, then $X_{1}$ must equal $X_{2}$.
$\left(X_{1}<X_{2}\right)=x_{11} '^{\prime} x_{21}+\left(x_{11} \oplus x_{21}\right)^{\prime} x_{12}{ }^{\prime} x_{22}+\left(x_{11} \oplus x_{21}\right)^{\prime}\left(x_{12} \oplus x_{22}\right)^{\prime} x_{13}{ }^{\prime} x_{23}$
$\left(X_{1}=X_{2}\right)=\left(x_{11} \oplus x_{21}\right)^{\prime}\left(x_{12} \oplus x_{22}\right)^{\prime}\left(x_{13} \oplus x_{23}\right)^{\prime}$
$\left(X_{1}>X_{2}\right)=x_{11} x_{21}{ }^{\prime}+\left(x_{11} \oplus x_{21}\right)^{\prime} x_{12} x_{22}{ }^{\prime}+\left(x_{11} \oplus x_{21}\right)^{\prime}\left(x_{12} \oplus x_{22}\right)^{\prime} x_{13} x_{23}{ }^{\prime}$

$$
\begin{equation*}
\left(X_{1}=X_{2}\right) \text { if }\left(X_{1}<X_{2}\right)^{\prime} \text { AND }\left(X_{1}>X_{2}\right)^{\prime} \tag{1.5}
\end{equation*}
$$

### 1.1.4 Procedural Flow Control

Procedural flow control statements modify the flow in a behavior by selecting branch options, repeating certain activities, selecting a parallel activity, or terminating an activity. The activity can occur in sequential blocks or in parallel blocks.
begin . . . end The begin . . end keywords are used to group multiple statements into sequential blocks. The statements in a sequential block execute in sequence; that is, a statement does not execute until the preceding statement has executed, except for nonblocking statements. If there is only one procedural statement in the block, then the begin . . . end keywords may be omitted.
disable The disable statement terminates a named block of procedural statements or a task and transfers control to the statement immediately following the block or task. The disable statement can also be used to exit a loop.
for The keyword for is used to specify a loop. The for loop repeats the execution of a procedural statement or a block of procedural statements a specified number of times. The for loop is used when there is a specified beginning and end to the loop. The format and function of a for loop is similar to the for loop used in the C programming language. The parentheses following the keyword for contain three expressions separated by semicolons, as shown below.

> for (register initialization; test condition; update register control variable) procedural statement or block of procedural statements
forever The forever loop statement executes the procedural statements continuously. The loop is primarily used for timing control constructs, such as clock pulse generation. The forever procedural statement must be contained within an initial or an always block. In order to exit the loop, the disable statement may be used to prematurely terminate the procedural statements. An always statement executes at the beginning of simulation; the forever statement executes only when it is encountered in a procedural block.
if . . . else These keywords are used as conditional statements to alter the flow of activity through a behavioral module. They permit a choice of alternative paths based upon a Boolean value obtained from a condition. The syntax is shown below.

```
if (condition)
    {procedural statement 1}
else
    {procedural statement 2}
```

If the result of the condition is true, then procedural statement 1 is executed; otherwise, procedural statement 2 is executed. The procedural statement following the if and else statements can be a single procedural statement or a block of procedural statements. Two uses for the if . . . else statement are to model a multiplexer or decode an instruction register operation code to select alternative paths depending on the instruction. The if statement can be nested to provide several alternative paths to execute procedural statements as shown in the syntax below for nested if statements.

```
if (condition 1)
    {procedural statement 1}
else if (condition 2)
    {procedural statement 2}
else if (condition 3)
    {procedural statement 3}
else
    {procedural statement 4)
```

repeat The repeat keyword is used to execute a loop a fixed number of times as specified by a constant contained within parentheses following the repeat keyword. The loop can be a single statement or a block of statements contained within begin . . . end keywords. The syntax is shown below.
repeat (expression)
statement or block of statements
When the activity flow reaches the repeat construct, the expression in parentheses is evaluated to determine the number of times that the loop is to be executed. The expression can be a constant, a variable, or a signal value. If the expression evaluates to $\mathbf{x}$ or $\mathbf{z}$, then the value is treated as 0 and the loop is not executed.
while The while statement executes a statement or a block of statements while an expression is true. The syntax is shown below.
while (expression) statement
The expression is evaluated and a Boolean value, either true (a logical 1) or false (a logical 0) is returned. If the expression is true, then the procedural statement or block of statements is executed. The while loop executes until the expression becomes false, at which time the loop is exited and the next sequential statement is executed. If the expression is false when the loop is entered, then the procedural statement is not executed. If the value returned is $\mathbf{x}$ or $\mathbf{z}$, then the value is treated as false. An example of the while statement is shown below where the initial count $=0$.

```
while (count < 16)
begin
    count = count + 1;
end
```


### 1.1.5 Net Data Types

Verilog defines two data types: nets and registers. These predefined data types are used to connect logical elements and to provide storage. A net is a physical wire or group of wires connecting hardware elements in a module or between modules.

An example of net data types is shown in Figure 1.14, where five internal nets are defined: net1, net 2 , net 3 , net 4 , and net 5 . The value of net 1 is determined by the inputs to the andl gate represented by the term $x_{1} x_{2}{ }^{\prime}$, where $x_{2}$ is active low; the value of net 2 is determined by the inputs to the and 2 gate represented by the term $x_{1}{ }^{\prime} x_{2}$, where $x_{1}$ is active low; the value of net 3 is determined by the input to the inverter represented by the term $x_{3}{ }^{\prime}$, where $x_{3}$ is active low. The equations for outputs $z_{1}$ and $z_{2}$ are listed in Equation 1.6.


Figure 1.14 A logic diagram showing single-wire nets and one multiple-wire net.

$$
\begin{align*}
& z_{1}=x_{1} x_{2}^{\prime}+x_{1}^{\prime} x_{2} \\
& z_{2}=x_{1}^{\prime} x_{2}+x_{3} \tag{1.6}
\end{align*}
$$

### 1.1.6 Register Data Types

A register data type represents a variable that can retain a value. Verilog registers are similar in function to hardware registers, but are conceptually different. Hardware registers are synthesized with storage elements such as $D$ flip-flops, $J K$ flip-flops, and $S R$ latches. Verilog registers are an abstract representation of hardware registers and are declared as reg.

The default size of a register is 1-bit; however, a larger width can be specified in the declaration. The general syntax to declare a width of more than 1-bit is as follows: reg [most significant bit:least significant bit] register_name.

To declare a one-byte register called data_register is reg [7:0] data_register.

Memories Memories can be represented in Verilog by an array of registers and are declared using a reg data type as follows:


A 32-word register with one byte per word would be declared as follows:
reg [7:0] memory_name [0:31];
An array can have only two dimensions. Memories must be declared as reg data types, not as wire data types. A register can be assigned a value using one statement, as shown below. Register buff_reg is assigned the 16-bit hexadecimal value of 7 ab 5 , which equates to the binary value of $01111010 \quad 1011 \quad 0101_{2}$.

```
reg [15:0] buff_reg;
buff_reg = 16'h7ab5;
```

Values can also be stored in memories by assigning a value to each word individually, as shown below for an instruction cache of eight registers with eight bits per register.

> reg [7:0] instr_cache [0:7];

| instr_cache [0] = | 8'h08; |
| :---: | :---: |
| instr_cache [1] = | 8'h09; |
| instr_cache [2] = | 8'h0a; |
| instr_cache [3] = | 8'h0b; |
| instr_cache [4] = | 8'h0c; |
| instr_cache [5] = | 8'h0d; |
| instr_cache [6] = | 8 h 0 e ; |
| instr_cache [7] = | 8'h0f; |

### 1.2 Expressions

Expressions consist of operands and operators, which are the basis of Verilog HDL. The result of a right-hand side expression can be assigned to a left-hand side net variable or register variable using the keyword assign. The value of an expression is determined from the combined operations on the operands. An expression can consist of a single operand or two or more operands in conjunction with one or more operators. The result of an expression is represented by one or more bits. Examples of expressions are as follows, where the symbol \& indicates an AND operation and the symbol | indicates an OR operation:

```
assign z
assign z
assign cout =(a& cin)|(b & cin)|(a& & b);
```


### 1.2.1 Operands

Operands can be any of the data types listed in Table 1.8.

Table 1.8 Operands

| Operands | Comments |
| :--- | :--- |
| Constant | Signed or unsigned |
| Parameter | Similar to a constant |
| Net | Scalar or vector |
| Register | Scalar or vector |
| Bit-select | One bit from a vector |
| Part- | Contiguous bits of a |
| select | vector |
| Memory | One word of a mem- |
| element | ory |

Constant Constants can be signed or unsigned. A decimal integer is treated as a signed number. An integer that is specified by a base is interpreted as an unsigned number. Examples of both types are shown in Table 1.9.

