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PREFACE

The Verilog language provides a means to model a digital system at many levels of
abstraction from a logic gate, to a complex digital system, to a mainframe computer.
The purpose of this book is to present the Verilog language together with a wide
variety of examples so that the reader can gain a firm foundation in the design of dig-
ital systems using Verilog HDL.  The different modeling constructs supported by
Verilog are described in detail.

Numerous examples are designed in each chapter. The examples include logical
operations, counters of different moduli, half adders, full adders, a carry lookahead
adder, array multipliers, the Booth multiply algorithm, different types of Moore and
Mealy machines, including sequence detectors, arithmetic and logic units (ALUs).
Also included are synchronous sequential machines and asynchronous sequential
machines, including pulse-mode asynchronous sequential machines.

Emphasis is placed on the detailed design of various Verilog projects.  The
projects include the design module, the test bench module, and the outputs obtained
from the simulator that illustrate the complete functional operation of the design.
Where applicable, a detailed review of the theory of the topic is presented together
with the logic design principles.  This includes state diagrams, Karnaugh maps,
equations, and the logic diagram.

The book is intended to be tutorial, and as such, is comprehensive and self-con-
tained.  All designs are carried through to completion — nothing is left unfinished or
partially designed.  Each chapter includes numerous problems of varying complexity
to be designed by the reader.

Chapter 1 presents an overview of the Verilog HDL language and discusses the
different design methodologies used in designing a project.  The chapter is intended
to introduce the reader to the basic concepts of Verilog modeling techniques, includ-
ing dataflow modeling, behavioral modeling, and structural modeling.  Examples are
presented to illustrate the different modeling techniques.  There are also sections that
incorporate more than one modeling construct in a mixed-design model.  The con-
cept of ports and modules is introduced in conjunction with the use of test benches
for module design verification.

The chapter introduces gate-level modeling using built-in primitive gates.  Ver-
ilog has a profuse set of built-in primitive gates that are used to model nets, including
and, nand, or, nor, xor, xnor, and not, among others.  This chapter presents a
design methodology that is characterized by a low level of abstraction, in which the
logic hardware is described in terms of gates.  This is similar to designing logic by
drawing logic gate symbols.
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The chapter also describes different techniques used to design logic circuits using
dataflow modeling.  These techniques include the continuous assignment statement,
reduction operators, the conditional operator, relational operators, logical operators,
bitwise operators, and shift operators.

This chapter also presents behavioral modeling, which describes the behavior of a
digital system and is not concerned with the direct implementation of logic gates, but
more on the architecture of the system.  This is an algorithmic approach to hardware
implementation and represents a higher level of abstraction than previous modeling
methods.

Also included in this chapter is structural modeling, which consists of instantiat-
ing one or more of the following design objects into the module:

• Built-in primitives
• User-defined primitives (UDPs)
• Design modules

Instantiation means to use one or more lower-level modules — including logic prim-
itives — that are interconnected in the construction of a higher-level structural mod-
ule.

Chapter 2 presents combinational logic design using Verilog HDL.  Verilog is
used to design multiplexers, comparators, programmable logic devices, and a variety
of logic equations in this chapter.  A combinational logic circuit is one in which the
outputs are a function of the present inputs only.  This chapter also includes number
systems and Boolean algebra.  The number systems are binary, octal, decimal, and
hexadecimal.  Boolean algebra is a systematic treatment of the logic operations
AND, OR, NOT, exclusive-OR, and exclusive-NOR.  The axioms and theorems of
Boolean algebra are also presented.  The programmable logic devices include pro-
grammable read-only memories, programmable array logic devices, and programma-
ble logic array devices.

Chapter 3 presents the design of sequential logic using Verilog HDL.  The
examples include both Moore and Mealy sequential machines.  Moore machines are
synchronous sequential machines in which the output function produces an output
vector which is determined by the present state only, and is not a function of the
present inputs.  This is in contrast to Mealy synchronous sequential machines in
which the output function produces an output vector which is determined by both the
present input vector and the present state of the machine.

This chapter describes three types of sequential machines: synchronous sequen-
tial machines which use a system clock and generally require a state diagram or a
state table for its precise description; asynchronous sequential machines in which
there is no system clock — state changes occur on the application of input signals
only; and pulse-mode asynchronous sequential machines in which state changes
occur on the application of input pulses which trigger the storage elements, rather
than on a system clock signal.

Chapter 4 presents arithmetic operations for the three primary number represen-
tations: fixed-point, binary-coded decimal (BCD), and floating-point.  For fixed-
point, the radix point is placed to the immediate right of the number for integers or to
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the immediate left of the number for fractions.  For binary-coded decimal, each deci-
mal digit can be encoded into a corresponding binary number; however, only ten
decimal digits are valid.  For floating-point, the numbers consist of the following
three fields: a sign bit, an exponent e, and a fraction f, as shown below for radix r.
Addition, subtraction, multiplication, and division will be applied to all three number
representations.

For fixed-point addition,the two operands are the augend and the addend.  The
addend is added to the augend to produce the sum.  Addition of two binary operands
treats both signed and unsigned operands the same — there is no distinction between
the two types of numbers during the add operation.  If the numbers are signed, then
the sign bit can be extended to the left indefinitely without changing the value of the
number.

For fixed-point subtraction, the two operands are the minuend and the subtra-
hend.  The subtrahend is subtracted from the minuend to produce the difference.
Subtraction can be performed in all three number representations: sign magnitude,
diminished-radix complement, and radix complement; however, radix complement
is the easiest and most widely used method for subtraction in any radix.

For fixed-point multiplication, the two operands are the multiplicand and the
multiplier.  The n-bit multiplicand is multiplied by the n-bit multiplier to generate the
2n-bit product.  In all methods of multiplication the product is usually 2n bits in
length.  The operands can be either unsigned or signed numbers in 2s complement
representation.

For fixed-point division, the two operands are the dividend and the divisor.  The
2n-bit dividend is divided by the n-bit divisor to produce an n-bit quotient and an n-
bit remainder, as shown below.

2n-bit dividend = (n-bit divisor  n-bit quotient) + n-bit remainder

For binary-coded decimal addition, and other BCD calculations, the highest-val-
ued decimal digit is 9, which requires four bits in the binary representation (1001).
Therefore, each operand is represented by a 4-bit BCD code.  Since four binary bits
have sixteen combinations (0000 – 1111) and the range for a single decimal digit is 0
– 9, six of the sixteen combinations (1010 – 1111) are invalid for BCD.  These
invalid BCD digits must be converted to valid digits by adding six to the digit.  This
is the concept for addition with sum correction.  The adder must include correction
logic for intermediate sums that are greater than or equal to 1010 in radix 2.

For binary-coded decimal subtraction, the BCD code is not self-complementing
as is the radix 2 fixed-point number representation; that is, the r – 1 complement can-
not be acquired by inverting each bit of the 4-bit BCD digit.  Therefore, a 9s comple-
menter must be designed that provides the same function as the diminished-radix
complement for the fixed-point number representation.  Thus, subtraction in BCD is
essentially the same as in fixed-point binary.

A = f  r e
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For binary-coded decimal multiplication, the algorithms for BCD multiplication
are more complex than those for fixed-point multiplication.  This is because decimal
digits consist of four binary bits and have values in the range of 0 to 9, whereas
fixed-point digits have values of 0 or 1.  One method that is commonly used is to per-
form the multiplication in the fixed-point number representation; then convert the
product to the BCD number representation.  This is accomplished by utilizing a
binary-to-decimal converter, which is used to convert a fixed-point multiplication
product to the decimal number representation.

For binary-coded decimal division, the division process is first reviewed by
using examples of the restoring division method.  Then a mixed-design (behavioral/
dataflow) module is presented.  The dividend is an 8-bit vector, a[7:0]; the divisor is
a 4-bit vector, b[3:0]; and the result is an 8-bit quotient/remainder vector, rslt[7:0].

For floating-point addition, the material presented is based on the Institute of
Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-Point
Arithmetic IEEE Std 754-1985 (Reaffirmed 1990).  Floating-point numbers consist
of the following three fields: a sign bit s, an exponent e, and a fraction f.  Unbiased
and biased exponents are explained.  Numerical examples are given that clarify the
technique for adding floating-point numbers.  The floating-point addition algorithm
is given in a step-by-step procedure. A floating-point adder is implemented using
behavioral modeling.

For floating-point subtraction, several numerical examples are presented that
graphically portray the steps required for true addition and true subtraction for float-
ing-point operands.  True addition produces a result that is the sum of the two oper-
ands disregarding the signs; true subtraction produces a result that is the difference of
the two operands disregarding the signs.  A behavioral module is presented that illus-
trates subtraction operations which yield results that are either true addition or true
subtraction.

For floating-point multiplication, numerical examples are presented that illustrate
the operation of floating-point multiplication.  In floating-point multiplication, the
fractions are multiplied and the exponents are added.  The fractions are multiplied by
any of the methods previously used in fixed-point multiplication.  The operands are
two normalized floating-point operands.  Fraction multiplication and exponent addi-
tion are two independent operations and can be done in parallel.  Floating-point mul-
tiplication is defined as follows:

A  B = (fA  fB)  r
(eA + eB)

For floating-point division, the operation is accomplished by dividing the frac-
tions and subtracting the exponents.  The fractions are divided by any of the methods
presented in the section on fixed-point division and overflow is checked in the same
manner.  Fraction division and exponent subtraction are two independent operations
and can be done in parallel.  Floating-point division is defined as follows:

A / B = (fA / fB)  r(eA – eB)
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Appendix A presents a brief discussion on event handling using the event queue.
Operations that occur in a Verilog module are typically handled by an event queue.

Appendix B presents a procedure to implement a Verilog project.
Appendix C contains the solutions to selected problems in each chapter.

The material presented in this book represents more than two decades of com-
puter equipment design by the author.  The book is not intended as a text on logic
design, although this subject is reviewed where applicable.  It is assumed that the
reader has an adequate background in combinational and sequential logic design.
The book presents the Verilog HDL with numerous design examples to help the
reader thoroughly understand this popular HDL.

This book is designed for practicing electrical engineers, computer engineers,
and computer scientists; for graduate students in electrical engineering, computer
engineering, and computer science; and for senior-level undergraduate students.

A special thanks to David Dutton, CEO of Silvaco Incorporated, for allowing
use of the SILOS Simulation Environment software for the examples in this book.
SILOS is an intuitive, easy-to-use, yet powerful Verilog HDL simulator for logic
verification.

I would like to express my appreciation and thanks to the following people who
gave generously of their time and expertise to review the manuscript and submit
comments: Professor Daniel W. Lewis, Department of Computer Engineering, Santa
Clara University who supported me in all my endeavors; Geri Lamble; and Steve
Midford.  Thanks also to Nora Konopka and the staff at Taylor & Francis for their
support.

