Are Magnus Bruaset

A survey of preconditioned iterative methods

Pitman Research Notes in Mathematics Series

Main Editors

H. Brezis, Universite de Paris
R.G. Douglas, State University of New York at Stony Brook
A. Jeffrey, University of Neweatle upon Tyne (Founding Edisor)

Editorial Board

H. Amann, University of Zürich
R. Aris, University of Minnesota
G.I. Barenblatt, University of Cambridge
A. Bensoussan, INRIA, France
P. Bullen, University of British Columbia
S. Donaldson, University of Oxford
R.J. Elliott, University of Alberta
R.P. Gilbert, University of Delaware
D. Jerison, Massachusetts Institute of Technology
K. Kirchgiasner, Universitāt Stuttgart
B. Lawson, State University of New York at Stony Brook
B. Moodie, University of Alberta
S. Mori, Kyoto University
L.E. Payne, Cornell University
G.F. Roach, University of Strathelyde
W.A. Strauss, Brown University
S.J. Taylor, University of Virginia

Submission of proposals for consideration
Suggestions for publication, in the form of outlines and representative samples, are invited by the Editorial Board for assessment. Intending authors should approach one of the main editors or another member of the Editorial Board, citing the relevant AMS subject classifications. Alternatively, outlines may be sent directly to the publisher's offices. Refereeing is by members of the board and other mathematical authorities in the topic concerned, throughout the worid.

Preparation of accepted manuscripts

On acceptance of a proposal, the publisher will supply full instructions for the preparation of manuscripts in a form suitable for direct photo-lithographic reproduction. Specially printed grid sheets can be provided and a contribution is offered by the publisher towards the cost of typing. Word processor output, subject to the publisher's approval, is also acceptable.

Illustrations should be prepared by the authors, ready for direct reproduction without further improvement. The use of hand-drawn symbols should be avoided wherever possible, in order to maintain maximum clarity of the text.

The publisher will be pleased to give any guidance necessary during the preparation of a typescript, and will be happy to answer any queries.

Important note

In order to avoid later retyping, intending authors are strongly urged not to begin final preparation of a typescript before receiving the publisher's guidelines. In this way it is hoped to preserve the uniform appearance of the series.

Longman Scientific \& Technical

Longman House

Burnt Mill

Harlow, Essex, CM20 2JE
UK
(Telephone (0279) 426721)

Titles in this series. A full list is available from the publisher on requeat.

100 Optimal control of variational inequalitics V Barbu
101 Partial differential equations and dynamical syatems
W E Fitzgibbon III
102 Approximation of Hilbert space operators Volume II
C Apostol, L A Fialkow, D A Herrero and D Voiculescu
103 Nondiscrete induction and iterative processes V Ptak and F-A Potra
104 Analytic functions - growth aspects
O P Juncia and G P Kapoor
105 Theory of Tikhonov regularization for Frodholm equations of the first kind
C W Groetsch
106 Nonlinear partial differential equations and free boundaries. Volume I JI Diaz
107 Tight and taut immersions of manifolds T E Cecil and P J Ryan
108 A layering method for viscous, incompressible L_{p} flows occupying R^{n}
A. Douglis and E B Fabes

109 Nonlinear partial differential equations and their applications: College de Prance Seminar. Volume VI
H Brezis and J L Lions
110 Finite generalized quadranglea
S E Payne and J A Thas
111 Advances in nonlinear waves. Volume II L. Debnath

112 Topics in several complex variables
E Ramirez de Arellano and D Sundararaman
113 Differential equations, flow invariance and applications
NH Pavel
114 Geometrical combinatorics
F C Holroyd and R J Wikon
115 Generators of strongly continuous semigroups J A van Casteren
116 Growth of algebras and Gelfand-Kirillov dimension
G R Krause and T H Lenagan
117 Theory of bases and cones PK Kamthan and M Gupta
118 Linear groups and permutations AR Camina and E A Whelan
119 General Wiener-Hopf factorization methods F-0 Speck
120 Free boundary problems: applications and theory. Volume III
A Bossavit, A Damlamian and M Fremond
121 Pree boundary problems: applications and theory. Volume IV
A Bossavit, A Damlamian and M Fremond
122 Nonlinear partial differential equations and their applications: College de France Seminar. Volume VII
H Brezis and JLLLions
123 Geometric methods in operator algebras H Araki and E G Effros
124 Infinite dimensional analysis-stochastic processes S Albeverio