Table 1.9 Signed and Unsigned Constants

| Constant | Comments |
| :--- | :--- |
| 127 | Signed decimal: Value $=8$-bit binary vector: $0111 \_1111$ |
| -1 | Signed decimal: Value $=8$-bit binary vector: $1111 \_1111$ |
| -128 | Signed decimal: Value $=8$-bit binary vector: $1000 \_0000$ |
| 4'b1110 | Binary base: Value $=$ unsigned decimal 14 |
| 8'b0011_1010 | Binary base: Value $=$ unsigned decimal 58 |
| 16'h1A3C | Hexadecimal base: Value $=$ unsigned decimal 6716 |
| 16'hBCDE | Hexadecimal base: Value $=$ unsigned decimal 48,350 |
| 9'o536 | Octal base: Value $=$ unsigned decimal 350 |
| -22 | Signed decimal: Value $=8$-bit binary vector: 1110_1010 |
| $-9 ' \mathrm{o} 352$ | Octal base: Value $=8$-bit binary vector: $1110 \_1010$ |
|  | $=$ unsigned decimal 234 |

The last two entries in Table 1.9 both evaluate to the same bit configuration, but represent different decimal values. The number $-22_{10}$ is a signed decimal value; the number - 9 'o352 is treated as an unsigned number with a decimal value of $234_{10}$.

Parameter A parameter is similar to a constant and is declared by the keyword parameter. Parameter statements assign values to constants; the values cannot be changed during simulation. Examples of parameters are shown in Table 1.10.

Table 1.10 Examples of Parameters

| Examples | Comments |
| :--- | :--- |
| parameter width $=8$ | Defines a bus width of 8 bits |
| parameter width $=16$, depth $=512$ | Defines a memory with two bytes per word <br> and 512 words |
| parameter out_port $=8$ | Defines an output port with an address of 8 |

Parameters are useful in defining the width of a bus. For example, the adder shown in Figure 1.15 contains two 8-bit vector inputs $a$ and $b$ and one scalar input cin. There is also one 9 -bit vector output sum comprised of an 8 -bit result and a scalar carry-out. The Verilog line of code shown below defines a bus width of eight bits. Wherever width appears in the code, it is replaced by the value eight.

```
parameter width = 8;
```



Figure 1.15 Eight-bit adder to illustrate the use of a parameter statement.

### 1.2.2 Operators

Verilog HDL contains a profuse set of operators that perform various operations on different types of data to yield results on nets and registers. Some operators are similar to those used in the C programming language. Table 1.11 lists the categories of operators in order of precedence, from highest to lowest.

Table 1.11 Verilog HDL Operators and Symbols

| Operator type | Operator Symbol | Operation | Number of Operands |
| :---: | :---: | :---: | :---: |
| Arithmetic | + | Add | Two or one |
|  | - | Subtract | Two or one |
|  | * | Multiply | Two |
|  | ) | Divide | Two |
|  | \% | Modulus | Two |
| Logical | \&\& | Logical AND | Two |
|  | 11 | Logical OR | Two |
|  | ! | Logical negation | One |
| Relational | > | Greater than | Two |
|  | $<$ | Less than | Two |
|  | >= | Greater than or equal | Two |
|  | $<=$ | Less than or equal | Two |
| Equality | = $=$ | Logical equality | Two |
|  | ! = | Logical inequality | Two |
|  | $=$ = | Case equality | Two |
|  | ! = = | Case inequality | Two |
| Bitwise | \& | AND | Two |
|  | \| | OR | Two |
|  | $\sim$ | Negation | One |
|  | $\wedge$ | Exclusive-OR | Two |
|  | $\wedge \sim$ or $\wedge^{\wedge}$ | Exclusive-NOR | Two |
| Reduction | \& | AND | One |
|  | $\sim$ \& | NAND | One |
|  | \| | OR | One |
|  | $\sim 1$ | NOR | One |
|  | - | Exclusive-OR | One |
|  | $\sim^{\wedge}$ or ${ }^{\wedge} \sim$ | Exclusive-NOR | One |
| Shift | << | Left shift | One |
|  | >> | Right shift | One |
| Conditional | ? : | Conditional | Three |
| Concatenation | \{ \} | Concatenation | Two or more |
| Replication | \{ $\{$ \}\} | Replication | Two or more |

Arithmetic Arithmetic operations are performed on one (unary) operand or two (binary) operands in the following radices: binary, octal, decimal, or hexadecimal. The result of an arithmetic operation is interpreted as an unsigned value or as a signed value in 2 s complement representation on both scalar and vector nets and registers. The operands shown in Table 1.12 are used for the operations of addition, subtraction, multiplication, and division.

Table 1.12 Operands Used for Arithmetic Operations


The unary + and - operators change the sign of the operand and have higher precedence than the binary + and - operators. Examples of unary operators are shown below.

$$
\begin{aligned}
& +45 \text { (Positive } 45_{10} \text { ) } \\
& -72\left(\text { Negative } 72_{10}\right)
\end{aligned}
$$

Unary operators treat net and register operands as unsigned values, and treat real and integer operands as signed values.

The binary add operator performs unsigned and signed addition on two operands. Register and net operands are treated as unsigned operands; thus, a value of

$$
1111 \_1111 \_1111 \_1111_{2}
$$

stored in a register has a value of $65,535_{10}$ unsigned, not $-1_{10}$ signed. Real and integer operands are treated as signed operands; thus, a value of
1111_1110_1010_01112
stored in an integer register has a value of $-345_{10}$ signed, not $65,191_{10}$ unsigned. The width of the result of an arithmetic operation is determined by the width of the largest operand.

Logical There are three logical operators: the binary logical AND operator (\&\&), the binary logical OR operator (||), and the unary logical negation operator (!). Logical operators evaluate to a logical 1 (true), a logical 0 (false), or an $\mathbf{x}$ (ambiguous). If a logical operation returns a nonzero value, then it is treated as a logical 1 (true); if a bit in an operand is $\mathbf{x}$ or $\mathbf{z}$, then it is ambiguous and is normally treated as a false condition.

Let $a$ and $b$ be two 4-bit operands, where $a=0110$ and $b=1100$. Let $z_{1}, z_{2}$, and $z_{3}$ be the outputs of the logical operations shown below.

$$
\begin{aligned}
& z_{1}=a \& \& b \\
& z_{2}=a| | b \\
& z_{3}=!a
\end{aligned}
$$

Therefore, the operation $z_{1}=a \& \& b$ yields a value of $z_{1}=1$ because both $a$ and $b$ are nonzero. If a vector operand is nonzero, then it treated as a 1 (true). Output $z_{2}$ is also equal to 1 for the expression $z_{2}=a| | b$. Output $z_{3}$ is equal to 0 because $a$ is true.

Now let $a=0101$ and $b=0000$. Thus, $z_{1}=a \& \& b=1 \& \& 0=0$ because $a$ is true and $b$ is false. Output $z_{2}$, however, is equal to 1 because $z_{2}=a\|b=1\| 0=1$. In a similar manner, $z_{3}=!a=!1=0$, because $a$ is true.

As a final example, let $a=0000$ and $b=0000$; that is, both variables are false. Therefore, $z_{1}=a \& \& b=0 \& \& 0=0 ; z_{2}=a| | b=0| | 0=0 ; z_{3}=!a=!0=1$. If a bit in either operand is $\mathbf{x}$, then the result of a logical operation is $\mathbf{x}$. Also, ! $\mathbf{x}$ is $\mathbf{x}$.

Relational Relational operators compare operands and return a Boolean result, either 1 (true) or 0 (false) indicating the relationship between the two operands. There are four relational operators as follows: greater than $(>)$, less than $(<)$, greater than or equal ( $>=$ ), and less than or equal ( $<=$ ). These operators function the same as identical operators in the C programming language.

If the relationship is true, then the result is 1 ; if the relationship is false, then the result is 0 . Net or register operands are treated as unsigned values; real or integer operands are treated as signed values. An $\mathbf{x}$ or $\mathbf{z}$ in any operand returns a result of $\mathbf{x}$. When the operands are of unequal size, the smaller operand is zero-extended to the left. Examples are shown below of relational operators, where the identifier $g t$ means greater than, lt means less than, gte means greater than or equal, and lte means less than or equal when comparing operand $a$ to operand $b$.

$$
\begin{array}{lll}
a=0110, b=1100, & \mathrm{~g} t=0, l t=1, \text { gte }=0, \text { lte }=1 \\
\mathrm{a}=0101, b=0000, & & g t=1, \text { lt }=0, \text { gte }=1, \text { lte }=0 \\
a=1000, b=1001, & & g t=0, \text { lt }=1, \text { gte }=0, \text { lte }=1 \\
a=0000, b=0000, & & g t=0, \text { lt }=0, \text { gte }=1, \text { lte }=1 \\
a=1111, b=1111, & & g t=0, \text { lt }=0, \text { gte }=1, \text { lte }=1
\end{array}
$$

Equality There are four equality operators: logical equality $(==)$, logical inequality $(!=)$, case equality $(===)$, and case inequality $(!==)$.