Joseph Cavanagh
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1

1
Introduction to Logic Design 
Using Verilog HDL

This chapter provides an introduction to the design methodologies and modeling con-
structs of the Verilog hardware description language (HDL).  Modules, ports, and test
benches will be presented.  This chapter introduces Verilog in conjunction with com-
binational logic and sequential logic.  The Verilog simulator used in this book is easy
to learn and use, yet powerful enough for any application.  It is a logic simulator —
called SILOS — developed by Silvaco Incorporated for use in the design and verifi-
cation of digital systems.  The SILOS simulation environment is a method to quickly
prototype and debug any application-specific integrated circuit (ASIC), field-pro-
grammable gate array (FPGA), or complex programmable logic device (CPLD) de-
sign.

Language elements will be described, which consist of comments, logic gates,
logic macro functions, parameters, procedural control statements which modify the
flow of control in a program, and data types.  Also presented will be expressions con-
sisting of operands and operators.  Built-in primitives are discussed which are used to
describe  a net.  In addition to built-in primitives, user-defined primitives (UDPs) are
presented which are  at a higher-level logic function than built-in primitives.

This chapter also presents dataflow modeling which is at a higher level of abstrac-
tion than built-in primitives or user-defined primitives.  Dataflow modeling corre-
sponds one-to-one with conventional logic design at the gate level.  Also introduced is
behavioral modeling which describes the behavior of the system and is not concerned
with the direct implementation of the logic gates but more on the architecture of the
machine.  Structural modeling is presented which instantiates one or more lower-level
modules into the design.  The objects that are instantiated are called instances.  A

1.1 Language Elements
1.2 Expressions
1.3 Modules and Ports
1.4 Built-in Primitives
1.5 User-Defined Primitives
1.6 Dataflow Modeling
1.7 Behavioral Modeling
1.8 Structural Modeling
1.9 Tasks and Functions
1.10 Problems
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module can be a logic gate, an adder, a multiplexer, a counter, or some other logical
function.  Structural modeling is described by the interconnection of these lower-level
logic primitives of modules.

Tasks and functions are also included in this chapter.  These constructs allow a be-
havioral module to be partitioned into smaller segments.  Tasks and functions permit
modules to execute common code segments that are written once then called when re-
quired, thus reducing the amount of code needed.

1.1 Logic Elements
Logic elements are the constituent parts of the Verilog language.  They consist of com-
ments, logic gates, parameters, procedural control statements which modify the flow
of control in a behavior, and data types.

1.1.1  Comments

Comments can be inserted into a Verilog module to explain the function of a particular
block of code or a line of code.  There are two types of comments: single line and mul-
tiple lines.  A single-line comment is indicated by a double forward slash (//) and may
be placed on a separate line or at the end of a line of code, as shown below.

A single-line comment usually explains the function of the following block of
code.  A comment on a line of code explains the function of that particular line of code.
All characters that follow the forward slashes are ignored by the compiler.

A multiple-line comment begins with a forward slash followed by an asterisk (/*)
and ends with an asterisk followed by a forward slash (*/), as shown below.  Multiple-
line comments cannot be nested.  All characters within a multiple-line comment are ig-
nored by the compiler.

1.1.2  Logic Gates

Figure 1.1 shows the logic gate distinctive-shape symbols.  The polarity symbol “ “
indicates an active-low assertion on either an input or an output of a logic symbol. 

//This is a single-line comment on a dedicated line
assign z1 = x1 | x2 //This is a comment on a line of code

/*This is a multiple-line comment.
More comments go here.
More comments. */
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Figure 1.1 Logic gate symbols for logic design: (a) AND gate, (b) OR gate, (c)
NOT function (inverter), (d) NAND gate, (e) NAND gate for the OR function, (f)
NOR gate, (g) NOR gate for the AND function.

The AND gate can also be used for the OR function, as shown below.

Distinctive shape

(a) AND

(b) OR

(c) NOT (inverter)

(d) NAND

(e) NAND

(f) NOR

(g) NOR

AND gate for the AND function AND gate for the OR function
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The OR gate can also be used for the AND function, as shown below.

An exclusive-OR gate is shown below.  The output of an exclusive-OR gate is a
logical 1 whenever the two inputs are different.

An exclusive-NOR gate is shown below.  An exclusive-NOR gate is also called an
equality function because the output is a logical 1 whenever the two inputs are equal.

Truth tables for the logic elements are shown in Table 1.1, Table 1.2, Table 1.3,
Table 1.4, Table 1.5, and Table 1.6.

OR gate for the OR function OR gate for the AND function

Exclusive-OR gate

Exclusive-NOR gate

Table 1.1  Truth Table
for the AND Gate

x1 x2 z1

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.2  Truth Table 
for the NAND Gate

x1 x2 z1

0 0 1
0 1 1
1 0 1
1 1 0

Table 1.3  Truth Table
for the OR Gate

x1 x2 z1

0 0 0
0 1 1
1 0 1
1 1 1

Table 1.4  Truth Table
for the NOR Gate

x1 x2 z1

0 0 1
0 1 0
1 0 0
1 1 0
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Fan-In Logic gates for the AND and OR functions can be extended to accommodate
more than two variables; that is, more than two inputs.  The number of inputs available
at a logic gate is called the fan-in.

Fan-Out The fan-out of a logic gate is the maximum number of inputs that the gate
can drive and still maintain acceptable voltage and current levels.  That is, the fan-out
defines the maximum load that the gate can handle.

1.1.3  Logic Macro Functions

Logic macro functions are those circuits that consist of several logic primitives to form
larger more complex functions.  Combinational logic macros include circuits such as
multiplexers, decoders, encoders, comparators, adders, subtractors, array multipliers,
array dividers, and error detection and correction circuits.  Sequential logic macros
include circuits such as: SR latches; D and JK flip-flops; counters of various moduli,
including count-up and count-down counters; registers, including shift registers; and
sequential multipliers and dividers.  This section will present the functional operation
of multiplexers, decoders, encoders, priority encoders, and comparators.

Multiplexers A multiplexer is a logic macro device that allows digital information
from two or more data inputs to be directed to a single output.  Data input selection is
controlled by a set of select inputs that determine which data input is gated to the out-
put.  The select inputs are labeled s0, s1, s2,     , si,    , sn–1, where s0 is the low-order
select input with a binary weight of 20 and sn–1 is the high-order select input with a
binary weight of 2n–1.  The data inputs are labeled d0, d1, d2,    , dj,    , dn–1.  Thus,
if a multiplexer has n select inputs, then the number of data inputs will be 2n and will
be labeled d0 through dn–1.  For example, if n = 2, then the multiplexer has two select
inputs s0 and s1 and four data inputs d0, d1, d2, and d3.

The logic diagram for a 4:1 multiplexer is shown in Figure 1.2.  There can also be
an enable input which gates the selected data input to the output.  Each of the four data
inputs x0, x1 , x2, and x3 is connected to a separate 3-input AND gate.  The select inputs

Table 1.5  Truth Table for
the Exclusive-OR Function

x1 x2 z1

0 0 0
0 1 1
1 0 1
1 1 0

Table 1.6  Truth Table for
the Exclusive-NOR Function

x1 x2 z1

0 0 1
0 1 0
1 0 0
1 1 1
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s0  and s1  are decoded to select a particular AND gate.  The output of each AND gate
is applied to a 4-input OR gate that provides the single output z1.  Input lines that are
not selected cannot be transferred to the output and are treated as “don’t cares.”

Figure 1.2 Logic diagram for a 4:1 multiplexer.

Figure 1.3 shows a typical multiplexer drawn in the ANSI/IEEE Std. 91-1984 for-
mat.  Consider the 4:1 multiplexer in Figure 1.3.  If s1 s0 = 00, then data input d0 is se-
lected and its value is propagated to the multiplexer output z1.  Similarly, if s1 s0 = 01,
then data input d1 is selected and its value is directed to the multiplexer output.

The equation that represents output z1 in the 4:1 multiplexer  is shown in Equation
1.1.  Output z1 assumes the value of d0 if s1 s0 = 00, as indicated by the term s1 's0 'd0 .
Likewise, z1 assumes the value of d1  when s1s0 = 01, as indicated by the term s1 's0d1 .

There is a one-to-one correspondence between the data input numbers di of a mul-
tiplexer and the minterm locations in a Karnaugh map.  Equation 1.2 is plotted on the
Karnaugh map shown in Figure 1.3(a) using x3as a map-entered variable.  Minterm
location 0 corresponds to data input d0 of the multiplexer; minterm location 1 corre-
sponds to data input d1; minterm location 2 corresponds to data input d2; and minterm
location 3 corresponds to data input d3.  The Karnaugh map and the multiplexer imple-
ment Equation 1.2, where x2  is the low-order variable in the Karnaugh map.  Figure
1.3(b) shows the implementation using a 4:1 multiplexer.

+s0

+s1

+d0

+d1

+d2

+d3

s1's0'd0

s1's0d1

s1s0'd2

s1s0d3

+z1

z1 = s1 's0 'd0 + s1 's0 d1  + s1 s0 'd2  + s1 s0 d3 (1.1)
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Figure 1.3 Multiplexer using a map-entered variable: (a) Karnaugh map and (b)
a 4:1 multiplexer.

Linear-select multiplexers The multiplexer examples described thus far have
been classified as linear-select multiplexers, because all of the variables of the Kar-
naugh map coordinates have been utilized as the select inputs for the multiplexer.
Since there is a one-to-one correspondence between the minterms of a Karnaugh map
and the data inputs of a multiplexer, designing the input logic is relatively
straightforward.  Simply assign the values of the minterms in the Karnaugh map to the
corresponding multiplexer data inputs with the same subscript.

Nonlinear-select multiplexers Although the logic functions correctly accord-
ing to the equation using a linear-select multiplexer, the design may demonstrate an in-
efficient use of the 2p:1 multiplexers.  Smaller multiplexers with fewer data inputs
could be effectively utilized with a corresponding reduction in machine cost.

For example, the Karnaugh map shown in Figure 1.4 can be implemented with a
4:1 nonlinear-select multiplexer for the function z1 instead of an 8:1 linear-select mul-
tiplexer.  Variables x2  and x3 will connect to select inputs s1 and s0, respectively.
When select inputs s1s0  = x2x3  = 00, data input d0 is selected; therefore, d0  = 0.  When
select inputs  s1s0  = x2x3  = 01, data input d1 is selected and d1 contains the comple-
ment of x1; therefore, d1  = x1' .  When select inputs  s1s0  = x2x3  = 10, data input d2  is
selected; therefore, d2 = 1.  When  s1s0  = x2x3  = 11, data input d3 is selected and con-
tains the same value as x1 ; therefore, d3 = x1.  The logic diagram is shown in Figure 1.5

The multiplexer of Figure 1.5 can be checked to verify that it operates according to
the Karnaugh map of Figure 1.4; that is, for every value of x1x2x3 , output z1 should
generate the same value as in the corresponding minterm location.

z1 = x1x2(x3' ) + x1x2' (x3) + x1' x2 (1.2)

    x1

    x2
 0

 0

 1

 1      x3       x3'

 0            1

    2            3

MUX
s0

d0
d1

s1

d3

d2

+z1

0        1
+x2
+x1

–Logic 0
+Logic 1

z1 +x3
–x3

(a) (b)(b)
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Figure 1.4 Karnaugh map for an example which will be implemented by a 4:1
nonlinear-select multiplexer.