125 Ennio de Giorgi Colloquium
P Krfe
126 Almost-periodic functions in abstract specen
S Zaidman
127 Nonlinear variational problems
A Marino, L Modica, S Spagnolo and
M Degliovanai
128 Second-order systems of partial differential equations in the plane
LK Hua, W Lin and C-Q Wu
129 Asymptotics of high-order ordinary differential equation:
R B Paris and A D Wood
130 Stochastic differential equations R Wu
131 Differential geometry
L A Cordero
132 Nonlinear differential equations
J K Hale and P Martinez-Amores
133 Approximation theory and applications S P Singh
134 Near-rings and their links with groups J D P Meldrum
135 Estimating eigenvalues with a posteriori/a priori inequalities
JR Kuttler and V G Sigillito
136 Regular semigroups as extensions
F J Pastijn and M Petrich
137 Representations of rank one Lie groups.
D H Collingwood
138 Practional calculut
G F Roach and A C McBride
139 Hamilton's principle in continuum mechanics A Bedford
140 Numerical analymis D F Griffiths and GA Watson
141 Semigroups, theory and applications. Volume I H Breais, M G Crandall and F Kappel
142 Distribution theorems of L-functions D Joyner
143 Recent developments in structured continua D De Kee and P Kaloni
144 Functional analysia and two-point differential operators
J Locker
145 Numerical methods for partial differential equations
S I Hariharan and T H Moulden
146 Completely bounded maps and dilations V I Paulsea
147 Harmonic analysis on the Heisenberg nilpotent Lie group
W Schempp
148 Contributions to modern calculus of variations L Cesari
149 Nonlinear parabolic equations: qualitative properties of solutions
L Boccardo and A Tesei
150 From local times to global geometry, control and physics
K D Elworthy

151 A stochastic maximum principle for optimal control of diffusions U G Haussmann
152 Semigroups, theory and applications. Volume II H Brezis, M G Crandall and F Kappel
153 A general theory of integration in function spaces P Muldowney
154 Oakland Conference on partial differential equations and applied mathematics LR Bragg and J W Dettman
155 Contributions to nonlinear partial differential equations. Volume II
J I Dfaz and P L Lions
156 Semigroups of linear operators: an introduction A C McBride
157 Ordinary and partial differential equations B D Sleeman and R J Jarvis
158 Hyperbolic equations
F Colombini and M K V Murthy
159 Linear topologies on a ring: an overview J S Golan
160 Dynamical systems and bifurcation theory M I Camacho, M J Pacifico and F Takens
161 Branched coverings and algebraic functions M Namba
162 Perturbation bounds for matrix cigenvalues R Bhatia
163 Defect minimization in operator equations: theory and applications

R Reemtsen

164 Multidimensional Brownian excursions and potential theory
K Burdzy
165 Viscosity solutions and optimal control R J Elliott
166 Nonlinear partial differential equations and their applications: College de France Seminar.
Volume VIII
H Brezis and J L Lions
167 Theory and applications of inverse problems H Haario
168 Energy stability and convection G P Galdi and B Straughan
169 Additive groups of rings. Volume II S Feigelstock
170 Numerical analysis 1987
D F Griffiths and G A Watson
171 Surveys of some recent results in operator theory. Volume I
JB Conway and B B Morrel
172 Amenable Banach algebras J-P Pier
173 Pseudo-orbits of contact forms A Bahri
174 Poisson algebras and Poisson manifolds
K H Bhaskara and K Viswanath
175 Maximum principles and eigenvalue problems in partial differential equations
P W Schaefer
176 Mathematical analysis of nonlinear, dynamic processes
K U Grusa

177 Cordes' two-parameter spectral representation theory
D F McGhee and R H Picard
178 Equivariant K-theory for proper actions N C Phillips
179 Elliptic operators, topology and asymptotic methods
J Roe
180 Nonlinear evolution equations
J K Engelbrecht, V E Fridman and E N Pelinovski
181 Nonlinear partial differential equations and their applications: College de France Seminar.
Volume IX
H Brexis and J L Lions
182 Critical points at infinity in some variational problems

A Bahri

183 Recent developments in hyperbolic equationa
L Cattabriga, F Colombini, M K V Murthy and S Spagnolo
184 Optimization and identification of systems governed by evolution equations on Banach space N U Ahmed
185 Free boundary problems: theory and applications. Volume I
K H Hoffmann and J Sprekels
186 Free boundary problems: theory and applications. Volume II
K H Hoffmann and J Sprekels
187 An introduction to intersection homology theory F Kirwan
188 Derivatives, nuclei and dimensions on the frame of torsion theories
J S Golan and H Simmons
189 Theory of reproducing kernels and its applications S Saitoh
190 Volterra integrodifferential equations in Banach spaces and applications
G Da Prato and M Iannelli
191 Nest algebras
K R Davidson
192 Surveys of some recent results in operator theory. Volume II
J B Conway and B B Morrel
193 Nonlinear variational problems. Volume II
A Marino and MK V Murthy
194 Stochastic processes with multidimensional parameter
M E Dozzi
195 Prestressed bodies
D Iesan
196 Hilbert space approach to some classical transforms
R H Picard
197 Stochastic calculus in application
JR Norris
198 Radical theory
B J Gardner
199 The C^{*}-algebras of a class of solvable Lic groups X Wang
200 Stochastic analysis, path integration and dynamics K D Elworthy and J C Zambrini