Logical equality is used in expressions to determine if two values are identical. The result of the comparison is 1 if the two operands are equal, and 0 if they are not equal. The logical inequality operator is used to determine if two operands are unequal. A 1 is returned if the operands are unequal; otherwise a 0 is returned. If the result of the comparison is ambiguous for logical equality or logical inequality, then a value of $\mathbf{x}$ is returned. An $\mathbf{x}$ or $\mathbf{z}$ in either operand will return a value of $\mathbf{x}$. If the operands are nets or registers, they are treated as unsigned values; real or integer operands are treated as signed values, but are compared as though they were unsigned operands.

The case equality operator compares both operands on a bit-by-bit basis, including $\mathbf{x}$ and $\mathbf{z}$. The result is 1 if both operands are identical in the same bit positions, including those bit positions containing an $\mathbf{x}$ or a $\mathbf{z}$. The case inequality operator is used to determine if two operands are unequal by comparing them on a bit-by-bit basis, including those bit positions that contain $\mathbf{x}$ or $\mathbf{z}$.

Examples of the equality operators are shown below, where the 4-bit variables are $x_{1}, x_{2}, x_{3}, x_{4}$, and $x_{5}$. The outputs are $z_{1}$ (logical equality), $z_{2}$ (logical inequality), $z_{3}$ (case equality), and $z_{4}$ (case inequality).

$$
\begin{aligned}
& x_{1}=1000, x_{2}=1101, x_{3}=01 x z, x_{4}=01 x z, x_{5}=x 1 x x \\
& z_{1}=0, z_{2}=1, z_{3}=1, z_{4}=1 \\
& x_{1}=1011, x_{2}=1011, x_{3}=x 1 x z, x_{4}=x 1 x z, x_{5}=11 x x \\
& z_{1}=1, z_{2}=1, z_{3}=1, z_{4}=1 \\
& x_{1}=1100, x_{2}=0101, x_{3}=x 01 z, x_{4}=11 x z, x_{5}=11 x x \\
& z_{1}=0, z_{2}=1, z_{3}=0, z_{4}=1
\end{aligned}
$$

Referring to the above outputs for the first set of inputs, the logical equality $\left(z_{1}\right)$ of $x_{1}$ and $x_{2}$ is false because the operands are unequal. The logical inequality $\left(z_{2}\right)$ of $x_{2}$ and $x_{3}$ is true. The case equality $\left(z_{3}\right)$ of inputs $x_{3}$ and $x_{4}$ is 1 because both operands are identical in all bit positions, including the $\mathbf{x}$ and $\mathbf{z}$ bits. The case inequality $\left(z_{4}\right)$ of inputs $\boldsymbol{x}_{4}$ and $\boldsymbol{x}_{5}$ is also 1 because the operands differ in the high-order and low-order bit positions.

Bitwise The bitwise operators are: AND (\&), OR ( $\mid$ ), negation ( $\sim$ ), exclusive-OR $\left(^{\wedge}\right)$, and exclusive-NOR ( $\wedge \sim$ or $\left.\sim^{\wedge}\right)$. The bitwise operators perform logical operations on the operands on a bit-by-bit basis and produce a vector result. Except for negation, each bit in one operand is associated with the corresponding bit in the other operand. If one operand is shorter, then it is zero-extended to the left to match the length of the longer operand.

The bitwise $A N D$ operator performs the AND function on two operands on a bit-by-bit basis as shown in the following example:

$$
\begin{array}{lllllllll} 
& 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
\&) & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

The bitwise $O R$ operator performs the OR function on the two operands on a bit-by-bit basis as shown in the following example:

1) | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |

The bitwise negation operator performs the negation function on one operand on a bit-by-bit basis. Each bit in the operand is inverted as shown in the following example:

$$
\text { ~) } \begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

The bitwise exclusive-OR operator performs the exclusive-OR function on two operands on a bit-by-bit basis as shown in the following example:

$\left.{ }^{\wedge}\right)$| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |

The bitwise exclusive-NOR operator performs the exclusive-NOR function on two operands on a bit-by-bit basis as shown in the following example:

$\wedge \sim) \quad$| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

Bitwise operators perform operations on operands on a bit-by-bit basis and produce a vector result. This is in contrast to logical operators, which perform operations on operands in such a way that the truth or falsity of the result is determined by the truth or falsity of the operands.

The logical AND operator returns a value of 1 (true) only if both operands are nonzero (true); otherwise, it returns a value of 0 (false). If the result is ambiguous, it returns a value of $\mathbf{x}$. The logical OR operator returns a value of 1 (true) if either or both operands are true; otherwise, it returns a value of 0 . The logical negation operator returns a value of 1 (true) if the operand has a value of zero and a value of 0 (false) if the operand is nonzero. Examples of the five bitwise operators are shown below. The logical negation operator performs the operation on operand $a$.

| $\begin{aligned} & \mathrm{a}=11000011, \\ & \mathrm{~b}=10011001, \end{aligned}$ |  | $\begin{aligned} & \mathrm{a}=01001111, \\ & \mathrm{~b}=11011001, \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| and_rslt | $=10000001$, | and_rslt | $=01001001$, |
| or_rslt | $=11011011$, | or_rsit | $=11011111$, |
| neg_rslt | $=00111100$, | neg_rslt | $=10110000$, |
| xor_rslt | $=01011010$, | xor_rslt | = 10010110, |
| xnor_rslt | $=10100101$ | xnor_rslt | $=01101001$ |
| $\begin{aligned} & \mathrm{a}=10010011, \\ & \mathrm{~b}=11011001, \end{aligned}$ |  | $\begin{aligned} \mathrm{a} & =11001111, \\ \mathrm{~b} & =11011001, \end{aligned}$ |  |
| and_rslt | $=10010001$, | and_rslt | $=11001001$, |
| or_rslt | $=11011011$, | or_rslt | $=11011111$, |
| neg_rslt | $=01101100$, | neg_rslt | $=00110000$, |
| xor_rslt | $=01001010$, | xor_rslt | $=00010110$, |
| xnor_rslt | $=10110101$ | xnor_rslt | $=11101001$ |

Reduction The reduction operators are: AND (\&), NAND ( \& \& , OR ( $\mid$ ), NOR $(\sim \mid)$, exclusive-OR $(\wedge)$, and exclusive-NOR $\left(\wedge \sim\right.$ or $\left.\sim^{\wedge}\right)$. Reduction operators are unary operators; that is, they operate on a single vector and produce a single-bit result. If any bit of the operand is $\mathbf{x}$ or $\mathbf{z}$, the result is $\mathbf{x}$. Reduction operators perform their respective operations on a bit-by-bit basis.

For the reduction $A N D$ operator, if any bit in the operand is 0 , then the result is 0 ; otherwise, the result is 1 . For example, let $x_{1}$ be the vector shown below.

| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The reduction AND ( \& $x_{1}$ ) operation is equivalent to the following operation:
$1 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1$
which returns a result of 1 'b0.

For the reduction NAND operator, if any bit in the operand is 0 , then the result is 1 ; otherwise, the result is 0 . For a vector $x_{1}$, the reduction NAND $\left(\sim \& x_{1}\right)$ is the inverse of the reduction AND operator.

For the reduction $O R$ operator, if any bit in the operand is 1 , then the result is 1 ; otherwise, the result is 0 . For example, let $x_{1}$ be the vector shown below.

| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The reduction OR ( $\mid x_{1}$ ) operation is equivalent to the following operation:

$$
1|1| 1|0| 1|0| 1 \mid 1
$$

which returns a result of 1 ' b 1 .

For the reduction NOR operator, if any bit in the operand is 1 , then the result is 0 ; otherwise, the result is 1 . For a vector $x_{1}$, the reduction $\operatorname{NOR}\left(\sim \mid x_{1}\right)$ is the inverse of the reduction OR operator.

For the exclusive-OR operator, if there are an even number of 1s in the operand, then the result is 0 ; otherwise, the result is 1 . For example, let $x_{1}$ be the vector shown below.

| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The reduction exclusive-OR ( $\left.\wedge x_{1}\right)$ operation is equivalent to the following operation:

$$
1^{\wedge} 1^{\wedge} 1^{\wedge} 0^{\wedge} 1^{\wedge} 0^{\wedge} 1^{\wedge} 1
$$

which returns a result of 1 ' $b 0$. The reduction exclusive-OR operator can be used as an even parity generator.