Figure 1.5 A 4:1 nonlinear-select multiplexer to implement the Karnaugh map
of Figure 1.4.

Decoders A decoder is a combinational logic macro that is characterized by the
following property: For every valid combination of inputs, a unique output is gener-
ated.  In general, a decoder has n binary inputs and m mutually exclusive outputs,
where 2n  m.  An n:m  (n-to-m) decoder is shown in Figure 1.6, where the label DX
specifies a demultiplexer.  Each output represents a minterm that corresponds to the
binary representation of the input vector.  Thus,  zi = mi, where mi is the ith minterm of
the n input variables.

For example, if n = 3 and x1x2x3  = 101, then output z5 is asserted.  A decoder with
n inputs, therefore, has a maximum of 2n outputs.  Because the outputs are mutually
exclusive, only one output is active for each different combination of the inputs.  The
decoder outputs may be asserted high or low.  Decoders have many applications in
digital engineering, ranging from instruction decoding to memory addressing to code
conversion.

Figure 1.7 illustrates the logic symbol for a 2:4 decoder, where x1  and x2 are the
binary input variables and z0, z1, z2 , and z3  are the output variables.  Input x2  is the
low-order variable.  Since there are two inputs, each output corresponds to a different
minterm of two variables.

  0 0      0 1     1 1      10
x2x3

    x1

 0       0         1        0         1

 1       0         0        1         1

 0            1           3            2

 4            5           7           6

z1

d0  = 0
d1  = x1 '
d2  = 1
d3 = x1

 d0
= 0

d1
= x1'

d3
= x1

d2
= 1

MUX
s0

d0
d1

s1

d3

d2

+x3
+x2

–Logic 0
–x1
+Logic 1
+x1

+z1
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Figure 1.6 An n:m decoder.

Figure 1.7 Logic symbol for a 2:4 decoder.

A 3:8 decoder is shown in Figure 1.8 which decodes a binary number into the cor-
responding octal number.  The three inputs are x1 , x2 , and x3  with binary weights of
22, 21, and 20, respectively.  The decoder generates an output that corresponds to the
decimal value of the binary inputs.  For example, if x1x2x3 = 110, then output z6 is as-
serted high.  A decoder may also have an enable function which allows the selected
output to be asserted.

Figure 1.8 A binary-to-octal decoder.

   DX
+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+z1
+z2
+z3
  .
  .
  .
+zm–1
+zm

DX
1        0
2        1
          2
          3

+x2
+x1

+z0
+z1
+z2
+z3

BIN/OCT

0
1
2
3
4
5
6
7

1
2
4

&
EN

+x3
+x2
+x1

+z0
+z1
+z2
+z3
+z4
+z5
+z6
+z7
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The internal logic for the binary-to-octal decoder of Figure 1.8 is shown in Figure
1.9.  The Enable gate allows for additional logic functions to control the assertion of
the active-high outputs.

Figure 1.9 Internal logic for the binary-to-octal decoder of Figure 1.8.

Encoders An encoder is a macro logic circuit with n mutually exclusive inputs and
m binary outputs, where n  2m.  The inputs are mutually exclusive to prevent errors
from appearing on the outputs.  The outputs generate a binary code that corresponds to
the active input value.  The function of an encoder can be considered to be the inverse
of a decoder; that is, the mutually exclusive inputs are encoded into a corresponding
binary number.

A general block diagram for an n:m encoder is shown in Figure 1.10.  An encoder
is also referred to as a code converter.  In the label of Figure 1.10, X corresponds to the

+x3

+x2

+x1

+z0

+z1

+z2

+z3

+z4

+z5

+z6

+z7

Enable

x1'x2'x3'

x1'x2'x3

x1'x2x3'

x1'x2x3

x1x2'x3'

x1x2'x3

x1x2x3'

x1x2x3
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input code and Y corresponds to the output code.  The general qualifying label X/Y is
replaced by the input and output codes, respectively, such as, OCT/BIN for an octal-
to-binary code converter.  Only one input xi is asserted at a time.  The decimal value of
xi is encoded as a binary number which is specified by the m outputs.

Figure 1.10 An n:m encoder or code converter.

An 8:3 octal-to-binary encoder is shown in Figure 1.11.  Although there are 28

possible input combinations of eight variables, only eight combinations are valid.  The
eight inputs each generate a unique octal code word in binary.  If the outputs are to be
enabled, then the gating can occur at the output gates.

Figure 1.11 An octal-to-binary encoder.

The low-order output z3  is asserted when one of the following inputs are active: x1 , x3 ,
x5 , or x7.  Output z2 is asserted when one of the following inputs are active: x2 , x3 , x6,

   X/Y
+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+x1
+x2
+x3
  .
  .
  .
+xn–1
+xn

+z1
+z2
+z3
  .
  .
  .
+zm–1
+zm

   

+x0
+x1
+x2
  +x3

+z3
+z2
+z1

0
1
2
3
4
5
6
7

+x4
+x5
+x6
+x7

1
2
4

OCT/BIN
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or x7.  Output z1 is asserted when one of the following inputs are active: x4 , x5, x6, or
x7.  The encoder can be implemented with OR gates whose inputs are established from
Equation 1.3 and Figure 1.12.

Figure 1.12 Logic diagram for an 8:3 encoder.

Priority encoder It was stated previously that encoder inputs are mutually exclu-
sive.  There may be situations, however, where more than one input can be active at a
time.  Then a priority must be established to select and encode a particular input.  This
is referred to as a priority encoder.

Usually the input with the highest valued subscript is selected as highest priority
for encoding.  Thus, if xi and xj are active simultaneously and i < j, then xj has priority
over xi.  The truth table for an octal-to-binary priority encoder is shown in Table 1.7.
The outputs z1z2z3  generate a binary number that is equivalent to the highest priority
input.  If x3  = 1, the state of x0, x1, and x2 is irrelevant (“don’t care”) and the output is
the binary number 011.

Comparators A comparator is a logic macro circuit that compares the magnitude
of two n-bit binary numbers X1 and X2.  Therefore, there are 2n inputs and three out-
puts that indicate the relative magnitude of the two numbers.  The outputs are mutually
exclusive, specifying X1 < X2, X1 = X2, or X1 > X2 .  Figure 1.13 shows a general block
diagram of a comparator.

If two or more comparators are connected in cascade, then three additional inputs
are required for each comparator.  These additional inputs indicate the relative mag-
nitude of the previous lower-order comparator inputs and specify X1 < X2 , X1 = X2, or
X1 > X2  for the previous stage.  Cascading comparators usually apply only to com-
mercially available comparator integrated circuits.

z3 = x1  + x3  + x5 + x7

z2 = x2  + x3  + x6 + x7

z1 = x4  + x5 + x6 + x7 (1.3)

+x0
+x1

+x2+x3

+x4
+x5

+x6+x7

+z3 (1)

+z2 (2)

+z1 (4)
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Figure 1.13 General block diagram of a comparator.

Designing the hardware for a comparator is relatively straightforward — it con-
sists of AND gates, OR gates, and exclusive-NOR circuits as shown in Equation 1.4.
An alternative approach which may be used to minimize the amount of hardware is to
eliminate the equation for X1 = X2  and replace it with Equation 1.5.  That is, if X1 is
neither less nor greater than X2 , then X1 must equal X2 .

Table 1.7  Octal-to-Binary Priority Encoder

Inputs Outputs

x0 x1 x2 x3 x4 x5 x6 x7 z1 z2 z3

1 0 0 0 0 0 0 0 0 0 0
– 1 0 0 0 0 0 0 0 0 1
– – 1 0 0 0 0 0 0 1 0
– – – 1 0 0 0 0 0 1 1
– – – – 1 0 0 0 1 0 0
– – – – – 1 0 0 1 0 1
– – – – – – 1 0 1 1 0
– – – – – – – 1 1 1 1

   COMP
+x11

  .
  .

  . +z1
+z2
+z3

+x12

+x1n

+x21
+x22   .

  .
  .+x2n

X1<X2
X1=X2
X1>X2

(X1 < X2) = x11'x21 + (x11  x21)' x12'x22 + (x11  x21)' (x12  x22)'x13' x23

(X1 = X2) = (x11  x21)' (x12  x22 )'(x13  x23)'

(X1 > X2) = x11 x21' + (x11  x21)' x12x22' + (x11 x21)' (x12 x22)'x13 x23' (1.4)



14          Chapter  1     Introduction to Logic Design Using Verilog HDL

(X1 = X2) if (X1 < X2) ' AND (X1 > X2) '   (1.5)

1.1.4  Procedural Flow Control

Procedural flow control statements modify the flow in a behavior by selecting branch
options, repeating certain activities, selecting a parallel activity, or terminating an ac-
tivity.  The activity can occur in sequential blocks or in parallel blocks.

begin . . . end The begin . . . end keywords are used to group multiple statements
into sequential blocks.  The statements in a sequential block execute in sequence; that
is, a statement does not execute until the preceding statement has executed, except for
nonblocking statements.  If there is only one procedural statement in the block, then
the begin . . . end keywords may be omitted.

disable The disable statement terminates a named block of procedural statements
or a task and transfers control to the statement immediately following the block or
task.  The disable statement can also be used to exit a loop.

for The keyword for is used to specify a loop.  The for loop repeats the execution of
a procedural statement or a block of procedural statements a specified number of
times.  The for loop is used when there is a specified beginning and end to the loop.
The format and function of a for loop is similar to the for loop used in the C program-
ming language.  The parentheses following the keyword for contain three expressions
separated by semicolons, as shown below.

for (register initialization; test condition; update register control variable)
procedural statement or block of procedural statements

forever The forever loop statement executes the procedural statements continu-
ously.  The loop is primarily used for timing control constructs, such as clock pulse
generation.  The forever procedural statement must be contained within an initial or
an always block.  In order to exit the loop, the disable statement may be used to pre-
maturely terminate the procedural statements.  An always statement executes at the
beginning of simulation; the forever statement executes only when it is encountered in
a procedural block.

if . . . else These keywords are used as conditional statements to alter the flow of
activity through a behavioral module.  They permit a choice of alternative paths based
upon a Boolean value obtained from a condition.  The syntax is shown below.

if (condition)
{procedural statement 1}

else
{procedural statement 2}
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If the result of the condition is true, then procedural statement 1 is executed; oth-
erwise, procedural statement 2 is executed.  The procedural statement following the if
and else statements can be a single procedural statement or a block of procedural state-
ments.  Two uses for the if . . . else statement are to model a multiplexer or decode an
instruction register operation code to select alternative paths depending on the instruc-
tion.  The if statement can be nested to provide several alternative paths to execute pro-
cedural statements as shown in the syntax below for nested if statements.

if (condition 1)
{procedural statement 1}

else if (condition 2)
{procedural statement 2}

else if (condition 3)
{procedural statement 3}

else
{procedural statement 4)

repeat The repeat keyword is used to execute a loop a fixed number of times as
specified by a constant contained within parentheses following the repeat keyword.
The loop can be a single statement or a block of statements contained within begin . . .
end keywords.  The syntax is shown below.

repeat (expression)
statement or block of statements

When the activity flow reaches the repeat construct, the expression in parentheses
is evaluated to determine the number of times that the loop is to be executed.  The ex-
pression can be a constant, a variable, or a signal value.  If the expression evaluates to
x or z, then the value is treated as 0 and the loop is not executed.

while The while statement executes a statement or a block of statements while an
expression is true.  The syntax is shown below.

while  (expression) statement

The expression is evaluated and a Boolean value, either true (a logical 1) or false
(a logical 0) is returned.  If the expression is true, then the procedural statement or
block of statements is executed.  The while loop executes until the expression be-
comes false, at which time the loop is exited and the next sequential statement is ex-
ecuted.  If the expression is false when the loop is entered, then the procedural
statement is not executed.  If the value returned is x or z, then the value is treated as
false.  An example of the while statement is shown below where the initial count = 0.

while (count < 16)
begin

count = count + 1;
end
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1.1.5  Net Data Types

Verilog defines two data types: nets and registers.  These predefined data types are
used to connect logical elements and to provide storage.  A net is a physical wire or
group of wires connecting hardware elements in a module or between modules.