201 Riemannian geometry and holonomy groupe S Salamon
202 Strong asymptotic: for extremal errors and polynomials associated with Erdos type weights D S Lubingky
203 Optimal control of diffusion processes V S Borkar
204 Rings, modules and radicals B J Gardner
205 Two-parameter eigenvalue problems in ordinary differential equations M Faierman
206 Distributions and analytic functions R D Carmichael and D Mitrovic
207 Semicontinuity, relaxation and integral representation in the calculus of variations G Buttazzo
208 Recent advances in nonlinear elliptic and parabolic problems
P Benilan, M Chipot, LL Evans and M Pierre
209 Model completions, ring representations and the topology of the Pierce sheaf A Carson
210 Retarded dynamical systems G Stepan
211 Function spaces, differential operators and nonlinear analysis

L. Paivarinta

212 Analytic function theory of one complex variable C C Yang, Y Komatu and K Niino
213 Elements of stability of visco-elastic fluids J Dunwoody
214 Jordan decomposition of generalized vector measures
K D Schmidt
215 A mathematical analysis of bending of plates with transverse shear deformation C Constanda
216 Ordinary and partial differential equations. Volume 11 B D Sleeman and R J Jarvis
217 Hilbert modules over function algebras R G Douglas and V I Pauken
218 Graph colourings R Wilson and \mathbf{R} Nelson
219 Hardy-type inequalities
A Kufner and B Opic
220 Nonlinear partial differential equations and their applications: College de France Seminar. Volume X H Brezis and JLLions
221 Workshop on dynamical systems E Shiels and Z Coelho
222 Geometry and analysis in nonlinear dynamics H W Broer and F Takens
223 Pluid dynamical aspects of combustion theory M Onofri and A Tesei
224 Approximation of Hilbert space operators. Volume I. 2nd edition
D Herrero
225 Operator theory: proceedings of the 1988
GPOTS-Wabash conference
J B Conway and B B Morrel

226 Local cohomology and localization
J L Bueso Montero, B Torrecillas Jover and A Verschoren
227 Nonlinear waves and dissipative effects
D Pusco and A Jeffrey
228 Numerical analysis 1989
D F Griffiths and G A Watson
229 Recent developments in structured continua. Volume II
D De Kee and P Kaloni
230 Boolean methods in interpolation and approximation
F J Delvos and W Schempp
231 Further advances in twistor theory. Volume I
L J Mason and L P Hughston
232 Further advances in twistor theory. Volume II
L J Mason, L P Hughston and P Z Kobak
233 Geometry in the neighborhood of invariant manifolds of maps and flows and linearization U Kirchgraber and K Palmer
234 Quantales and their applications K I Rosenthal
235 Integral equations and inverse problems V Petkov and R Lazarov
236 Pseudo-differential operators SR Simanca
237 A functional analytic approach to statistical experiments
I M Bomze
238 Quantum mechanics, algebras and distributions
D Dubin and M Hennings
239 Hamilton flows and evolution semigroups J Gzyl
240 Topics in controlled Markov chains
V S Borkar
241 Invariant manifold theory for hydrodynamic transition
S Sritharan
242 Lectures on the spectrum of L^{2} (IIG) FLWilliams
243 Progress in variational methods in Hamiltonian systems and elliptic equations
M Girardi, M Matzeu and F Pacella
244 Optimization and nonlincar analysis A loffe, M Marcus and S Reich
245 Inverse problems and imaging
G F Roach
246 Semigroup theory with applications to systems and control
N U Ahmed
247 Periodic-parabolic boundary value problems and positivity
P Hess
248 Distributions and pseudo-differential operators S Zaidman
249 Progress in partial differential equations: the
Metz surveys
M Chipot and J Saint Jean Paulin
250 Differential equations and control theory
V Barbu

251 Stability of stochastic differential equations with respect to semimartingales X Mao
252 Fixed point theory and applications J Baillon and M Thera
253 Nonlinear hyperbolic equations and field theory M K V Murthy and S Spagnolo
254 Ordinary and partial differential equations. Volume III
B D Sleeman and R J Jarvis
255 Harmonic maps into homogencous apaces M Black
256 Boundary value and initial value problems in complex analysis: studies in complex analysis and its applications to PDEs 1
R Kuhnau and W Tutschke
257 Geometric function theory and applications of complex analysis in mechanics: studies in complex analysis and its applications to PDEs 2
R Kühnau and W Tutschke
258 The development of statiatics: recent contributions from China
X R Chea, K T Fans and C C Yang
259 Multiplication of distributions and applications to partial differential equations
M Obergugsenberger
260 Numerical analysis 1991
D F Griffiths and G A Watson
261 Schur's algorithm and several applications
M Bakonyi and T Constantinescu
262 Partial differential equations with complex analysis H Begehr and A Jeffrey
263 Partial differential equations with real analysis H Begehr and A Jeifrey
264 Solvability and bifurcations of nonlinear equations P Dríbek
265 Orientational averaging in mechanics of solids A Lagzdins, V Tamuzs, G Teters and A Kregers
266 Progress in partial differential equations: elliptic and parabolic problems
C Bandle, J Bemelmans, M Chipot, M Grüter and J Saint Jean Paulin
267 Progress in partial differential equations: calculus of variations, applications
C Bandle, J Bemelmans, M Chipot, M Grüter and J Saint Jean Paulin
268 Stochastic partial differential equations and applications
G Da Prato and L Tubaro
269 Partial differential equations and related subjects M Miranda
270 Operator algebras and topology
W B Arveson, A S Mishehenko, M Putinar, M A Rieffel and S Stratila
271 Operator algebras and operator theory
W B Arveson, A S Mishchenko, M Putinar, M A Rieffel and S Stratila
272 Ordinary and delay differential equations J Wiener and J K Hale
273 Partial differential equations
J Wiener and J K Hale
274 Mathematical topics in fluid mechanics J F Rodrigues and A Sequeira