For the exclusive-NOR operator, if there are an odd number of 1s in the operand, then the result is 0 ; otherwise, the result is 1 . For a vector $x_{1}$, the reduction exclusive$\operatorname{NOR}\left(\wedge \sim x_{1}\right)$ is the inverse of the reduction exclusive-OR operator. The reduction exclusive-NOR operator can be used as an odd parity generator.

Shift The shift operators shift a single vector operand left or right a specified number of bit positions. These are logical shift operations, not algebraic; that is, as bits are shifted left or right, zeroes fill in the vacated bit positions. The bits shifted out of the operand are lost; they do not rotate to the high-order or low-order bit positions of the shifted operand. If the shift amount evaluates to $\mathbf{x}$ or $\mathbf{z}$, then the result of the operation is $\mathbf{x}$. There are two shift operators, as shown below. The value in parentheses is the number of bits that the operand is shifted.
$\ll$ (Left-shift amount)
$\gg$ (Right-shift amount)

When an operand is shifted left, this is equivalent to a multiply-by-two operation for each bit position shifted. When an operand is shifted right, this is equivalent to a divide-by-two operation for each bit position shifted. The shift operators are useful to model the sequential add-shift multiplication algorithm and the sequential shift-subtract division algorithm. Examples of shift left and shift right operations are shown below for 8-bit operands. Operand $a_{-}$reg is shifted left three bits with the low-order bits filled with zeroes. Operand $b_{-}$reg is shifted right two bits with the high-order bits filled with zeroes.

| $\begin{aligned} & \text { a_reg }=00000010, \quad \text { b_reg }=00001000, \\ & \text { rslt_a }=00010000, \end{aligned}$ | //shift a_reg left 3 <br> //shift b_reg right 2 |
| :---: | :---: |
| $\begin{aligned} & \text { a_reg }=00000110, \quad \text { b_reg }=00011000, \\ & \text { rslt_a }=00110000, \\ & \text { rslt_b }=00000110 \end{aligned}$ | //shift a_reg left 3 <br> //shift b_reg right 2 |
| $\begin{aligned} & \text { a_reg }=00001111, \quad \text { b_reg }=00111000, \\ & \text { rslt_a }=01111000, \\ & \text { rslt_b }=00001110 \end{aligned}$ | //shift a_reg left 3 <br> //shift b_reg right 2 |
| $\begin{aligned} & \text { a_reg }=11100000, \quad \text { b_reg }=00000011, \\ & \text { rslt_a }=00000000, \quad \text { rslt_b }=00000000 \end{aligned}$ | //shift a_reg left 3 //shift b_reg right 2 |

Conditional The conditional operator (? :) has three operands, as shown in the syntax below. The conditional_expression is evaluated. If the result is true (1), then the true_expression is evaluated; if the result is false (0), then the false_expression is evaluated.
conditional_expression ? true_expression : false_expression;

The conditional operator can be used when one of two expressions is to be selected. For example, in the statement below, if $x_{1}$ is greater than or equal to $x_{2}$, then $z_{1}$ is assigned the value of $x_{3}$; if $x_{1}$ is less than $x_{2}$, then $z_{1}$ is assigned the value of $x_{4}$.

$$
\mathrm{z} 1=(\mathrm{x} 1>=\mathrm{x} 2) \text { ? x3 : x4; }
$$

If the operands have different lengths, then the shorter operand is zero-extended on the left. Since the conditional operator selects one of two values, depending on the result of the conditional_expression evaluation, the operator can be used in place of the if . . . else construct. The conditional operator is ideally suited to model a $2: 1 \mathrm{mul}-$ tiplexer. Conditional operators can be nested; that is, each true_expression and false_expression can be a conditional operation. This is useful for modeling a $4: 1 \mathrm{mul}$ tiplexer.

```
conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
    : (cond_expr2? true_expr2 : false_expr2);
```

Concatenation The concatenation operator ( \{ \} ) forms a single operand from two or more operands by joining the different operands in sequence separated by commas. The operands to be appended are contained within braces. The size of the operands must be known before concatenation takes place.

The examples below show the concatenation of scalars and vectors of different sizes. Outputs $z_{1}, z_{2}, z_{3}$, and $z_{4}$ are ten bits in length.

```
\(z_{1}, z_{2}, z_{3}\), and \(z_{4}\) are 10 bits in length.
\(a=11, b=001, c=1100, \mathrm{~d}=1\)
\(z_{1}=0000 \_11 \_1100 \quad / / z_{1}=\{a, c\}\)
\(z_{2}=00000 \_001 \_11 \quad / / z_{2}=\{b, a\}\)
\(z_{3}=0 \_1100 \_001 \_11 \quad / / z_{3}=\{c, b, a\}\)
\(z_{4}=11 \_001 \_1100 \_1 \quad / / z_{4}=\{a, b, c, d\}\)
```

Replication Replication is a means of performing repetitive concatenation. Replication specifies the number of times to duplicate the expressions within the innermost braces. The syntax is shown below together with examples of replication.

```
{number_ of_repetitions {expression_1, expression_2, ..., expression_n}};
```

$$
\begin{array}{ll}
a=11, b=010, c=0011, & \\
& \\
z_{1}=11 \_0011 \_11 \_0011, & / / z_{1}=\{2\{a, c\}\} \\
z_{2}=010 \_0011 \_0111 \_010 \_0011 \_0111 & / / z_{2}=\left\{2\left\{b, c, 44^{\prime} \mathrm{b} 0111\right\}\right\}
\end{array}
$$

### 1.3 Modules and Ports

A module is the basic unit of design in Verilog. It describes the functional operation of some logical entity and can be a stand-alone module or a collection of modules that are instantiated into a structural module. Instantiation means to use one or more lowerlevel modules in the construction of a higher-level structural module. A module can be a logic gate, an adder, a multiplexer, a counter, or some other logical function.

A module consists of declarative text which specifies the function of the module using Verilog constructs; that is, a Verilog module is a software representation of the physical hardware structure and behavior. The declaration of a module is indicated by the keyword module and is always terminated by the keyword endmodule.

Verilog has predefined logical elements called primitives. These built-in primitives are structural elements that can be instantiated into a larger design to form a more complex structure. Examples are: and, or, xor, and not. Built-in primitives are discussed in more detail in Section 1.4.

Modules contain ports which allow communication with the external environment or other modules. For example, the logic diagram for the full adder of Figure 1.16 has input ports $a, b$, and $\operatorname{cin}$ and output ports sum and cout. The general structure and syntax of a module is shown in Figure 1.17. An AND gate can be defined as shown in the module of Figure 1.18, where the input ports are $x_{1}$ and $x_{2}$ and the output port is $z_{1}$.


Figure 1.16 Logic diagram for a full adder.

```
module <module name> (port list);
    declarations
        reg, wire, parameter,
        input, output, . . .
    <module internals>
        statements
        initial, always, module instantiation, . . .
endmodule
```

Figure 1.17 General structure of a Verilog module.

```
//dataflow and gate with two inputs
module and2 (x1, x2, z1);
input x1, x2;
output z1;
wire x1, x2;
wire z1;
assign z1 = x1 & x2;
endmodule
```

Figure 1.18 Verilog module for an AND gate with two inputs.

A Verilog module defines the information that describes the relationship between the inputs and outputs of a logic circuit. A structural module will have one or more instantiations of other modules or logic primitives. In Figure 1.18, the first line is a comment, indicated by (//). In the second line, and 2 is the module name; this is followed by left and right parentheses containing the module ports, which is followed by a semicolon. The inputs and outputs are defined by the keywords input and output. The ports are declared as wire in this dataflow module. Dataflow modeling is covered in detail in Section 1.6. The keyword assign describes the behavior of the circuit. Output $z_{1}$ is assigned the value of $x_{1}$ ANDed (\&) with $x_{2}$.

### 1.3.1 Designing a Test Bench for Simulation

This section describes the techniques for writing test benches in Verilog HDL. When a Verilog module is finished, it must be tested to ensure that it operates according to the machine specifications. The functionality of the module can be tested by applying stimulus to the inputs and checking the outputs. The test bench will display the inputs and outputs in a radix (binary, octal, hexadecimal, or decimal).

The test bench contains an instantiation of the unit under test and Verilog code to generate input stimulus and to monitor and display the response to the stimulus. Figure 1.19 shows a simple test bench to test the 2-input AND gate of Figure 1.18. Line 1 is a comment indicating that the module is a test bench for a 2 -input AND gate. Line 2 contains the keyword module followed by the module name, which includes $t b$ indicating a test bench module. The name of the module and the name of the module under test are the same for ease of cross-referencing.