An example of net data types is shown in Figure 1.14, where five internal nets are
defined: net1, net2, net3, net4, and net5.  The value of net1 is determined by the inputs
to the and1 gate represented by the term x1x2' , where x2  is active low; the value of
net2 is determined by the inputs to the and2 gate represented by the term x1' x2, where
x1  is active low; the value of net3 is determined by the input to the inverter represented
by the term x3 ', where x3 is active low.  The equations for outputs z1 and z2  are listed
in Equation 1.6.

Figure 1.14 A logic diagram showing single-wire nets and one multiple-wire net.

1.1.6  Register Data Types

A register data type represents a variable that can retain a value.  Verilog registers are
similar in function to hardware registers, but are conceptually different.  Hardware
registers are synthesized with storage elements such as D flip-flops, JK flip-flops, and
SR latches.  Verilog registers are an abstract representation of hardware registers and
are declared as reg.

The default size of a register is 1-bit; however, a larger width can be specified in
the declaration.  The general syntax to declare a width of more than 1-bit is as follows:

reg [most significant bit:least significant bit] register_name.

To declare a one-byte register called data_register is reg [7:0] data_register.

+x1
–x2

–x1
+x2

net1

net2

net4 +z1

–x3
net3 net5 +z2

and1

and2

or1

or2

z1 = x1x2'  + x1' x2

z2 = x1' x2  + x3 (1.6)
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Memories Memories can be represented in Verilog by an array of registers and are
declared using a reg data type as follows:

A 32-word register with one byte per word would be declared as follows:

reg [7:0] memory_name [0:31];

An array can have only two dimensions.  Memories must be declared as reg data
types, not as wire data types.  A register can be assigned a value using one statement,
as shown below.  Register buff_reg is assigned the 16-bit hexadecimal value of 7ab5,
which equates to the binary value of 0111  1010  1011  01012.

Values can also be stored in memories by assigning a value to each word individ-
ually, as shown below for an instruction cache of eight registers with eight bits per reg-
ister.

reg [7:0] instr_cache [0:7];

1.2  Expressions
Expressions consist of operands and operators, which are the basis of Verilog HDL.
The result of a right-hand side expression can be assigned to a left-hand side net vari-
able or register variable using the keyword assign. The value of an expression is de-
termined from the combined operations on the operands.  An expression can consist of
a single operand or two or more operands in conjunction with one or more operators.
The result of an expression is represented by one or more bits.  Examples of expres-
sions are as follows, where the symbol & indicates an AND operation and the symbol
| indicates an OR operation:

reg [15:0] buff_reg;
buff_reg = 16'h7ab5;

instr_cache [0] = 8'h08;
instr_cache [1] = 8'h09;
instr_cache [2] = 8'h0a;
instr_cache [3] = 8'h0b;
instr_cache [4] = 8'h0c;
instr_cache [5] = 8'h0d;
instr_cache [6] = 8'h0e;
instr_cache [7] = 8'h0f;

reg [msb:lsb] memory_name [first address:last address];

Number of bits per register Number of registers
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assign  z1 = x1  & x2  & x3;
assign  z1 = x1  | x2 | x3;
assign cout = (a & cin) | (b & cin) | (a & b);

1.2.1  Operands

Operands can be any of the data types listed in Table 1.8.

Constant Constants can be signed or unsigned.  A decimal integer is treated as a
signed number.  An integer that is specified by a base is interpreted as an unsigned
number.  Examples of both types are shown in Table 1.9.

Table 1.9  Signed and Unsigned Constants

Table 1.8  Operands

Operands Comments
Constant Signed or unsigned
Parameter Similar to a constant
Net Scalar or vector
Register Scalar or vector
Bit-select One bit from a vector
Part-
select

Contiguous bits of a 
vector

Memory 
element

One word of a mem-
ory

Constant Comments
127 Signed decimal:  Value = 8-bit binary vector: 0111_1111
–1 Signed decimal:  Value = 8-bit binary vector: 1111_1111
–128 Signed decimal:  Value = 8-bit binary vector: 1000_0000
4'b1110 Binary base:  Value = unsigned decimal 14
8'b0011_1010 Binary base:  Value = unsigned decimal 58
16'h1A3C Hexadecimal base:  Value = unsigned decimal 6716
16'hBCDE Hexadecimal base:  Value = unsigned decimal 48,350
9'o536 Octal base:  Value = unsigned decimal 350
–22 Signed decimal:  Value = 8-bit binary vector: 1110_1010
–9'o352 Octal base:  Value = 8-bit binary vector: 1110_1010

= unsigned decimal 234
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The last two entries in Table 1.9 both evaluate to the same bit configuration, but
represent different decimal values.  The number –2210 is a signed decimal value; the
number –9'o352 is treated as an unsigned number with a decimal value of 23410.

Parameter A parameter is similar to a constant and is declared by the keyword pa-
rameter.  Parameter statements assign values to constants; the values cannot be
changed during simulation.  Examples of parameters are shown in Table 1.10.

Parameters are useful in defining the width of a bus.  For example, the adder
shown in Figure 1.15 contains two 8-bit vector inputs a and b and one scalar input cin.
There is also one 9-bit vector output sum comprised of an 8-bit result and a scalar
carry-out.  The Verilog line of code shown below defines a bus width of eight bits.
Wherever width appears in the code, it is replaced by the value eight.

parameter width = 8;

Figure 1.15 Eight-bit adder to illustrate the use of a parameter statement.

1.2.2  Operators

Verilog HDL contains a profuse set of operators that perform various operations on
different types of data to yield results on nets and registers.  Some operators are similar
to those used in the C programming language.  Table 1.11 lists the categories of op-
erators in order of precedence, from highest to lowest.

Table 1.10  Examples of Parameters

Examples Comments
parameter width = 8 Defines a bus width of 8 bits
parameter width = 16, depth = 512 Defines a memory with two bytes per word

and 512 words
parameter out_port = 8 Defines an output port with an address of 8

8-bit adder

a

b

cin

a [7:0]

b [7:0]

cin

sum [9:0]sum
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Arithmetic Arithmetic operations are performed on one (unary) operand or two
(binary) operands in the following radices: binary, octal, decimal, or hexadecimal.
The result of an arithmetic operation is interpreted as an unsigned value or as a signed
value in 2s complement representation on both scalar and vector nets and registers.
The operands shown in Table 1.12 are used for the operations of addition, subtraction,
multiplication, and division.

Table 1.11   Verilog HDL Operators and Symbols

Operator type Operator Symbol Operation Number of Operands
Arithmetic + Add Two or one

- Subtract Two or one
* Multiply Two
/ Divide Two

% Modulus Two
Logical && Logical AND Two

| | Logical OR Two
! Logical negation One

Relational > Greater than Two
< Less than Two

>= Greater than or equal Two
<= Less than or equal Two

Equality = = Logical equality Two
! = Logical inequality Two

= = = Case equality Two
! = = Case inequality Two

Bitwise & AND Two
| OR Two
~ Negation One
^ Exclusive-OR Two

 ^ ~ or ~ ^ Exclusive-NOR Two
Reduction & AND One

~ & NAND One
| OR One

~ | NOR One
^ Exclusive-OR One

~ ^ or ^ ~ Exclusive-NOR One
Shift << Left shift One

>> Right shift One
Conditional ? : Conditional Three
Concatenation { } Concatenation Two or more
Replication {{  }} Replication Two or more
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The unary + and – operators change the sign of the operand and have higher pre-
cedence than the binary + and – operators.  Examples of unary operators are shown be-
low.

+45(Positive 4510)
–72(Negative 7210)

Unary operators treat net and register operands as unsigned values, and treat real and
integer operands as signed values.

The binary add operator performs unsigned and signed addition on two operands.
Register and net operands are treated as unsigned operands; thus, a value of

1111_1111_1111_11112

stored in a register has a value of 65,53510 unsigned, not –110 signed.  Real and integer
operands are treated as signed operands; thus, a value of

1111_1110_1010_01112

stored in an integer register has a value of –34510 signed, not 65,19110 unsigned.  The
width of the result of an arithmetic operation is determined by the width of the largest
operand.

Logical There are three logical operators: the binary logical AND operator (&&),
the binary logical OR operator ( | | ), and the unary logical negation operator (!).  Log-
ical operators evaluate to a logical 1 (true), a logical 0 (false), or an x (ambiguous).  If
a logical operation returns a nonzero value, then it is treated as a logical 1 (true); if a bit
in an operand is x or z, then it is ambiguous and is normally treated as a false condition.

Let a and b be two 4-bit operands, where a = 0110 and b = 1100.  Let z1, z2 , and
z3  be the outputs of the logical operations shown below.

z1 = a && b
z2  = a | | b
z3  = ! a

Therefore, the operation z1 = a && b yields a value of z1 = 1 because both a and
b are nonzero.  If a vector operand is nonzero, then it treated as a 1 (true).  Output z2  is
also equal to 1 for the expression z2 = a | | b.  Output z3  is equal to 0 because a is true.

Table 1.12   Operands Used for Arithmetic Operations

Addition Subtraction Multiplication Division
Augend Minuend Multiplicand Dividend

+) Addend –) Subtrahend ) Multiplier ÷) Divisor
Sum Difference Product Quotient, Remainder
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  Now let a = 0101 and b = 0000.  Thus, z1 = a && b = 1 && 0 = 0 because a is true
and b is false.  Output z2 , however, is equal to 1 because z2  = a | | b = 1 | | 0 = 1.  In a
similar manner, z3 = !a = !1 = 0, because a is true.

As a final example, let a = 0000 and b = 0000; that is, both variables are false.
Therefore, z1 = a && b = 0 && 0 = 0; z2 = a | | b = 0 | | 0 = 0; z3  = !a = !0 = 1.  If a bit
in either operand is x, then the result of a logical operation is x.  Also, !x is x.

Relational Relational operators compare operands and return a Boolean result, ei-
ther 1 (true) or 0 (false) indicating the relationship between the two operands.  There
are four relational operators as follows: greater than (>), less than (<), greater than or
equal (> = ), and less than or equal (<=).  These operators function the same as iden-
tical operators in the C programming language.