275 Green functions for second order parabolic integro-differential problems
M G Garroni and J F Menaldi
276 Riemann waves and their applications M W Kalinowski
277 Banach C(K)-modules and operators preserving disjointnces
Y A Abramovich, E L Arenson and
AK Kitover
278 Limit algebras: an introduction to subalgebras of C*-algebras
S C Power
279 Abstract evolution equations, periodic problems and applications
D Daners and P Koch Medina
280 Emerging applications in free boundary problems J Chadam and H Rasmussen
281 Free boundary problems involving solids
J Chadam and H Rasmussen
282 Free boundary problems in fluid flow with applications
J Chadam and H Rasmussen
283 Asymptotic problems in probability theory: stochastic models and diffusions on fractals K D Elworthy and N Ikeda
284 Asymptotic problems in probability theory:
Wiener functionals and asymptotics
K D Elworthy and N Ikeda
285 Dynamical systems
R Bamon, R Labarca, J Lewowicz and J Palis
286 Models of hysteresis
A Visintin
287 Moments in probability and approximation theory
G A Anastassiou
288 Mathematical aspects of penetrative convection B Straughan
289 Ordinary and partial differential equations.
Volume IV
B D Sleeman and R J Jarvis
290 K-theory for real C^{*}-algebras
H Schröder
291 Recent developments in theoretical fluid mechanics
G P Galdi and J Necas
292 Propagation of a curved shock and nonlinear ray theory
P Prasad
293 Non-classical elastic solids
M Ciarletta and D Iespan
294 Multigrid methods
J Bramble
295 Entropy and partial differential equations W A Day
296 Progress in partial differential equations: the
Metz surveys 2
M Chipot
297 Nonstandard methods in the calculus of variations C Tuckey
298 Barrelledness, Baire-like- and (LF)-spaces M Kunzinger
299 Nonlinear partial differential equations and their applications. College de France Seminar.
Volume XI

H Brezis and JL Lions

300 Introduction to operator theory
T Yoshino

301 Generalized fractional calculus and applications V Kiryakova
302 Nonlinear partial differential equations and their applications. College de France Seminar
Volume XII
H Brezis and J L Lions
303 Numerical analysis 1993
D F Griffiths and G A Watson
304 Topics in abstract differential equations S Zaidman
305 Complex analysis and its applications
C C Yang, G C Wen, K Y Li and Y M Chiang
306 Computational methods for fluid-structure interaction
J M Crolet and R Ohayon
307 Random geometrically graph directed self-similar multifractals
L Olsea
308 Progress in theoretical and computational fluid mechanics
G P Galdi, J Málek and J Necas
309 Variational methods in Lorentzian geometry A Masiello
310 Stochastic analysis on infinite dimensional apaces
H Kunita and H-H Kuo
311 Representations of Lie groups and quantum groups
V Baldoni and M Picardello
312 Common zeros of polynomials in several variables and higher dimensional quadrature $\mathbf{Y} \mathbf{X u}$
313 Extending modules
N V Dung, D van Huynh, P F Smith and R Wisbauer
314 Progress in partial differential equations: the Metz surveys 3
M Chipot, J Saint Jean Paulin and I Shafrir
315 Refined large deviation limit theorems V Vinogradov
316 Topological vector spaces, algebras and related areas
A Lau and I Tweddle
317 Integral methods in science and engineering C Constanda
318 A method for computing unsteady flows in porous media R Raghavan and E Ozkan
319 Asymptotic theories for plates and shells R P Gilbert and K Hackl
320 Nonlinear variational problems and partial differential equations
A Marino and MK V Murthy
321 Topics in abstract differential equations II S Zaidman
322 Diffraction by wedges

B Budaev

323 Free boundary problems: theory and applications J I Diaz, M A Herrero, A Lifian and
JL Vazques
324 Recent developments in evolution equations AC McBride and G F Roach
325 Elliptic and parabolic problems: Pont-ì-Mousson 1994
C Bandle, J Bemelmans, M Chipot,
J Saint Jean Paulin and I Shafrir

326 Calculus of variations, applications and computations: Pont-1-Mousson 1994 C Bandle, J Bemelmans, M Chipot, J Saint Jean Paulin and I Shafrir
327 Conjugate gradient type methods for ill-posed problems M Hanke
328 A survey of preconditioned iterative methods A M Bruasét