Line 4 specifies that the inputs are reg type variables; that is, they contain their values until they are assigned new values. Outputs are assigned as type wire in test benches. Output nets are driven by the output ports of the module under test. Line 8 contains an initial statement, which executes only once.

Verilog provides a means to monitor a signal when its value changes. This is accomplished by the \$monitor task. The \$monitor continuously monitors the values of the variables indicated in the parameter list that is enclosed in parentheses. It will display the value of the variables whenever a variable changes state. The quoted string within the task is printed and specifies that the variables are to be shown in binary (\%b). The \$monitor is invoked only once. Line 12 is a second initial statement that allows the procedural code between the begin . . . end block statements to be executed only once.

```
    1 //and2 test bench
    module and2_tb;
    reg x1, x2;
    5 wire z1;
    //display variables
    initial
    $monitor ("x1 = %b, x2 = %b, z1 = %b", x1, x2, z1);
11 //apply input vectors
    initial
    begin
        #0 x1 = 1'b0;
            x2 = 1'b0;
1 6
        #10 x1 = 1'b0;
            x2 = 1'b1;
20 #10 x1 = 1'b1;
            x2 = 1'b0;
        #10 x1 = 1'b1;
            x2 = 1'b1;
26 #10 $stop;
    end
    //instantiate the module into the test bench
30 and2 inst1 (
        .x1(x1),
        .x2(x2),
        .z1(z1)
        );
    endmodule
```

Figure 1.19 Test bench for the 2-input AND gate of Figure 1.18.

Lines 14 and 15 specify that at time $0(\# 0)$, inputs $x_{1}$ and $x_{2}$ are assigned values of 0 , where 1 is the width of the value (one bit), ' is a separator, b indicates binary, and 0 is the value. Line 17 specifies that 10 time units later, the inputs change to: $x_{1}=0$ and $x_{2}=1$. This process continues until all possible values of two variables have been applied to the inputs. Simulation stops at 10 time units after the last input vector has been applied (\$stop). The total time for simulation is 40 time units - the sum of all the time units. The time units can be specified for any duration.

Line 30 begins the instantiation of the module into the test bench. The name of the instantiation must be the same as the module under test, in this case, and 2 . This is followed by an instance name (instl) followed by a left parenthesis. The . $x_{1}$ variable in line 31 refers to a port in the module that corresponds to a port ( $x_{1}$ ) in the test bench. All the ports in the module under test must be listed. The keyword endmodule is the last line in the test bench.

The binary outputs for this test bench are shown in Figure 1.20. The output can be presented in binary (b or B), in octal (o or O), in hexadecimal (h or H), or in decimal (d or D).

The Verilog syntax will be covered in greater detail in subsequent sections. It is important at this point to concentrate on how the module under test is simulated and instantiated into the test bench.

```
x1 = 0, x2 = 0, z1 = 0
x1 = 0, x2 = 1, z1 = 0
x1 = 1, x2 = 0, z1 = 0
x1 = 1, x2 = 1, z1 = 1
```

Figure 1.20 Binary outputs for the test bench of Figure 1.19 for a 2-input AND gate.

Several different methods to generate test benches will be shown in subsequent sections. Each design in the book will be tested for correct operation by means of a test bench. Test benches provide clock pulses that are used to control the operation of a synchronous sequential machine. An initial statement is an ideal method to generate a waveform at discrete intervals of time for a clock pulse. The Verilog code in Figure 1.21 illustrates the necessary statements to generate clock pulses that have a duty cycle of $20 \%$.

### 1.4 Built-In Primitives

Logic primitives such as and, nand, or, nor, and not gates, as well as xor (exclusiveOR), and xnor (exclusive_NOR) functions are part of the Verilog language and are classified as multiple-input gates. These are built-in primitives that can be instantiated into a module.

```
//generate clock pulses of 20% duty cycle
module clk_gen (clk);
output clk;
reg clk;
initial
begin
    #O clk = 0;
    #5 clk = 1;
    #5 clk = 0;
    #20 clk = 1;
    #5 clk = 0;
    #20 clk = 1;
    #5 clk = 0;
    #10 $stop;
end
endmodule
```

Figure 1.21 Verilog code to generate clock pulses with a $20 \%$ duty cycle.

These are built-in primitive gates used to describe a net and have one or more scalar inputs, but only one scalar output. The output signal is listed first, followed by the inputs in any order. The outputs are declared as wire; the inputs can be declared as either wire or reg. The gates represent a combinational logic function and can be instantiated into a module, as follows, where the instance name is optional:

```
gate_type inst1 (output, input_1, input_2, . . , input_n);
```

Two or more instances of the same type of gate can be specified in the same construct, as follows:

```
gate_type inst1 (output_1, input_11, input_12, . . ., input_1n),
    inst2 (output_2, input_21, input_22, . . , input_2n),
    instm(output_m, input_m1, input_m2, . . , input_mn);
```

and This is a multiple-input built-in primitive gate that performs the AND function for a multiple-input AND gate. If any input is an $\mathbf{x}$, then this represents an unknown logic value. If and entry is a $\mathbf{z}$, then this represents a high impedance state, which indicates that the driver of a net is disabled or not connected. AND gates can be represented by two symbols as shown below for the AND function and the OR function.

AND gate for the AND function


AND gate for the OR function

buf A buf gate is a noninverting primitive with one scalar input and one or more scalar outputs. The output terminals are listed first when instantiated; the input is listed last, as shown below. The instance name is optional.

```
buf inst1 (output, input); //one output
buf inst2 (output_1, output_2, . . , output_n, input); //multiple outputs
```

nand This is a multiple-input built-in primitive gate that operates as an AND function with a negative output. NAND gates can be represented by two symbols as shown below for the AND function and the OR function.

NAND gate for the AND function


NAND gate for the OR function


DeMorgan's theorems are associated with NAND and NOR gates and convert the complement of a sum term or a product term into a corresponding product or sum term, respectively. For every $x_{1}, x_{2} \in B$,
(a) $\left(x_{1} \cdot x_{2}\right)^{\prime}=x_{1}{ }^{\prime}+x_{2}{ }^{\prime} \quad$ Nand gate
(b) $\quad\left(x_{1}+x_{2}\right)^{\prime}=x_{1}{ }^{\prime} \cdot x_{2}{ }^{\prime} \quad$ NOR gate

DeMorgan's laws can be generalized for any number of variables.
nor This is a multiple-input built-in primitive gate that operates as an OR function with a negative output. NOR gates can be represented by two symbols as shown below for the OR function and the AND function.

NOR gate for the OR function


NOR gate for the AND function

not A not gate is an inverting built-in primitive with one scalar input and one or more scalar outputs. The output terminals are listed first when instantiated; the input is listed last, as shown below. The instance name is optional.
not inst1 (output, input); //one output
not inst2 (output_1, output_2,..., output_n, input); //multiple outputs
The NOT function can be represented by two symbols as shown below depending on the assertion levels required. The function of the inverters is identical; the low assertion is placed at the input or output for readability with associated logic.

NOT (inverter) function with low assertion output


NOT (inverter) function with low assertion input

or This is a multiple-input built-in primitive gate that operates as an OR function. OR gates can be represented by two symbols as shown below for the OR function and the AND function.

OR gate for the OR function


OR gate for the AND function

xnor This is a built-in primitive gate that functions as an exclusive-OR gate with a negative output. Exclusive-NOR gates can be represented by the symbol shown below. An exclusive-NOR gate is also called an equality function because the output is a logical 1 whenever the two inputs are equal.

Exclusive-NOR gate


The equation for the exclusive-NOR gate shown above is

$$
z_{1}=\left(x_{1} x_{2}\right)+\left(x_{1}{ }^{\prime} x_{2}^{\prime}\right)
$$

xor This is a built-in primitive gate that functions as an exclusive-OR circuit. Exclusive-OR gates can be represented by the symbol shown below. The output of an exclusive-OR gate is a logical 1 whenever the two inputs are different.

Exclusive-OR gate


The equation for the exclusive-OR gate shown above is

$$
z_{1}=\left(x_{1} x_{2}^{\prime}\right)+\left(x_{1}^{\prime} x_{2}\right)
$$

### 1.4.1 Built-In Primitive Design Examples

The best way to learn design methodologies using built-in primitives is by examples. Therefore, examples will be presented ranging from very simple to moderately complex. When necessary, the theory for the examples will be presented prior to the Verilog design. All examples are carried through to completion at the gate level. Nothing is left unfinished or partially designed.

Example 1.1 The Karnaugh map of Figure 1.22 will be implemented using only NOR gates in a product-of-sums format. Equation 1.7 shown the product-of-sums expression obtained from the Karnaugh map. The logic diagram is shown in Figure 1.23 which indicates the instantiation names and net names.