If the relationship is true, then the result is 1; if the relationship is false, then the re-
sult is 0.  Net or register operands are treated as unsigned values; real or integer oper-
ands are treated as signed values.  An x or z in any operand returns a result of x.  When
the operands are of unequal size, the smaller operand is zero-extended to the left.  Ex-
amples are shown below of relational operators, where the identifier gt means greater
than, lt means less than, gte means greater than or equal, and lte means less than or
equal when comparing operand a to operand b.

a = 0110,  b = 1100, gt = 0,  lt = 1,  gte = 0,  lte = 1
a = 0101,  b = 0000, gt = 1,  lt = 0,  gte = 1,  lte = 0
a = 1000,  b = 1001, gt = 0,  lt = 1,  gte = 0,  lte = 1
a = 0000,  b = 0000, gt = 0,  lt = 0,  gte = 1,  lte = 1
a = 1111,  b = 1111, gt = 0,  lt = 0,  gte = 1,  lte = 1

Equality There are four equality operators: logical equality (= =), logical inequality
(! =), case equality (= = =), and case inequality (! = =).

Logical equality is used in expressions to determine if two values are identical.
The result of the comparison is 1 if the two operands are equal, and 0 if they are not
equal.   The logical inequality operator is used to determine if two operands are un-
equal.  A 1 is returned if the operands are unequal; otherwise a 0 is returned.  If the re-
sult of the comparison is ambiguous for logical equality or logical inequality, then a
value of x is returned.  An x or z in either operand will return a value of x.  If the op-
erands are nets or registers, they are treated as unsigned values; real or integer oper-
ands are treated as signed values, but are compared as though they were unsigned
operands.

The case equality operator compares both operands on a bit-by-bit basis, includ-
ing x and z.  The result is 1 if both operands are identical in the same bit positions, in-
cluding those bit positions containing an x or a z.  The case inequality operator is used
to determine if two operands are unequal by comparing them on a bit-by-bit basis, in-
cluding those bit positions that contain x or z.

Examples of the equality operators are shown below, where the 4-bit variables are
x1 , x2 , x3 , x4 , and x5 .  The outputs are z1 (logical equality), z2  (logical inequality), z3
(case equality), and z4 (case inequality).
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x1  = 1000,  x2  = 1101,  x3  = 01xz,  x4  = 01xz,  x5  = x1xx
z1 = 0,  z2 = 1,  z3  = 1,  z4 = 1

x1  = 1011,  x2  = 1011,  x3  = x1xz,  x4  = x1xz,  x5  = 11xx
z1 = 1,  z2 = 1,  z3  = 1,  z4 = 1

x1  = 1100,  x2  = 0101,  x3  = x01z,  x4  = 11xz,  x5  = 11xx
z1 = 0,  z2 = 1,  z3  = 0,  z4 = 1

Referring to the above outputs for the first set of inputs, the logical equality (z1) of
x1  and x2  is false because the operands are unequal.  The logical inequality (z2) of x2
and x3 is true.  The case equality (z3) of inputs x3  and x4  is 1 because both operands are
identical in all bit positions, including the x and z bits.  The case inequality (z4) of in-
puts x4  and x5  is also 1 because the operands differ in the high-order and low-order bit
positions.

Bitwise The bitwise operators are: AND (&), OR ( | ), negation (~), exclusive-OR
(^), and exclusive-NOR ( ^ ~ or ~ ^).  The bitwise operators perform logical operations
on the operands on a bit-by-bit basis and produce a vector result.  Except for negation,
each bit in one operand is associated with the corresponding bit in the other operand.
If one operand is shorter, then it is zero-extended to the left to match the length of the
longer operand.

The bitwise AND operator performs the AND function on two operands on a bit-
by-bit basis as shown in the following example:

The bitwise OR operator performs the OR function on the two operands on a bit-
by-bit basis as shown in the following example:

The bitwise negation operator performs the negation function on one operand on
a bit-by-bit basis.  Each bit in the operand is inverted as shown in the following ex-
ample:

1 0 1 1 0 1 1 0
&) 1 1 0 1 0 1 0 1

1 0 0 1 0 1 0 0

1 0 1 1 0 1 1 0
| ) 1 1 0 1 0 1 0 1

1 1 1 1 0 1 1 1

~ ) 1 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0
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The bitwise exclusive-OR operator performs the exclusive-OR function on two
operands on a bit-by-bit basis as shown in the following example:

The bitwise exclusive-NOR operator performs the exclusive-NOR function on two
operands on a bit-by-bit basis as shown in the following example:

Bitwise operators perform operations on  operands on a bit-by-bit basis and pro-
duce a vector result.  This is in contrast to logical operators, which perform operations
on operands in such a way that the truth or falsity of the result is determined by the
truth or falsity of the operands.

The logical AND operator returns a value of 1 (true) only if both operands are non-
zero (true); otherwise, it returns a value of 0 (false).  If the result is ambiguous, it re-
turns a value of x.  The logical OR operator returns a value of 1 (true) if either or both
operands are true; otherwise, it returns a value of 0.  The logical negation operator re-
turns a value of 1 (true) if the operand has a value of zero and a value of 0 (false) if the
operand is nonzero.  Examples of the five bitwise operators are shown below.  The log-
ical negation operator performs the operation on operand a.

1 0 1 1 0 1 1 0
^ ) 1 1 0 1 0 1 0 1

0 1 1 0 0 0 1 1

1 0 1 1 0 1 1 0
^ ~ ) 1 1 0 1 0 1 0 1

1 0 0 1 1 1 0 0

 a = 11000011,
 b = 10011001,

and_rslt = 10000001,
or_rslt = 11011011,
neg_rslt = 00111100,
xor_rslt = 01011010,
xnor_rslt = 10100101

____________________________
 a = 10010011,
 b = 11011001,

and_rslt = 10010001,
or_rslt = 11011011,
neg_rslt = 01101100,
xor_rslt = 01001010,
xnor_rslt =10110101

_______________________________

 a = 01001111,
 b = 11011001,

and_rslt = 01001001,
or_rslt = 11011111,
neg_rslt = 10110000,
xor_rslt = 10010110,
xnor_rslt = 01101001

____________________________
 a = 11001111,
 b = 11011001,

and_rslt = 11001001,
or_rslt = 11011111,
neg_rslt = 00110000,
xor_rslt = 00010110,
xnor_rslt = 11101001

____________________________



1.2     Expressions     25

Reduction The reduction operators are: AND (&), NAND (~&), OR ( | ), NOR
(~ | ), exclusive-OR ( ^ ), and exclusive-NOR ( ^ ~ or ~ ^ ).  Reduction operators are
unary operators; that is, they operate on a single vector and produce a single-bit result.
If any bit of the operand is x or z, the result is x.  Reduction operators perform their re-
spective operations on a bit-by-bit basis.

For the reduction AND operator, if any bit in the operand is 0, then the result is 0;
otherwise, the result is 1.  For example, let x1  be the vector shown below.

The reduction AND (& x1) operation is equivalent to the following operation:

1 & 1 & 1 & 0 & 1 & 0 & 1 & 1

which returns a result of 1'b0.

For the reduction NAND operator, if any bit in the operand is 0, then the result is
1; otherwise, the result is 0.  For a vector x1 , the reduction NAND (~& x1) is the
inverse of the reduction AND operator.

For the reduction OR operator, if any bit in the operand is 1, then the result is 1;
otherwise, the result is 0.  For example, let x1  be the vector shown below.

The reduction OR ( | x1) operation is equivalent to the following operation:

1 | 1 | 1 | 0 | 1 | 0 | 1 | 1

which returns a result of 1'b1.

For the reduction NOR operator, if any bit in the operand is 1, then the result is 0;
otherwise, the result is 1.  For a vector x1, the reduction NOR (~ | x1) is the inverse of
the reduction OR operator.

For the exclusive-OR operator, if there are an even number of 1s in the operand,
then the result is 0; otherwise, the result is 1.   For example, let x1 be the vector shown
below.

The reduction exclusive-OR (^ x1) operation is equivalent to the following operation:

1 ^ 1 ^ 1 ^ 0 ^ 1 ^ 0 ^ 1 ^ 1

1 1 1 0 1 0 1 1

1 1 1 0 1 0 1 1

1 1 1 0 1 0 1 1
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which returns a result of 1'b0.  The reduction exclusive-OR operator can be used as an
even parity generator.

For the exclusive-NOR operator, if there are an odd number of 1s in the operand,
then the result is 0; otherwise, the result is 1.  For a vector x1, the reduction exclusive-
NOR ( ^ ~ x1) is the inverse of the reduction exclusive-OR operator.  The reduction
exclusive-NOR operator can be used as an odd parity generator.

Shift The shift operators shift a single vector operand left or right a specified num-
ber of bit positions.  These are logical shift operations, not algebraic; that is, as bits are
shifted left or right, zeroes fill in the vacated bit positions.  The bits shifted out of the
operand are lost; they do not rotate to the high-order or low-order bit positions of the
shifted operand.  If the shift amount evaluates to x or z, then the result of the operation
is x.  There are two shift operators, as shown below.  The value in parentheses is the
number of bits that the operand is shifted.

<< (Left-shift amount)
>> (Right-shift amount)

When an operand is shifted left, this is equivalent to a multiply-by-two operation
for each bit position shifted.  When an operand is shifted right, this is equivalent to a
divide-by-two operation for each bit position shifted.  The shift operators are useful to
model the sequential add-shift multiplication algorithm and the sequential shift-sub-
tract division algorithm.  Examples of shift left and shift right operations are shown be-
low for 8-bit operands.  Operand a_reg is shifted left three bits with the low-order bits
filled with zeroes.  Operand b_reg is shifted right two bits with the high-order bits
filled with zeroes.

Conditional The conditional operator (? :) has three operands, as shown in the
syntax below.  The conditional_expression is evaluated.  If the result is true (1), then
the true_expression is evaluated; if the result is false (0), then the false_expression is
evaluated.

conditional_expression ? true_expression : false_expression;

 a_reg = 00000010,   b_reg = 00001000, //shift a_reg left 3
 rslt_a = 00010000,   rslt_b = 00000010 //shift b_reg right 2

 a_reg = 00000110,   b_reg = 00011000, //shift a_reg left 3
 rslt_a = 00110000,   rslt_b = 00000110 //shift b_reg right 2

 a_reg = 00001111,   b_reg = 00111000, //shift a_reg left 3
 rslt_a = 01111000,   rslt_b = 00001110 //shift b_reg right 2

 a_reg = 11100000,   b_reg = 00000011, //shift a_reg left 3
 rslt_a = 00000000,   rslt_b = 00000000 //shift b_reg right 2
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  The conditional operator can be used when one of two expressions is to be se-
lected.  For example, in the statement below, if x1  is greater than or equal to x2, then
z1 is assigned the value of x3 ; if x1  is less than x2 , then z1 is assigned the value of x4 .

z1 = (x1 > = x2) ? x3 : x4;

If the operands have different lengths, then the shorter operand is zero-extended
on the left.  Since the conditional operator selects one of two values, depending on the
result of the conditional_expression evaluation, the operator can be used in place of
the if . . . else construct.  The conditional operator is ideally suited to model a 2:1 mul-
tiplexer.  Conditional operators can be nested; that is, each true_expression and
false_expression can be a conditional operation.  This is useful for modeling a 4:1 mul-
tiplexer.

conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
     : (cond_expr2 ? true_expr2 : false_expr2);

Concatenation The concatenation operator ( {  } ) forms a single operand from
two or more operands by joining the different operands in sequence separated by com-
mas.  The operands to be appended are contained within braces.  The size of the op-
erands must be known before concatenation takes place.