Are Magnus Bruaset

SINTEF, Norway

A survey of preconditioned iterative methods

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 1995 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xi
Chapter 1. Introduction 1
1.1 A model problem 1
1.2 Direct versus iterative methods 3
1.3 Outline 8
Chapter 2. Iterative methods based on matrix splittings 10
2.1 Stationary iterative methods 13
2.1.1 The Jacobi and Gauss-Seidel iterations 13
2.1.2 Overrelaxed iterations 15
2.1.3 Extrapolation and other methods 17
2.2 Nonstationary iterative methods 19
2.3 Remarks on implementation and efficiency 22
Chapter 3. Krylov subspace methods 25
3.1 Basic principles of Krylov projection methods 27
3.2 Algorithmic frameworks 33
3.3 Symmetric problems 36
3.3.1 Symmetric positive definite problems 36
3.3.2 Symmetric indefinite problems 42
3.4 Nonsymmetric problems 44
3.4.1 Orthogonalization methods 44
3.4.2 Biorthogonalization and Lanczos algorithms 53
3.4.3 Solving the normal equations 60
3.5 Termination procedures for iterative solvers 62
3.6 Remarks on implementation and efficiency 66
Chapter 4. Preconditioners for linear systems of equations 72
4.1 Basic iterations revisited 73
4.2 Preconditioners based on incomplete factorizations 76
4.2.1 Pointwise incomplete factorizations 77
4.2.2 Blockwise incomplete factorizations 86
4.2.3 Remarks on implementation and efficiency 92
4.3 Preconditioners based on approximate inversion 98
4.3.1 Polynomial approximations 99
4.3.2 Sparse approximate inverses 108
4.3.3 Remarks on implementation and efficiency 110
4.4 Iterative solvers in terms of the PDE 112
4.4.1 Fast direct methods used as preconditioners 113
4.4.2 Multilevel and domain decomposition methods. 114
Chapter 5. Epilogue 126
Appendix A. Some notation and useful properties 131
Bibliography 136
Index 159

Preface

These notes present a survey of iterative methods for the solution of large linear systems of algebraic equations. In particular, we focus on systems derived as discrete counterparts to partial differential equations. Such systems are usually very sparse, i.e., only a small fraction of the coefficient matrix contains nonzero entries. For this type of problems, iterative solvers have proven to be efficient and valuable strategies. This observation is indeed present as technological developments expand our computational power, thus encouraging the numerical solution of larger and larger systems. Moreover, high-performance computing puts us in a position where we are able to study mathematical models at complexity levels far beyond the limits of currently available analytic tools. For these reasons, the development of efficient and reliable procedures for solving linear systems will have continuing impact on computational mathematics.

The main objective of this survey is to present a compact overview of modern iterative solvers. There are already several thousands of papers published in this field, and it may seem as a overwhelming task to search this literature for the information that is relevant to one's own work. Hopefully, this presentation may help non-specialists to find suitable methods for their problems and also serve as a guide to the existing literature. However, due to the vast amount of publications in this area, this survey does not pretend to be exhaustive. Instead it presents a subjective selection of recent developments that presumably is of interest to many groups of users. We apologize therefore to anyone whose work is left out or not given the attention it deserves.

Besides the presentation of several iterative solvers, we also focus on the basic principles behind such methods. Starting with simple stationary iterations like Jacobi and Sor, we end up discussing a framework for a family of Krylov projection solvers such as the conjugate gradient method. We also review further developments that have led to methods like Gmres, Bicgstab and Qmr. In order to achieve a satisfactory convergence behaviour, iterative methods should usually be combined with an appropriate preconditioning strategy. Indeed, when solving general nonsymmetric problems, preconditioning may be required to obtain convergence at all. In the present survey, we pay special attention to algebraic preconditioners such as incomplete factorizations and matrix polynomials. We also outline the construction of some preconditioners that are closely connected to the original continuous problem, e.g. multigrid and domain decomposition.

Realizing that it would be next to impossible to compile this survey without sub-
stantial support, I am grateful to the research council and all individuals that in some way or another have contributed to this project. Financial support has been provided by The Research Council of Norway primarily under grant no. 413.90/002, and partially through the strategic research program STP 28402: Toolkits in Industrial Mathematics at SINTEF. Moreover, I want to thank Dr. Aslak Tveito and Professor Ragnar Winther (University of Oslo) for helpful discussions and for encouraging this work. I also highly appreciate the valuable comments on preliminary versions of this survey made by Dr. Torgeir Rusten (SINTEF Applied Mathematics), as well as the constructive suggestions from Professor Åke Björck (University of Linköping) and Professor Magne Espedal (University of Bergen). In addition, I want to thank Dr. Hans Petter Langtangen (University of Oslo) for a stimulating and fruitful teamwork in the development of Diffpack, where several of the methods and techniques discussed in this survey have been implemented. Finally, I take this opportunity to thank my family, Helga, Ingeborg and Jørgen, for their neverending support and concern.