Figure 1.22 Karnaugh map for Example 1.1.

$$
\begin{equation*}
z_{1}=\left(x_{1}+x_{2}+x_{4}\right)\left(x_{2}+x_{3}^{\prime}+x_{4}\right)\left(x_{2}^{\prime}+x_{3}^{\prime}+x_{4^{\prime}}\right) \tag{1.7}
\end{equation*}
$$



Figure 1.23 Logic diagram for Example 1.1.

The design module is shown in Figure 1.24 using NOR gate built-in primitives. The test bench is shown in Figure 1.25 using a different approach to generate all 16 combinations of the four inputs. Several new modeling constructs are shown in the test bench. Since there are four inputs to the circuit, all 16 combinations of four variables must be applied to the circuit. This is accomplished by a for loop statement, which is similar in construction to a for loop in the C programming language.

```
//logic diagram using built-in primitives
module log_eqn_pos5 (x1, x2, x3, x4, z1);
input x1, x2, x3, x4;
output z1;
//instantiate the nor built-in primitives
nor inst1 (net1, x1, x2, x4);
nor inst2 (net2, x2, x4, ~x3);
nor inst3 (net3, ~x3, ~x2, ~x4);
nor inst4 (z1, net1, net2, net3);
endmodule
```

Figure 1.24 Module for the product-of-sums logic diagram of Figure 1.23.

```
//test bench for log_eqn_pos5
module log_eqn_pos5_tb;
reg x1, x2, x3, x4;
wire z1;
//apply input vectors
initial
begin: apply_stimulus
    reg [4:0] invect; //invect[4] terminates the loop
    for (invect = 0; invect < 16; invect = invect + 1)
        begin
            {x1, x2, x3, x4} = invect[4:0];
            #10 $display ("x1\times2\times3\times4 = %b, z1 = %b",
                                    {x1, x2, x3, x4}, z1);
        end
end
//continued on next page
```

Figure 1.25 Test bench for the design module of Figure 1.24.

```
//instantiate the module into the test bench
log_eqn_pos5 inst1 (
    .x1(x1),
    .x2(x2),
    .x3(x3),
    .x4(x4),
    .z1(z1)
    );
endmodule
```

Figure 1.25 (Continued)

Referring to the test bench of Figure 1.25, following the keyword begin is the name of the block: apply_stimulus. In this block, a 5-bit reg variable is declared called invect. This guarantees that all combinations of the four inputs will be tested by the for loop, which applies input vectors of $x_{1} x_{2} x_{3} x_{4}=0000,0001,0010,0011 \ldots 1111$ to the circuit. The for loop stops when the pattern 10000 is detected by the test segment (invect $<16$ ). If only a 4-bit vector were applied, then the expression (invect $<16$ ) would always be true and the loop would never terminate. The increment segment of the for loop does not support an increment designated as invect ++ ; therefore, the long notation must be used: invect $=$ invect +1 .

The target of the first assignment within the for loop ( $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=$ invect [4:0]) represents a concatenated target. The concatenation of inputs $x_{1}, x_{2}, x_{3}$, and $x_{4}$ is performed by positioning them within braces: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. A vector of five bits ([4:0]) is then assigned to the inputs. This will apply inputs of $0000,0001,0010,0011$, $\ldots 1111$ and stop when the vector is 10000 .

The initial statement also contains a system task (\$display) which prints the argument values - within the quotation marks - in binary. The concatenated variables $x_{1}, x_{2}, x_{3}$, and $x_{4}$ are listed first; therefore, their values are obtained from the first argument to the right of the quotation marks: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. The value for the second variable $z_{1}$ is obtained from the second argument to the right of the quotation marks. The variables to the right of the quotation marks are listed in the same order as the variables within the quotation marks.

The delay time (\#10) in the system task specifies that the task is to be executed after 10 time units; that is, the delay between the application of a vector and the response of the module. This delay represents the propagation delay of the logic. The simulation results are shown in binary format in Figure 1.26.

```
x1\times2\times3x4 = 0000, z1 = 0
x1x2x3x4=0001, z1 = 1
x1\times2\times3\times4 = 0010, z1 = 0
```

$x 1 \times 2 \times 3 \times 4=0011, z_{1}=1 \quad / / c o n t i n u e d$ on next page

Figure 1.26 Outputs generated by the test bench of Figure 1.25.

```
x1x2x3x4 = 0100, z1 = 1
x1\times2\times3\times4 = 0101, z1 = 1
x1x2x3x4 = 0110, z1 = 1
x1\times2\times3x4 = 0111, z1 = 0
x1\times2\times3\times4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 1
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 1
x1x2x3x4 = 1100, z1 = 1
x1x2x3x4 = 1101, z1 = 1
x1\times2\times3x4 = 1110, z1 = 1
x1\times2\times3x4 = 1111, z1 = 0
```

Figure 1.26 (Continued)

Example 1.2 Equation 1.8 will be minimized as a sum-of-products form and then implemented using built-in primitives of AND and OR with $x_{4}$ and $x_{5}$ as map-entered variables. Variables may be entered in a Karnaugh map as map-entered variables, together with 1 s and 0 s . A map of this type is more compact than a standard Karnaugh map, but contains the same information. A map containing map-entered variables is particularly useful in analyzing and synthesizing synchronous sequential machines. When variables are entered in a Karnaugh map, two or more squares can be combined only if the squares are adjacent and contain the same variable(s).

$$
\begin{align*}
z_{1}= & x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{4} x_{5}^{\prime}+x_{1}^{\prime} x_{2}+x_{1}{ }^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{4} x_{5}+x_{1} x_{2}{ }^{\prime} x_{3}{ }^{\prime} x_{4} x_{5} \\
& +x_{1} x_{2}^{\prime} x_{3}+x_{1} x_{2}{ }^{\prime} x_{3}{ }^{\prime} x_{4}^{\prime}+x_{1} x_{2}{ }^{\prime} x_{3}^{\prime} x_{5}^{\prime} \tag{1.8}
\end{align*}
$$

The Karnaugh map is shown in Figure 1.27 in which the following minterm locations combine:

Minterm location $0=x_{4} x_{5}^{\prime}+x_{4} x_{5}=x_{4}$
Minterm location $2=1+x_{4}$
Combine minterm locations 0 and 2 to yield the sum term $x_{1}{ }^{\prime} x_{3}{ }^{\prime} x_{4}$
Combine minterm locations 2 and 3 to yield $x_{1}{ }^{\prime} x_{2}$
Minterm location $4=x_{4} x_{5}+x_{4}^{\prime}+x_{5}^{\prime}=1$
Minterm location $5=1$
Combine minterm locations 4 and 5 to yield $x_{1} x_{2}{ }^{\prime}$


Figure 1.27 Karnaugh map for Example 1.2.

The minimized sum-of-products equation from the Karnaugh map is shown in Equation 1.9. The logic diagram is shown in Figure 1.28. The design module is shown in Figure 1.29 and the test bench is shown in Figure 1.30. Figure 1.31 lists the outputs obtained from the test bench.

$$
\begin{equation*}
z_{1}=x_{1}{ }^{\prime} x_{3}{ }^{\prime} x_{4}+x_{1}{ }^{\prime} x_{2}+x_{1} x_{2}{ }^{\prime} \tag{1.9}
\end{equation*}
$$



Figure 1.28 Logic diagram for Equation 1.9.

```
//logic equation using map-entered variables
module mev (x1, x2, x3, x4, z1);
input x1, x2, x3, x4;
output z1;
and inst1 (net1, ~x1, ~x3, x4);
and inst2 (net2, ~x1, x2);
and inst3 (net3, x1, ~x2);
or inst4 (z1, net1, net2, net3);
endmodule
```

Figure 1.29 Design module to implement Equation 1.9 using built-in primitives.

```
//test bench for logic equation using map-entered variables
module mev_tb;
reg x1, x2, x3, x4;
wire z1;
initial //apply input vectors
begin: apply_stimulus
    reg [4:0] invect;
    for (invect=0; invect<16; invect=invect+1)
        begin
            {x1, x2, x3, x4} = invect [4:0];
                #10 $display ("x1x2x3x4 = %b, z1 = %b",
                        {x1, x2, x3, x4}, z1);
    end
end
//instantiate the module into the test bench
mev inst1 (
    .x1(x1),
    .x2(x2),
    .x3(x3),
    .x4(x4),
    .z1(z1)
    );
endmodule
```

Figure 1.30 Test bench for the design module of Figure 1.29.


Figure 1.31 Outputs for the test bench of Figure 1.30.

Example 1.3 A 4:1 multiplexer will be designed using built-in logic primitives. The $4: 1$ multiplexer of Figure 1.32 will be designed using built-in primitives of AND, OR, and NOT. The design is simpler and takes less code if a continuous assignment statement is used, but this section presents gate-level modeling only - continuous assignment statements are used in dataflow modeling.