The  examples below show the concatenation of scalars and vectors of different
sizes.  Outputs z1, z2 , z3 , and z4  are ten bits in length.

Replication Replication is a means of performing repetitive concatenation.  Rep-
lication specifies the number of times to duplicate the expressions within the inner-
most braces.  The syntax is shown below together with  examples of replication.

{number_ of_ repetitions {expression_1, expression_2, . . . , expression_n}};

 z1, z2 , z3 , and z4  are 10 bits in length.

 a = 11, b = 001, c = 1100, d = 1

 z1 = 0000_11_1100 //z1 = {a, c}
 z2 = 00000_001_11 //z2 = {b, a}
 z3 = 0_1100_001_11 //z3 = {c, b, a}
 z4 = 11_001_1100_1 //z4 = {a, b, c, d}

a = 11, b = 010, c = 0011,

z1 = 11_0011_11_0011,  //z1 = {2{a, c}}
z2  = 010_0011_0111_010_0011_0111 //z2  = {2{b, c, 4'b0111}}
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1.3 Modules and Ports
A module is the basic unit of design in Verilog.  It describes the functional operation of
some logical entity and can be a stand-alone module or a collection of modules that are
instantiated into a structural module.  Instantiation means to use one or more lower-
level modules in the construction of a higher-level structural module.  A module can
be a logic gate, an adder, a multiplexer, a counter, or some other logical function.

A module consists of declarative text which specifies the function of the module
using Verilog constructs; that is, a Verilog module is a software representation of the
physical hardware structure and behavior.  The declaration of a module is indicated by
the keyword module and is always terminated by the keyword endmodule.

Verilog has predefined logical elements called primitives.  These built-in primi-
tives are structural elements that can be instantiated into a larger design to form a more
complex structure.  Examples are: and, or, xor, and not.  Built-in primitives are dis-
cussed in more detail in Section 1.4.

Modules contain ports which allow communication with the external environment
or other modules.  For example, the logic diagram for the full adder of Figure 1.16 has
input ports a, b, and cin and output ports sum and cout.  The general structure and syn-
tax of a module is shown in Figure 1.17.  An AND gate can be defined as shown in the
module of Figure 1.18, where the input ports are x1  and x2  and the output port is z1.

Figure 1.16 Logic diagram for a full adder.

Figure 1.17 General structure of a Verilog module.

+a
+b +sum

+cout

+cin

Half adder Half adder

module <module name> (port list);
declarations

reg, wire, parameter,
input, output, . . .
. . .

<module internals>
statements
initial, always, module instantiation, . . .
. . .

endmodule
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Figure 1.18 Verilog module for an AND gate with two inputs.

A Verilog module defines the information that describes the relationship between
the inputs and outputs of a logic circuit.  A structural module will have one or more in-
stantiations of other modules or logic primitives.  In Figure 1.18, the first line is a com-
ment, indicated by (//).  In the second line, and2 is the module name; this is followed
by left and right parentheses containing the module ports, which is followed by a
semicolon.  The inputs and outputs are defined by the keywords input and output.
The ports are declared as wire in this dataflow module.  Dataflow modeling is covered
in detail in Section 1.6.  The keyword assign describes the behavior of the circuit.  Out-
put z1 is assigned the value of x1  ANDed (&) with x2.

1.3.1  Designing a Test Bench for Simulation

This section describes the techniques for writing test benches in Verilog HDL.  When
a Verilog module is finished, it must be tested to ensure that it operates according to
the machine specifications.  The functionality of the module can be tested by applying
stimulus to the inputs and checking the outputs.  The test bench will display the inputs
and outputs in a radix (binary, octal, hexadecimal, or decimal).

The test bench contains an instantiation of the unit under test and Verilog code to
generate input stimulus and to monitor and display the response to the stimulus.  Fig-
ure 1.19 shows a simple test bench to test the 2-input AND gate of Figure 1.18.  Line
1 is a comment indicating that the module is a test bench for a 2-input AND gate.  Line
2 contains the keyword module followed by the module name, which includes tb in-
dicating a test bench module.  The name of the module and the name of the module un-
der test are the same for ease of cross-referencing.

Line 4 specifies that the inputs are reg type variables; that is, they contain their
values until they are assigned new values.  Outputs are assigned as type wire in test
benches.  Output nets are driven by the output ports of the module under test.  Line 8
contains an initial statement, which executes only once.

//dataflow and gate with two inputs
module and2 (x1, x2, z1);

input x1, x2;
output z1;

wire x1, x2;
wire z1;

assign z1 = x1 & x2;

endmodule
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Verilog provides a means to monitor a signal when its value changes.  This is ac-
complished by the $monitor task.  The $monitor continuously monitors the values of
the variables indicated in the parameter list that is enclosed in parentheses.  It will dis-
play the value of the variables whenever a variable changes state.  The quoted string
within the task is printed and specifies that the variables are to be shown in binary
(%b).  The $monitor is invoked only once.  Line 12 is a second initial statement that
allows the procedural code between the begin . . . end block statements to be executed
only once.

Figure 1.19 Test bench for the 2-input AND gate of Figure 1.18.

 1 //and2 test bench
module and2_tb;

reg x1, x2;
 5 wire z1;

//display variables
initial
$monitor ("x1 = %b, x2 = %b, z1 = %b", x1, x2, z1);

11 //apply input vectors
initial
begin

#0 x1 = 1'b0;
x2 = 1'b0;

16
#10 x1 = 1'b0;

x2 = 1'b1;

20 #10 x1 = 1'b1;
x2 = 1'b0;

#10 x1 = 1'b1;
x2 = 1'b1;

26 #10 $stop;
end

//instantiate the module into the test bench
30 and2 inst1 (

.x1(x1),

.x2(x2),

.z1(z1)
);

endmodule
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Lines 14 and 15 specify that at time 0 (#0), inputs x1  and x2  are assigned values of
0, where 1 is the width of the value (one bit), ' is a separator, b indicates binary, and 0
is the value.  Line 17 specifies that 10 time units later, the inputs change to: x1  = 0 and
x2  = 1.  This process continues until all possible values of two variables have been ap-
plied to the inputs.  Simulation stops at 10 time units after the last input vector has been
applied ($stop).  The total time for simulation is 40 time units   —   the sum of all the
time units.  The time units can be specified for any duration.

Line 30 begins the instantiation of the module into the test bench.  The name of the
instantiation must be the same as the module under test, in this case, and2.  This is fol-
lowed by an instance name (inst1) followed by a left parenthesis.  The . x1  variable in
line 31 refers to a port in the module that corresponds to a port (x1) in the test bench.
All the ports in the module under test must be listed.  The keyword endmodule is the
last line in the test bench.

The binary outputs for this test bench are shown in Figure 1.20.  The output can be
presented in binary (b or B), in octal (o or O), in hexadecimal (h or H), or in decimal (d
or D).  

The Verilog syntax will be covered in greater detail in subsequent sections.  It is
important at this point to concentrate on how the module under test is simulated and in-
stantiated into the test bench.

Figure 1.20 Binary outputs for the test bench of Figure 1.19 for a 2-input AND
gate.

Several different methods to generate test benches will be shown in subsequent
sections.  Each design in the book will be tested for correct operation by means of a test
bench.  Test benches provide clock pulses that are used to control the operation of a
synchronous sequential machine.  An initial statement is an ideal method to generate
a waveform at discrete intervals of time for a clock pulse.  The Verilog code in Figure
1.21 illustrates the necessary statements to generate clock pulses that  have a duty cy-
cle of 20%.

1.4 Built-In Primitives
Logic primitives such as and, nand, or, nor, and not gates, as well as xor (exclusive-
OR), and xnor (exclusive_NOR) functions are part of the Verilog language and are
classified as multiple-input gates.  These are built-in primitives that can be instantiated
into a module.  

x1 = 0, x2 = 0, z1 = 0
x1 = 0, x2 = 1, z1 = 0
x1 = 1, x2 = 0, z1 = 0
x1 = 1, x2 = 1, z1 = 1
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Figure 1.21 Verilog code to generate clock pulses with a 20% duty cycle.

These are built-in primitive gates used to describe a net and have one or more sca-
lar inputs, but only one scalar output.  The output signal is listed first, followed by the
inputs in any order.  The outputs are declared as wire; the inputs can be declared as ei-
ther wire or reg.  The gates represent a combinational logic function and can be in-
stantiated into a module, as follows, where the instance name is optional:

gate_type  inst1 (output, input_1, input_2, . . . , input_n);

Two or more instances of the same type of gate can be specified in the same construct,
as follows:

gate_type  inst1 (output_1, input_11, input_12, . . . , input_1n),
        inst2 (output_2, input_21, input_22, . . . , input_2n),

.

.

.
     instm (output_m, input_m1, input_m2, . . . , input_mn);

and This is a multiple-input built-in primitive gate that performs the AND function
for a multiple-input AND gate.  If any input is an x, then this represents an unknown
logic value.  If and entry is a z, then this represents a high impedance state, which in-
dicates that the driver of a net is disabled or not connected.  AND gates can be repre-
sented by two symbols as shown below for the AND function and the OR function.

//generate clock pulses of 20% duty cycle
module clk_gen (clk);
output clk;
reg clk;

initial
begin

#0 clk = 0;
#5 clk = 1;
#5 clk = 0;
#20 clk = 1;
#5 clk = 0;
#20 clk = 1;
#5 clk = 0;
#10 $stop;

end
endmodule
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buf A buf gate is a noninverting primitive with one scalar input and one or more
scalar outputs.  The output terminals are listed first when instantiated; the input is list-
ed last, as shown below.  The instance name is optional.

buf   inst1 (output, input); //one output
buf   inst2 (output_1, output_2, . . . , output_n, input); //multiple outputs

nand This is a multiple-input built-in primitive gate that operates as an AND func-
tion with a negative output.  NAND gates can be represented by two symbols as
shown below for the AND function and the OR function.

DeMorgan’s theorems are associated with NAND and NOR gates and convert the
complement of a sum term or a product term into a corresponding product or sum term,
respectively.  For every x1 , x2   B,

(a) (x1 •  x2)' = x1 ' + x2 ' Nand gate
(b) (x1 + x2)' = x1 ' • x2 ' NOR gate

DeMorgan’s laws can be generalized for any number of variables.

nor This is a multiple-input built-in primitive gate that operates as an OR function
with a negative output.  NOR gates can be represented by two symbols as shown below
for the OR function and the AND function.

not A not gate is an inverting built-in primitive with one scalar input and one or
more scalar outputs.  The output terminals are listed first when instantiated; the input
is listed last, as shown below.  The instance name is optional.