Oslo, February 1995
Are Magnus Bruaset

The author's address is: SINTEF Applied Mathematics, P.O. Box 124 Blindern, N-0314 Oslo, Norway. Email: Are.Magnus.Bruasetesi.sintef.no or na.bruasetena-net.ornl.gov.

1. Introduction

This survey is devoted to iterative methods for solving large linear systems of algebraic equations

$$
\begin{equation*}
A x=b, \tag{1.1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n, n}$ is nonsingular and $x, b \in \mathbb{R}^{n}$. Such systems are natural parts of applications in many different disciplines, e.g. structural analysis, electrical engineering, oil reservoir modeling, computer aided geometric design, atmospheric pollution, chemical engineering and economic modeling. In many cases, some dynamic process is modeled in mathematical terms, e.g. as a partial differential equation, and (1.1) is derived as the discrete counterpart of the continuous model. Even for nonlinear and time-dependent problems, linear systems like (1.1) naturally arise at intermediate steps of the global computation.

Since World War II, and in particular over the last decade, the increased access to computational power has encouraged studies of mathematical models at complexity levels far beyond the limits of currently available analytic tools. There is no doubt that such technological developments, at present ranging from modern workstations to supercomputers with vector and/or parallel processing capabilities, will have continuing impact on mathematical applications. According to Lax [259], the influence of fast computers on mathematics is "comparable to the role of telescopes in astronomy and microscopes in biology". However, due to the gap between theoretical insight and computability, there is urgent need for robust, as well as efficient, methods for dealing with intricate mathematical models. In particular, it is observed that the solution of linear algebraic systems is a fundamental, and often the most time-consuming, part of many simulation codes. Thus, we recognize the need for fast and reliable procedures for solving such systems, motivated by practical as well as economical reasons.

1.1 A model problem

As indicated above, we are primarily concerned with linear systems obtained by discretization of a corresponding continuous problem. For a typical example, we consider the following elliptic model problem in a domain $\Omega \subset \mathbb{R}^{d}$

$$
\begin{equation*}
\mathcal{L} u=-\sum_{i=1}^{d} \frac{\partial}{\partial \xi_{i}}\left(K^{i}(\xi) \frac{\partial u}{\partial \xi_{i}}\right)+\sum_{i=1}^{d} V^{i}(\xi) \frac{\partial u}{\partial \xi_{i}}+H(\xi) u=f \tag{1.2}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
\mathcal{B} u=\alpha u+\beta \frac{\partial u}{\partial \boldsymbol{n}}=g \tag{1:3}
\end{equation*}
$$

on the piecewise smooth boundary $\partial \Omega$ with outwards directed normal n. Denoting the closure of Ω as $\bar{\Omega}=\Omega \cup \partial \Omega$, we have $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right) \in \bar{\Omega}$ for some $d \in\{1,2,3\}$. The functions $K^{i}, V^{i}, H: \bar{\Omega} \mapsto \mathbb{R}$ are assumed to be sufficiently smooth and fulfill the inequalities $K^{i} \geq K_{\text {min }}^{i}>0$ and $H \geq 0$ for $i=1, \ldots, d$. Choosing $(\alpha, \beta)=(1,0)$ or $(\alpha, \beta)=(0,1)$ gives Dirichlet or Neumann boundary conditions, respectively. When both α and β are nonzero, the boundary conditions are said to be of Robin type. Allowing the parameters to be functions of the spatial position ξ, we are able to assign different types of conditions to specific segments of $\partial \Omega$. Restrictions that ensure the existence of a unique solution u may be found in many textbooks on elliptic boundary value problems, see for instance Gilbarg and Trudinger [192]. To this end, we will assume that these requirements are satisfied and that the corresponding linear system is nonsingular.

Throughout this survey, unless otherwise stated, we consider the linear system (1.1) as a result of discretizing the model problem (1.2), (1.3) by a finite difference method, cf. [113, 275, 313], or a finite element method, cf. [32, 114, 429]. In many situations we will refer to the simplified model problem obtained for $K^{i} \equiv 1, V^{i} \equiv 0$ and $H \equiv 0$ subject to homogeneous Dirichlet boundary conditions,

$$
\begin{align*}
-\Delta u & =f & & x \in \Omega=(0,1)^{d} \tag{1.4}\\
u & =0 & & x \in \partial \Omega
\end{align*}
$$

This is the Poisson equation, which for $d=2$ is posed on the unit square. Defining the mesh size $h=1 /(q+1)$ for some positive integer q, we introduce the computational grid Ω_{h} and its "closure" $\bar{\Omega}_{h}$:

$$
\begin{array}{ll}
\Omega_{h}=\left\{(i h, j h):(i, j) \in I_{h}\right\}, & I_{h}=\{(i, j): 1 \leq i, j \leq q\} \\
\bar{\Omega}_{h}=\left\{(i h, j h):(i, j) \in \bar{I}_{h}\right\}, & \bar{I}_{h}=\{(i, j): 0 \leq i, j \leq q+1\} \tag{1.5}
\end{array}
$$