The multiplexer has four data inputs: $d_{3}, d_{2}, d_{1}$, and $d_{0}$, which are specified as a 4-bit vector $d[3: 0]$, two select inputs: $s_{1}$ and $s_{0}$, specified as a 2-bit vector $s[1: 0]$, one scalar input Enable, and one scalar output $z_{1}$, as shown in the logic diagram of Figure 1.32.. Also, the system function $\$$ time will be used in the test bench to return the current simulation time measured in nanoseconds (ns). The design module is shown in Figure 1.33, the test bench in Figure 1.34, and the outputs in Figure 1.35.


Figure 1.32 Logic diagram of a 4:1 multiplexer to be designed using built-in primitives.

```
//a 4:1 multiplexer using built-in primitives
module mux_4tol (d, s, enbl, zl);
input [3:0] d;
input [1:0] s;
input enbl;
output z1;
    //continued on next page
```

Figure 1.33 Module for a 4:1 multiplexer with Enable using built-in primitives.

```
not inst1 (net1, s[0]),
    inst2 (net2, s[1]);
and inst3 (net3, d[0], net1, net2, enbl),
    inst4 (net4, d[1], s[0], net2, enbl),
    inst5 (net5, d[2], net1, s[1], enbl),
    inst6 (net6, d[3], s[0], s[1], enbl);
or inst7 (z1, net3, net4, net5, net6);
endmodule
```

Figure 1.33 (Continued)

```
//test bench for 4:1 multiplexer
module mux_4to1_tb;
reg [3:0] d;
reg [1:0] s;
reg enbl;
wire z1;
initial
$monitor ($time,"ns, select:s=%b, inputs:d=%b, output:z1=%b",
    s, d, z1);
initial
begin
    #0 s[0]=1'b0; s[1]=1'b0;
        d[0]=1'b0; d[1]=1'b1; d[2]=1'b0; d[3]=1'b1;
        enbl=1'b1; //d[0]=0; z1=0
    #10 s[0]=1'b0; s[1]=1'b0;
        d[0]=1'b1; d[1]=1'b1; d[2]=1'b0; d[3]=1'b1;
        enbl=1'b1; //d[0]=1; z1=1
    #10 s[0]=1'b1; s[1]=1'b0;
        d[0]=1'b1; d[1]=1'b1; d[2]=1'b0; d[3]=1'b1;
        enbl=1'b1; //d[1]=1; z1=1
    #10 s[0]=1'b0; s[1]=1'b1;
        d[0]=1'b1; d[1]=1'b1; d[2]=1'b0; d[3]=1'b1;
        enbl=1'b1; //d[2]=0; z1=0
                                //continued on next page
```

Figure 1.34 Test bench for the 4:1 multiplexer of Figure 1.33.

```
    #10 s[0]=1'b1; s[1]=1'b0;
    d[0]=1'b1; d[1]=1'b0; d[2]=1'b0; d[3]=1'b1;
    enbl=1'b1; //d[1]=1; z1=0
    #10 s[0]=1'b1; s[1]=1'b1;
    d[0]=1'b1; d[1]=1'b1; d[2]=1'b0; d[3]=1'b1;
    enbl=1'b1; //d[3]=1; z1=1
    #10 s[0]=1'b1; s[1]=1'b1;
    d[0]=1'b1; d[1]=1'b1; d[2]=1'b0; d[3]=1'b0;
    enbl=1'b1; //d[3]=0; z1=0
    #10 s[0]=1'b1; s[1]=1'b1;
    d[0]=1'b1; d[1]=1'b1; d[2]=1'b0; d[3]=1'b0;
    enbl=1'b0; //d[3]=0; z1=0
    #10 $stop;
end
//instantiate the module into the test bench
mux_4to1 inst1 (
    .d(d),
    .s(s),
    .z1(z1),
    .enbl (enbl)
    );
endmodule
```

Figure 1.34 (Continued)

```
0 ns, select:s=00, inputs:d=1010, output:z1=0
1 0 ~ n s , ~ s e l e c t : s = 0 0 , ~ i n p u t s : d = 1 0 1 1 , ~ o u t p u t : z 1 = 1
20 ns, select:s=01, inputs:d=1011, output:z1=1
30 ns, select:s=10, inputs:d=1011, output:z1=0
4 0 ~ n s , ~ s e l e c t : s = 0 1 , ~ i n p u t s : d = 1 0 0 1 , ~ o u t p u t : z 1 = 0
50 ns, select:s=11, inputs:d=1011, output:z1=1
6 0 ~ n s , ~ s e l e c t : s = 1 1 , ~ i n p u t s : d = 0 0 1 1 , ~ o u t p u t : z 1 = 0
```

Figure 1.35 Outputs for the $4: 1$ multiplexer test bench of Figure 1.34.

Example 1.4 This example illustrates the design of a majority circuit using built-in primitives. The output of a majority circuit is a logic 1 if the majority of the inputs is a logic 1 ; otherwise, the output is a logic 0 . Therefore, a majority circuit must have an odd number of inputs in order to have a majority of the inputs at the same logic level.

A 5-input majority circuit will be designed using the Karnaugh map of Figure 1.36, where a 1 entry indicates that the majority of the inputs is a logic 1.

| $x_{5}=0$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $x_{1} x_{2}$ | 00 | 01 | 11 | 0 |
|  | 0 | 2 | 6 | 4 |
| 00 | 0 | 0 | 0 | 0 |
| 01 | 8 | 10 | 14 | 12 |
|  | 0 | 0 | 1 | 0 |
| 11 | 24 | 26 | 30 | 28 |
|  | 0 | 1 | 1 | 1 |
| 10 | 16 | 18 | 22 | 20 |
|  | 0 | 0 | , | 0 |


| $x_{5}=1$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $x_{1} x_{2}$ | 00 | 01 | 11 | 10 |
|  | $0^{1}$ | $0^{3}$ | $1^{7}$ | $0^{5}$ |
| 01 | 9 | 11 | 15 | 13 |
|  | 0 | 1 | 1 | 1 |
| 11 | 125 | $1^{27}$ | $1^{31}$ | $1{ }^{29}$ |
| 10 | 17 | 19 | 23 | 21 |
|  | 0 | 1 | 1 | 1 |

$z_{1}$
Figure 1.36 Karnaugh map for the majority circuit of Example 1.4.

Equation 1.10 represents the logic for output $z_{1}$ in a sum-of-products form. The design module is shown in Figure 1.37, which is designed directly from Equation 1.10 without the use of a logic diagram. The test bench is shown in Figure 1.38, and the outputs are shown in Figure 1.39.

$$
\begin{align*}
z_{1}= & x_{3} x_{4} x_{5}+x_{2} x_{3} x_{5}+x_{1} x_{3} x_{5}+x_{2} x_{4} x_{5}+x_{1} x_{4} x_{5} \\
& +x_{1} x_{2} x_{5}+x_{1} x_{2} x_{4}+x_{2} x_{3} x_{4}+x_{1} x_{3} x_{4} \tag{1.10}
\end{align*}
$$

```
//5-input majority circuit
module majority (x1, x2, x3, x4, x5, z1);
input x1, x2, x3, x4, x5;
output z1;
and inst1 (net1, x3, x4, x5),
    inst2 (net2, x2, x3, x5),
    inst3 (net3, x1, x3, x5),
    inst4 (net4, x2, x4, x5), //continued on next page
```

Figure 1.37 Design module for the majority circuit of Figure 1.36.

```
    inst5 (net5, x1, x4, x5),
    inst6 (net6, x1, x2, x5),
    inst7 (net7, x1, x2, x4),
    inst8 (net8, x2, x3, x4),
    inst9 (net9, x1, x3, x4);
or inst10 (z1, net1, net2, net3, net4, net5,
    net6, net7, net8, net9);
endmodule
```

Figure 1.37 (Continued)

```
//test bench for 5-input majority circuit
module majority_tb;
reg x1, x2, x3, x4, x5;
wire z1;
//apply input vectors
initial
begin: apply_stimulus
    reg [6:0] invect;
    for (invect=0; invect<32; invect=invect+1)
            begin
                                    {x1, x2, x3, x4, x5} = invect [6:0];
                                    #10 $display ("x1\times2\times3\times4\times5 = %b, z1 = %b",
                                    {x1, x2, x3, x4, x5}, z1);
        end
end
//instantiate the module into the test bench
majority inst1 (
    .x1(x1),
    .x2(x2),
    .x3(x3),
    .x4(x4),
    .x5(x5),
    .z1(z1)
    );
endmodule
```