AND gate for the AND function AND gate for the OR function

NAND gate for the AND function NAND gate for the OR function

NOR gate for the OR function NOR gate for the AND function
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not   inst1 (output, input); //one output
not   inst2 (output_1, output_2, . . . , output_n, input); //multiple outputs

The NOT function can be represented by two symbols as shown below depending
on the assertion levels required.  The function of the inverters is identical; the low as-
sertion is placed at the input or output for readability with associated logic.

or This is a multiple-input built-in primitive gate that operates as an OR function.
OR gates can be represented by two symbols as shown below for the OR function and
the AND function.

xnor This is a built-in primitive gate that functions as an exclusive-OR gate with a
negative output.  Exclusive-NOR gates can be represented by the symbol shown be-
low.  An exclusive-NOR gate is also called an equality function because the output is
a logical 1 whenever the two inputs are equal.

The equation for the exclusive-NOR gate shown above is

z1 = (x1x2) + (x1' x2' )

xor This is a built-in primitive gate that functions as an exclusive-OR circuit.
Exclusive-OR gates can be represented by the symbol shown below.  The output of an
exclusive-OR gate is a logical 1 whenever the two inputs are different.

NOT (inverter) function NOT (inverter) function
with low assertion output with low assertion input

OR gate for the OR function OR gate for the AND function

Exclusive-NOR gate
+x1
+x2

+z1

Exclusive-OR gate
+x1
+x2

+z1
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The equation for the exclusive-OR gate shown above is

z1 = (x1x2' ) + (x1' x2)

1.4.1  Built-In Primitive Design Examples

The best way to learn design methodologies using built-in primitives is by examples.
Therefore, examples will be presented ranging from very simple to moderately com-
plex.  When necessary, the theory for the examples will be presented prior to the Ver-
ilog design.  All examples are carried through to completion at the gate level.  Nothing
is left unfinished or partially designed.

Example 1.1 The Karnaugh map of Figure 1.22 will be implemented using only
NOR gates in a product-of-sums format.  Equation 1.7 shown the product-of-sums
expression obtained from the Karnaugh map.  The logic diagram is shown in Figure
1.23 which indicates the instantiation names and net names.

Figure 1.22 Karnaugh map for Example 1.1.

Figure 1.23 Logic diagram for Example 1.1.

 0 0      0 1     1 1     1 0

0 0      0         1        1         0

0 1      1         1        0         1

1 1      1         1        0         1

1 0      1         1        1         0
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x3x4

 0            1           3            2

 4            5           7           6

 

 12          13         15          14

   8            9          11         10

z1

z1 = (x1  + x2 + x4) (x2  + x3'  + x4) (x2'  + x3'  + x4' ) (1.7)

+x1+x2+x4

–x3

–x2–x4

+z1

inst1

inst2

inst3

inst4

net1

net2

net3



36          Chapter  1     Introduction to Logic Design Using Verilog HDL

The design module is shown in Figure 1.24 using NOR gate built-in primitives.
The test bench is shown in Figure 1.25 using a different approach to generate all 16
combinations of the four inputs.  Several new modeling constructs are shown in the
test bench.  Since there are four inputs to the circuit, all 16 combinations of four vari-
ables must be applied to the circuit.  This is accomplished by a for loop statement,
which is similar in construction to a for loop in the C programming language.

Figure 1.24 Module for the product-of-sums logic diagram of Figure 1.23.

Figure 1.25 Test bench for the design module of Figure 1.24.

//logic diagram using built-in primitives
module log_eqn_pos5 (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

//instantiate the nor built-in primitives
nor inst1 (net1, x1, x2, x4);
nor inst2 (net2, x2, x4, ~x3);
nor inst3 (net3, ~x3, ~x2, ~x4);
nor inst4 (z1, net1, net2, net3);

endmodule

//test bench for log_eqn_pos5
module log_eqn_pos5_tb;

reg x1, x2, x3, x4;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect; //invect[4] terminates the loop
for (invect = 0; invect < 16; invect = invect + 1)

begin
{x1, x2, x3, x4} = invect[4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end
//continued on next page
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Figure 1.25       (Continued)

Referring to the test bench of Figure 1.25, following the keyword begin is the
name of the block: apply_stimulus.  In this block, a 5-bit reg variable is declared called
invect.  This guarantees that all combinations of the four inputs will be tested by the for
loop, which applies input vectors of x1x2x3x4  = 0000, 0001, 0010, 0011 . . . 1111 to
the circuit.  The for loop stops when the pattern 10000 is detected by the test segment
(invect < 16).  If only a 4-bit vector were applied, then the expression (invect < 16)
would always be true and the loop would never terminate.  The increment segment of
the for loop does not support an increment designated as invect++; therefore, the long
notation must be used: invect = invect + 1.

The target of the first assignment within the for loop ({x1 , x2 , x3 , x4} = invect
[4:0] ) represents a concatenated target.  The concatenation of inputs x1 , x2, x3 , and x4
is performed by positioning them within braces: {x1, x2, x3 , x4}.  A vector of five bits
([4:0]) is then assigned to the inputs.  This will apply inputs of 0000, 0001, 0010, 0011,
. . . 1111 and stop when the vector is 10000.

The initial statement also contains a system task ($display) which prints the ar-
gument values   —   within the quotation marks   —   in binary.  The concatenated vari-
ables x1, x2 , x3 , and x4  are listed first; therefore, their values are obtained from the first
argument to the right of the quotation marks: {x1 , x2, x3 , x4}.  The value for the sec-
ond variable z1 is obtained from the second argument to the right of the quotation
marks.  The variables to the right of the quotation marks are listed in the same order as
the variables within the quotation marks.

The delay time (#10) in the system task specifies that the task is to be executed af-
ter 10 time units; that is, the delay between the application of a vector and the response
of the module.  This delay represents the propagation delay of the logic.  The simula-
tion results are shown in binary format in Figure 1.26. 

Figure 1.26 Outputs generated by the test bench of Figure 1.25.

//instantiate the module into the test bench
log_eqn_pos5 inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 0
x1x2x3x4 = 0011, z1 = 1 //continued on next page
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Figure 1.26       (Continued)

Example 1.2 Equation 1.8 will be minimized as a sum-of-products form and then
implemented using built-in primitives of AND and OR with x4  and x5 as map-entered
variables.  Variables may be entered in a Karnaugh map as map-entered variables, to-
gether with 1s and 0s.  A map of this type is more compact than a standard Karnaugh
map, but contains the same information.  A map containing map-entered variables is
particularly useful in analyzing and synthesizing synchronous sequential machines.
When variables are entered in a Karnaugh map, two or more squares can be combined
only if the squares are adjacent and contain the same variable(s).

The Karnaugh map is shown in Figure 1.27 in which the following minterm loca-
tions combine:

Minterm location 0 = x4x5'  + x4x5  = x4
Minterm location 2 = 1 + x4
Combine minterm locations 0 and 2 to yield the sum term x1' x3' x4

Combine minterm locations 2 and 3 to yield x1' x2

Minterm location 4 = x4x5  + x4'  + x5'  = 1
Minterm location 5 = 1
Combine minterm locations 4 and 5 to yield x1x2'

x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 1
x1x2x3x4 = 0110, z1 = 1
x1x2x3x4 = 0111, z1 = 0
x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 1
x1x2x3x4 = 1010, z1 = 0
x1x2x3x4 = 1011, z1 = 1
x1x2x3x4 = 1100, z1 = 1
x1x2x3x4 = 1101, z1 = 1
x1x2x3x4 = 1110, z1 = 1
x1x2x3x4 = 1111, z1 = 0

z1 = x1' x2' x3' x4x5'  + x1' x2  + x1' x2' x3' x4x5  + x1x2' x3' x4x5

+ x1x2' x3  + x1x2' x3' x4'  + x1x2' x3' x5' (1.8)
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Figure 1.27 Karnaugh map for Example 1.2.

The minimized sum-of-products equation from the Karnaugh map is shown in
Equation 1.9.  The logic diagram is shown in Figure 1.28.  The design module is shown
in Figure 1.29 and the test bench is shown in Figure 1.30.  Figure 1.31 lists the outputs
obtained from the test bench.

Figure 1.28 Logic diagram for Equation 1.9.

Figure 1.29 Design module to implement Equation 1.9 using built-in primitives.

x1
x2x3

   0 0                       0 1                        1 1                        1 0

0

1

 0                                   1                                 3                                  2

  4                                  5                                  7                                  6

 x4 x5' + x4 x5                  0                          1                           1

x4x5 + x4' + x5'               1                           0                           0

z1

z1 = x1' x3' x4  + x1' x2  + x1x2' (1.9)

–x1–x3+x4

+x2

+x1
–x2

+z1

inst1

inst2

inst3

inst4

net1

net2

net3

//logic equation using map-entered variables
module mev (x1, x2, x3, x4, z1);

input x1, x2, x3, x4;
output z1;

and inst1 (net1, ~x1, ~x3, x4);
and inst2 (net2, ~x1, x2);
and inst3 (net3, x1, ~x2);
or inst4 (z1, net1, net2, net3);
endmodule
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Figure 1.30 Test bench for the design module of Figure 1.29.

Figure 1.31 Outputs for the test bench of Figure 1.30.

//test bench for logic equation using map-entered variables
module mev_tb;

reg x1, x2, x3, x4;
wire z1;

initial //apply input vectors
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("x1x2x3x4 = %b, z1 = %b",

{x1, x2, x3, x4}, z1);
end

end

//instantiate the module into the test bench
mev inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1)
);

endmodule

x1x2x3x4 = 0000, z1 = 0
x1x2x3x4 = 0001, z1 = 1
x1x2x3x4 = 0010, z1 = 0
x1x2x3x4 = 0011, z1 = 0
x1x2x3x4 = 0100, z1 = 1
x1x2x3x4 = 0101, z1 = 1
x1x2x3x4 = 0110, z1 = 1
x1x2x3x4 = 0111, z1 = 1
x1x2x3x4 = 1000, z1 = 1
x1x2x3x4 = 1001, z1 = 1
x1x2x3x4 = 1010, z1 = 1
x1x2x3x4 = 1011, z1 = 1
x1x2x3x4 = 1100, z1 = 0
x1x2x3x4 = 1101, z1 = 0
x1x2x3x4 = 1110, z1 = 0
x1x2x3x4 = 1111, z1 = 0
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Example 1.3 A 4:1 multiplexer will be designed using built-in logic primitives.
The 4:1 multiplexer of Figure 1.32 will be designed using built-in primitives of AND,
OR, and NOT.  The design is simpler and takes less code if a continuous assignment
statement is used, but this section presents gate-level modeling only — continuous
assignment statements are used in dataflow modeling.

The multiplexer has four data inputs: d3, d2 , d1 , and d0 , which are specified as a
4-bit vector d[3:0], two select inputs: s1 and s0, specified as a 2-bit vector s[1:0], one
scalar input Enable, and one scalar output z1, as shown in the logic diagram of Figure
1.32..  Also, the system function $time will be used in the test bench to return the cur-
rent simulation time measured in nanoseconds (ns).  The design module is shown in
Figure 1.33, the test bench in Figure 1.34, and the outputs in Figure 1.35.