A second-order finite difference approximation of problem (1.4) is then given by

$$
\begin{equation*}
-u_{i, j-1}-u_{i-1, j}+4 u_{i, j}-u_{i+1, j}-u_{i, j+1}=h^{2} f_{i, j}, \quad i, j=1,2, \ldots, q \tag{1.6}
\end{equation*}
$$

where $f_{i, j}=f(i h, j h)$ and $u_{i, j}$ is the computed approximation to $u(i h, j h)$ which vanishes on the discretized boundary $\partial \Omega_{h}=\bar{\Omega}_{h} \backslash \Omega_{h}$. This system of equations is of form (1.1) with $n=q^{2}$ provided \boldsymbol{A} denotes the usual five-point discrete Laplacian, $x=\left(u_{1,1}, u_{2,1}, \ldots, u_{q, q}\right)^{T}$ and $b=h^{2}\left(f_{1,1}, f_{2,1}, \ldots, f_{q, q}\right)^{T}$. Similar discretization for $d=3$ leads to a seven-point difference scheme.

1.2 Direct versus iterative methods

Given a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, there are essentially two possible approaches for solution. Traditionally, such problems have been solved by a direct method such as Gaussian elimination (or Cholesky decomposition), where the exact factorization of $A=L U$ into lower and upper triangular matrices L and U is computed, see Golub and van Loan [194, Ch. 4]. For the general $n \times n$ problem such procedures need $\mathcal{O}\left(n^{3} / 3\right)$ flops, while the solution of the triangular systems $L y=b$ and $U x=y$ needs $\mathcal{O}\left(n^{2}\right)$ flops. If A is not needed for other purposes, it may be overwritten by its computed factors L and U in order to save storage.

Remark 1.1 A fop is essentially the cost of the statement $\mathrm{S}=\mathrm{S}+\mathrm{A}(\mathrm{I}, \mathrm{K}) * \mathrm{~B}(\mathrm{~K}, \mathrm{~J})$, i.e., a floating point multiplication and addition including some subscripting, cf. [194].

Direct methods for sparse problems. Linear systems derived by discretization of elliptic boundary value problems are typically sparse. This means that relatively few entries of the coefficient matrix A are nonzero, e.g. five or seven contributions for each row, such that the total number of nonzeros are $\mathcal{O}(n)$. Depending on the geometry of the problem and the chosen discretization procedure, the sparsity pattern of \boldsymbol{A} will be structured or practically random, cf. Figure 1.1. In many cases A has a banded structure such that $a_{i, j}=0$ whenever $i>j+p_{1}$ or $j>i+p_{2}$. The constants p_{1} and p_{2} are referred to as lower and upper bandwidths. If $p=p_{1}=p_{2}$, we may also use the term halfbandwidth. For the system (1.6) we have $p_{1}=p_{2}=q=n^{1 / 2}$. When solving banded systems the operation count for the unpivoted factorization procedure is $\mathcal{O}\left(n p_{1} p_{2}\right)$ flops, since the banded structure is maintained in L and U. This estimate is significantly smaller than $n^{3} / 3$ whenever p_{1} or p_{2} is much smaller than n. In (1.6), the discrete Poisson problem in two dimensions, this estimate is reduced to $\mathcal{O}\left(n^{2}\right)$. Exploiting the symmetry of A, the number of arithmetic operations can be further halved. In terms of storage we obtain similar reductions from n^{2} floating point numbers in the general case to $n\left(p_{1}+p_{2}+1\right)$ for a banded matrix. Whenever A is symmetric we have $p=p_{1}=p_{2}$, and only $n(p+1)$ entries need to be stored.

If a direct solver such as Gaussian elimination is applied to a sparse system, we introduce a large number of additional nonzero entries into the coefficient matrix. These fill-in values will destroy the sparse structure of the problem and thus increase the storage requirements significantly.

The conditioning of \boldsymbol{A} may have bad influence on the numerical errors that occur during the elimination process, or in any other solution method, see for instance Stewart and Sun [362, Ch. III]. Since problems like (1.2) typically lead to a spectral condition number $\kappa(A)=\mathcal{O}\left(h^{-3}\right)$, the numerical difficulties increase as we tend to solve larger systems, e.g. as a result of more computational power. To compensate for this behaviour, we may be forced to employ high-precision computations which will further increase the cost of storage and processing. However, there are other remedies

Figure 1.1: Some examples of sparsity patterns, where the dots indicate nonzero entries. The figure to the left describes a typical five-point finite difference discretization, e.g. the discrete model problem (1.6). From left to right, the system sizes are $n=144, n=465$ and $n=991$.
for this problem such as iterative refinement techniques, see Duff et al. [145], Golub and van Loan [194] and Zlatev [430, 431]. There also exist other direct strategies, e.g. nested dissection and frontal methods, that are well suited for solving sparse systems. For a discussion of such methods in the context of finite element discretizations we refer to Axelsson and Barker [32, Ch. 6], while general introductions to this field are provided by George and Liu [191] and Duff et al. [145]. Considerable improvement over simple (banded) Gaussian elimination is achievable by these methods. However, due to their complicated nature, implementation for general problems is a nontrivial task.