Figure 1.38 Test bench for the majority circuit module of Figure 1.37.

```
x1\times2x3x4x5 = 00000, z1 = 0 x1x2x3x4x5 = 10000, z1 = 0
x1\times2\times3\times4x5 = 00001, z1 = 0 x1\times2\times3\times4\times5 = 10001, z1 = 0
x1\times2\times3\times4\times5 = 00010, z1 = 0 x1x2x3x4x5 = 10010, z1 = 0
x1\times2\times3\times4x5 = 00011, z1 = 0 x1\times2\times3\times4\times5 = 10011, z1 = 1
x1\times2\times3\times4\times5 = 00100, z1 = 0 x1\times2\times3\times4\times5 = 10100, z1 = 0
x1\times2\times3\times4\times5 = 00101, z1 = 0 x1\times2\times3\times4\times5 = 10101, z1 = 1
x1\times2\times3\times4\times5 = 00110, z1 = 0 x1\times2\times3\times4\times5 = 10110, z1 = 1
x1\times2\times3\times4\times5 = 00111, z1 = 1 x1\times2\times3\times4\times5 = 10111, z1 = 1
x1\times2\times3\times4x5 = 01000, z1 = 0 x1\times2\times3\times4\times5 = 11000, z1 = 0
x1\times2\times3\times4x5 = 01001, z1 = 0 x1\times2\times3\times4\times5 = 11001, z1 = 1
x1\times2\times3\times4x5 = 01010, z1 = 0 x1\times2\times3\times4\times5 = 11010, z1 = 1
x1\times2\times3\times4\times5 = 01011, z1 = 1 x1\times2\times3\times4\times5 = 11011, z1 = 1
x1\times2\times3x4x5 = 01100, z1 = 0 x1x2x3x4\times5 = 11100, z1 = 1
x1\times2\times3\times4\times5 = 01101, z1 = 1 x1x2x3x4\times5 = 11101, z1 = 1
x1x2x3x4x5 = 01110, z1 = 1 x1x2x3x4x5 = 11110, z1 = 1
x1\times2\times3\times4\times5 = 01111, z1 = 1 x1\times2\times3\times4\times5 = 11111, z1 = 1
```

Figure 1.39 Outputs for the majority circuit of Figure 1.37.

Example 1.5 A code converter will be designed to convert a 4-bit binary number to the corresponding Gray code number. The inputs of the binary number $x_{1} x_{2} x_{3} x_{4}$ are available in both high and low assertion, where $x_{4}$ is the low-order bit. The outputs for the Gray code $z_{1} z_{2} z_{3} z_{4}$ are asserted high, where $z_{4}$ is the low-order bit. The binary-toGray code conversion table is shown in Table 1.13.

Table 1.13 Binary-to-Gray Code Conversion

| Binary Code |  |  |  | Gray Code |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $z_{1}$ | $z_{2}$ | $z_{3}$ | $z_{4}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
|  |  |  | $/ / c o n t i n u e d ~ o n ~ n e x t ~ p a g e ~$ |  |  |  |  |

Table 1.13 Binary-to-Gray Code Conversion

| Binary Code |  |  |  |  | Gray Code |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $z_{1}$ | $z_{2}$ | $z_{3}$ | $z_{4}$ |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |

There are four Karnaugh maps shown in Figure 1.40, one map for each of the Gray code outputs. The equations obtained from the Karnaugh maps are shown in Equation 1.11. The logic diagram is shown in Figure 1.41. The design module is shown in Figure 1.42, the test bench module is shown in Figure 1.43, and the outputs are shown in Figure 1.44.

| $\begin{gathered} x_{3} x_{4} \\ x_{1} x_{2} \\ 00 \end{gathered} 01 \quad 11 \quad 10$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| - 00 | $0$ | $0^{1}$ | $0^{3}$ | $0{ }^{2}$ |
| 01 | $0^{4}$ | $0^{5}$ | $0^{7}$ | $0^{6}$ |
| 11 | $1{ }^{12}$ | $1{ }^{13}$ | $1^{15}$ | $1{ }^{14}$ |
| 10 | $1{ }^{8}$ | $1{ }^{9}$ | $1^{11}$ | $1{ }^{10}$ |


| $\begin{gathered} x_{3} x_{4} \\ x_{1} x_{2} \quad{ }_{0} \quad 0 \end{gathered}$ |  | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | $0^{0}$ | $0^{1}$ | $0^{3}$ | $0^{2}$ |
| 01 | $1{ }^{4}$ | $1{ }^{5}$ | $1{ }^{7}$ | $1{ }^{6}$ |
| 11 | $0^{12}$ | $0^{13}$ | $0^{15}$ | $0^{14}$ |
| 10 | $1{ }^{8}$ | $1{ }^{9}$ | $1^{11}$ | $1{ }^{10}$ |


|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1^{3}$ | $1{ }^{2}$ |
| 01 | $1{ }^{4}$ | $1{ }^{5}$ | $0^{7}$ | $0^{6}$ |
| 11 | 12 | $1{ }^{13}$ | $0^{15}$ | $0^{14}$ |
| 10 | $0^{8}$ | $0{ }^{9}$ | $1^{11}$ | $1{ }^{10}$ |


| $\begin{equation*} x_{1} x_{2} \tag{00} \end{equation*}$ |  | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $0^{3}$ | $1{ }^{2}$ |
| 01 | $0{ }^{4}$ | $1{ }^{5}$ | $0^{7}$ | $1{ }^{6}$ |
| 11 | $0^{12}$ | $1{ }^{13}$ | $0^{15}$ | $1{ }^{14}$ |
| 10 | $0^{8}$ | $1{ }^{9}$ | $0^{11}$ | $1{ }^{10}$ |

Figure 1.40 Karnaugh maps for the binary-to-Gray code converter.

$$
\begin{align*}
& z_{1}=x_{1} \\
& z_{2}=x_{1}^{\prime} x_{2}+x_{1} x_{2}^{\prime}=x_{1} \oplus x_{2} \\
& z_{3}=x_{2} x_{3}^{\prime}+x_{2}^{\prime} x_{3}=x_{2} \oplus x_{3} \\
& z_{4}=x_{3}^{\prime} x_{4}+x_{3} x_{4}^{\prime}=x_{3} \oplus x_{4} \tag{1.11}
\end{align*}
$$



Figure 1.41 Logic diagram for the binary-to-Gray code converter.

```
//binary-to-gray code converter
module bin_to_gray (x1, x2, x3, x4, z1, z2, z3, z4);
input x1, x2, x3, x4;
output z1, z2, z3, z4;
buf inst1 (z1, x1);
xor inst2 (z2, x1, x2);
xor inst3 (z3, x2, x3);
xor inst4 (z4, x3, x4);
endmodule
```

Figure 1.42 Design module for the binary-to-Gray code converter.

```
//test bench for binary-to-gray code converter
module bin_to_gray_tb;
reg x1, x2, x3, x4;
wire z1, z2, z3, z4;

Figure 1.43 Test bench for the binary-to-Gray code converter.
```

//apply input vectors
initial
begin: apply_stimulus
reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)
begin
{x1, x2, x3, x4} = invect [4:0];
\#10 \$display ("{x1x2x3x4}=%.b, {z1z2z3z4}=%.b",
{x1, x2, x3, x4}, {z1, z2, z3, z4});
end
end
//instantiate the module into the test bench
bin_to_gray inst1 (
.x1(x1),
.x2(x2),
.x3(x3),
.x4(x4),
.z1(z1),
.z2(z2),
.z3(z3),
.z4(z4)
);
endmodule

```

Figure 1.43 (Continued)
```

{x1x2x3x4}=0000, {z1z2z3z4}=0000
{x1x2x3x4}=0001, {z1z2z3z4}=0001
{x1x2x3x4}=0010, {z1z2z3z4}=0011
{x1x2x3x4}=0011, {z1z2z3z4}=0010
{x1x2x3x4}=0100, {z1z2z3z4}=0110
{x1x2x3x4}=0101, {z1z2z3z4}=0111
{x1x2x3x4}=0110, {z1z2z3z4}=0101
{x1x2x3x4}=0111, {z1z2z3z4}=0100
{x1x2x3x4}=1000, {z1z2z3z4}=1100
{x1x2x3x4}=1001, {z1z2z3z4}=1101
{x1x2x3x4}=1010, {z1z2z3z4}=1111
{x1x2x3x4}=1011, {z1z2z3z4}=1110
{x1x2x3x4}=1100, {z1z2z3z4}=1010
{x1x2x3x4}=1101, {z1z2z3z4}=1011
{x1x2x3x4}=1110, {z1z2z3z4}=1001
{x1x2x3x4}=1111, {z1z2z3z4}=1000

```

Figure 1.44 Outputs for the binary-to-Gray code converter.```