Figure 1.32 Logic diagram of a 4:1 multiplexer to be designed using built-in prim-
itives.

Figure 1.33 Module for a 4:1 multiplexer with Enable using built-in primitives.

+d0

+d1

+d2

+d3

+s0

+s1

+Enable

d0s1's0'

d1s1's0

d2s1s0'

d3s1s0

+z1

net3

net4

net5

net6

net1

net2

inst1

inst2

inst4

inst5

inst6

inst3

inst7

//a 4:1 multiplexer using built-in primitives
module mux_4to1 (d, s, enbl, z1);

input [3:0] d;
input [1:0] s;
input enbl;
output z1;

//continued on next page



42          Chapter  1     Introduction to Logic Design Using Verilog HDL

Figure 1.33       (Continued)

Figure 1.34 Test bench for the 4:1 multiplexer of Figure 1.33.

not inst1 (net1, s[0]),
inst2 (net2, s[1]);

and inst3 (net3, d[0], net1, net2, enbl),
inst4 (net4, d[1], s[0], net2, enbl),
inst5 (net5, d[2], net1, s[1], enbl),
inst6 (net6, d[3], s[0], s[1], enbl);

or inst7 (z1, net3, net4, net5, net6);

endmodule

//test bench for 4:1 multiplexer
module mux_4to1_tb;

reg [3:0] d;
reg [1:0] s;
reg enbl;
wire z1;

initial
$monitor ($time,"ns, select:s=%b, inputs:d=%b, output:z1=%b",

s, d, z1);
initial
begin

#0 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b0;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[0]=0; z1=0

#10 s[0]=1'b0;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[0]=1; z1=1

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[1]=1; z1=1

#10 s[0]=1'b0;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[2]=0; z1=0

//continued on next page
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Figure 1.34       (Continued)

Figure 1.35 Outputs for the 4:1 multiplexer test bench of Figure 1.34.

Example 1.4 This example illustrates the design of a majority circuit using built-in
primitives.  The output of a majority circuit is a logic 1 if the majority of the inputs is
a logic 1; otherwise, the output is a logic 0.  Therefore, a majority circuit must have an
odd number of inputs in order to have a majority of the inputs at the same logic level.

#10 s[0]=1'b1;  s[1]=1'b0;
d[0]=1'b1;  d[1]=1'b0;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[1]=1; z1=0

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b1;
enbl=1'b1; //d[3]=1; z1=1

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;
enbl=1'b1; //d[3]=0; z1=0

#10 s[0]=1'b1;  s[1]=1'b1;
d[0]=1'b1;  d[1]=1'b1;  d[2]=1'b0;  d[3]=1'b0;
enbl=1'b0; //d[3]=0; z1=0

#10 $stop;
end

//instantiate the module into the test bench
mux_4to1 inst1 (

.d(d),

.s(s),

.z1(z1),

.enbl(enbl)
);

endmodule

0  ns, select:s=00, inputs:d=1010, output:z1=0
10 ns, select:s=00, inputs:d=1011, output:z1=1
20 ns, select:s=01, inputs:d=1011, output:z1=1
30 ns, select:s=10, inputs:d=1011, output:z1=0
40 ns, select:s=01, inputs:d=1001, output:z1=0
50 ns, select:s=11, inputs:d=1011, output:z1=1
60 ns, select:s=11, inputs:d=0011, output:z1=0
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A 5-input majority circuit will be designed using the Karnaugh map of Figure 1.36,
where a 1 entry indicates that the majority of the inputs is a logic 1.

Figure 1.36 Karnaugh map for the majority circuit of Example 1.4.

Equation 1.10 represents the logic for output z1 in a sum-of-products form.  The
design module is shown in Figure 1.37, which is designed directly from Equation 1.10
without the use of a logic diagram.  The test bench is shown in Figure 1.38, and the out-
puts are shown in Figure 1.39.

Figure 1.37 Design module for the majority circuit of Figure 1.36.
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x5 = 1

z1

z1 = x3x4x5 + x2x3x5  + x1x3x5  + x2x4x5  + x1x4x5

+ x1x2x5  + x1x2x4  + x2x3x4  + x1x3x4 (1.10)

//5-input majority circuit
module majority (x1, x2, x3, x4, x5, z1);
input x1, x2, x3, x4, x5;
output z1;

and inst1  (net1, x3, x4, x5),
inst2  (net2, x2, x3, x5),
inst3  (net3, x1, x3, x5),
inst4  (net4, x2, x4, x5), //continued on next page
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Figure 1.37       (Continued)

Figure 1.38 Test bench for the majority circuit module of Figure 1.37.

inst5  (net5, x1, x4, x5),
inst6  (net6, x1, x2, x5),
inst7  (net7, x1, x2, x4),
inst8  (net8, x2, x3, x4),
inst9  (net9, x1, x3, x4);

or inst10 (z1, net1, net2, net3, net4, net5,
net6, net7, net8, net9);

endmodule

//test bench for 5-input majority circuit
module majority_tb;
reg x1, x2, x3, x4, x5;
wire z1;

//apply input vectors
initial
begin: apply_stimulus

reg [6:0] invect;
for (invect=0; invect<32; invect=invect+1)

begin
{x1, x2, x3, x4, x5} = invect [6:0];
#10 $display ("x1x2x3x4x5 = %b, z1 = %b",

{x1, x2, x3, x4, x5}, z1);
end

end

//instantiate the module into the test bench
majority inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.x5(x5),

.z1(z1)
);

endmodule
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Figure 1.39 Outputs for the majority circuit of Figure 1.37.

Example 1.5 A code converter will be designed to convert a 4-bit binary number to
the corresponding Gray code number.  The inputs of the binary number x1x2x3x4  are
available in both high and low assertion, where x4  is the  low-order bit.  The outputs for
the Gray code z1z2z3z4 are asserted high, where z4  is the low-order bit.  The binary-to-
Gray code conversion table is shown in Table 1.13.

Table 1.13  Binary-to-Gray Code Conversion

Binary Code Gray Code

x1 x2 x3 x4 z1 z2 z3 z4

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
                            //continued on next page

x1x2x3x4x5 = 00000, z1 = 0
x1x2x3x4x5 = 00001, z1 = 0
x1x2x3x4x5 = 00010, z1 = 0
x1x2x3x4x5 = 00011, z1 = 0
x1x2x3x4x5 = 00100, z1 = 0
x1x2x3x4x5 = 00101, z1 = 0
x1x2x3x4x5 = 00110, z1 = 0
x1x2x3x4x5 = 00111, z1 = 1
x1x2x3x4x5 = 01000, z1 = 0
x1x2x3x4x5 = 01001, z1 = 0
x1x2x3x4x5 = 01010, z1 = 0
x1x2x3x4x5 = 01011, z1 = 1
x1x2x3x4x5 = 01100, z1 = 0
x1x2x3x4x5 = 01101, z1 = 1
x1x2x3x4x5 = 01110, z1 = 1
x1x2x3x4x5 = 01111, z1 = 1

x1x2x3x4x5 = 10000, z1 = 0
x1x2x3x4x5 = 10001, z1 = 0
x1x2x3x4x5 = 10010, z1 = 0
x1x2x3x4x5 = 10011, z1 = 1
x1x2x3x4x5 = 10100, z1 = 0
x1x2x3x4x5 = 10101, z1 = 1
x1x2x3x4x5 = 10110, z1 = 1
x1x2x3x4x5 = 10111, z1 = 1
x1x2x3x4x5 = 11000, z1 = 0
x1x2x3x4x5 = 11001, z1 = 1
x1x2x3x4x5 = 11010, z1 = 1
x1x2x3x4x5 = 11011, z1 = 1
x1x2x3x4x5 = 11100, z1 = 1
x1x2x3x4x5 = 11101, z1 = 1
x1x2x3x4x5 = 11110, z1 = 1
x1x2x3x4x5 = 11111, z1 = 1
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There are four Karnaugh maps shown in Figure 1.40, one map for each of the Gray
code outputs.  The equations obtained from the Karnaugh maps are shown  in Equation
1.11.  The logic diagram is shown in Figure 1.41.  The design module is shown in Fig-
ure 1.42, the test bench module is shown in Figure 1.43, and the outputs are shown in
Figure 1.44.

Figure 1.40 Karnaugh maps for the binary-to-Gray code converter.

1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0
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Figure 1.41 Logic diagram for the binary-to-Gray code converter.

Figure 1.42 Design module for the binary-to-Gray code converter.

Figure 1.43 Test bench for the binary-to-Gray code converter.

z1 = x1

z2 =  x1' x2  + x1x2'  = x1  x2

z3 = x2x3'  + x2' x3  = x2   x3

z4 = x3' x4  + x3x4'  = x3   x4 (1.11)

+x1

+x2

+x3

+x4

+z1

+z2

+z3

+z4

inst1

inst2

inst3

inst4

//binary-to-gray code converter
module bin_to_gray (x1, x2, x3, x4, z1, z2, z3, z4);

input x1, x2, x3, x4;
output z1, z2, z3, z4;

buf inst1 (z1, x1);
xor inst2 (z2, x1, x2);
xor inst3 (z3, x2, x3);
xor inst4 (z4, x3, x4);
endmodule

//test bench for binary-to-gray code converter
module bin_to_gray_tb;

reg x1, x2, x3, x4;
wire z1, z2, z3, z4;

//continued on next page
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Figure 1.43       (Continued)

Figure 1.44 Outputs for the binary-to-Gray code converter.

//apply input vectors
initial
begin: apply_stimulus

reg [4:0] invect;
for (invect=0; invect<16; invect=invect+1)

begin
{x1, x2, x3, x4} = invect [4:0];
#10 $display ("{x1x2x3x4}=%b, {z1z2z3z4}=%b",

{x1, x2, x3, x4}, {z1, z2, z3, z4});
end

end

//instantiate the module into the test bench
bin_to_gray inst1 (

.x1(x1),

.x2(x2),

.x3(x3),

.x4(x4),

.z1(z1),

.z2(z2),

.z3(z3),

.z4(z4)
);

endmodule

{x1x2x3x4}=0000, {z1z2z3z4}=0000
{x1x2x3x4}=0001, {z1z2z3z4}=0001
{x1x2x3x4}=0010, {z1z2z3z4}=0011
{x1x2x3x4}=0011, {z1z2z3z4}=0010
{x1x2x3x4}=0100, {z1z2z3z4}=0110
{x1x2x3x4}=0101, {z1z2z3z4}=0111
{x1x2x3x4}=0110, {z1z2z3z4}=0101
{x1x2x3x4}=0111, {z1z2z3z4}=0100
{x1x2x3x4}=1000, {z1z2z3z4}=1100
{x1x2x3x4}=1001, {z1z2z3z4}=1101
{x1x2x3x4}=1010, {z1z2z3z4}=1111
{x1x2x3x4}=1011, {z1z2z3z4}=1110
{x1x2x3x4}=1100, {z1z2z3z4}=1010
{x1x2x3x4}=1101, {z1z2z3z4}=1011
{x1x2x3x4}=1110, {z1z2z3z4}=1001
{x1x2x3x4}=1111, {z1z2z3z4}=1000