Iterative methods. As an alternative to direct methods we may apply an iterative solver to the system (1.1), see Golub and van Loan [194, Ch. 10]. Such methods start with an initial guess x^{0} for the solution $x=A^{-1} b$ and compute a sequence of approximations $\left\{\boldsymbol{x}^{k}\right\}$ which hopefully converges to \boldsymbol{x}. When using an iterative method, the coefficient matrix \boldsymbol{A} is involved (directly or indirectly) only in terms of matrix by vector products. Thus there is no need for storing the zero entries of \boldsymbol{A}, and it is possible to implement algorithms that are extremely cost-effective with respect to computing time as well as storage, see Example 1.1. In addition to matrix by vector products, many iterative solvers are based on vector operations like $y=a x+y, a \in \mathbb{R}$, (commonly called a SAXPY operation) and inner products $(x, y)=x^{T} y$. Thus, except for some possible problems related to the global communication needed for the computation of inner products, such iterative methods are well suited for parallel and vectorized implementations, cf. Dongarra et al. [140, Ch. 7] and Saad [339].
EXAMPLE 1.1 Consider the three-dimensional model problem (1.2) posed on the unit cube with

$$
K^{i}(\xi)=1+e^{-20\left(\left(\xi_{2}-1 / 2\right)^{2}+\left(\xi_{2}-1 / 2\right)^{2}+\left(\xi_{3}-1 / 2\right)^{2}\right)}, \quad i=1,2,3,
$$

$V^{i} \equiv H \equiv 0$ and $f \equiv 1$ subject to $u=0$ on $\partial \Omega$. We want to solve the associated $n \times n$ system of linear equations obtained by a centered second order difference approximation. In Table 1.1

n	Direct solver		Iterative solver		Ratio	
	CPU (s)	Memory (Mb)	CPU (8)	Memory (Mb)	CPU	Memory
3375	14.4	5.9	0.2	0.29	72.3	20.3
8000	109.7	24.5	0.5	0.63	219.3	38.9
15625	531.3	74.7	1.2	1.17	442.6	63.8
27000	1922.1	185.8	2.2	1.95	924.0	95.3
64000	5.4 hours*	782.2	6.1	4.44	3158.1^{*}	176.2
125000	1.4 days*	2386.1	16.3	8.46	7 503.3*	282.0
216000	6.7 days*	5935.9	32.3	14.37	$1.8 \cdot 10^{4 *}$	413.1
512000	83.7 days*	$2.5 \cdot 10^{4}$	96.0	33.35	$7.5 \cdot 10^{4 *}$	749.9
1000000	1.7 years*	$7.6 \cdot 10^{4}$	221.4	64.30	$2.4 \cdot 10^{5 *}$	1186.8
3375000	62.8 years*	$5.8 \cdot 10^{5}$	929.0	213.29	$2.1 \cdot 10^{6 *}$	2716.5
8000000	832.0 years*	$2.4 \cdot 10^{6}$	2594.8	501.21	$1.0 \cdot 10^{7 *}$	4871.2

Table 1.1: Measured CPU times and memory requirements for Example 1.1.
we show the CPU times and memory requirements for a typical direct method compared to the performance of a well-known iterative solver. The direct method is banded Gaussian elimination adapted to symmetric problems, while the iterative procedure is a conjugate gradient iteration combined with a MLLU preconditioner, see Sections 3.3 .1 and 4.2.1. Highly optimized versions of both methods have been implemented and executed on a Silicon Graphics Onyx workstation with 1 Gb of memory, running only on a single processor. All computations have been done in double precision arithmetics. The iterative solutions were computed with a relative residual norm less or equal 10^{-6}, see Section 3.5.

The columns labeled "Ratio" refers to the ratio between values obtained for the direct versus the iterative method. All entries marked * are based on estimated values and not on actual measurements.

By its nature, an iterative procedure does not accumulate rounding errors in the same way as a direct method. Nevertheless, the accuracy of the iterative solution is still affected by the conditioning of \boldsymbol{A}, see for instance Woźniakowski [413] and Greenbaum [198]. As demonstrated by Brussino and Sonnad [89], iterative methods are very often attractive alternatives to direct solvers. However, a proper strategy should be chosen on basis of the problem we want to solve. On some occasions, direct methods may be preferable to iterative procedures, cf. Howard et al. [229] and Poole et al. [321] for relevant discussions.

In this presentation we regard two widely used classes of iterative methods applicable to the algebraic problem (1.1). First, there are several iterative schemes based on splittings of the coefficient matrix, e.g. $A=M-N$, which include traditional methods like Jacobi, Gauss-Seidel and successive overrelaxation (Sor). Such methods are widely covered in the monographs of Varga [391] and Young [420], see also Hageman and Young [225] and Hadjidimos [223]. Secondly, a large number of methods is based on approximating the exact solution $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$ by some $\boldsymbol{x}^{m} \in \mathscr{X}_{m}$,

