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Preface

These notes present a survey of iterative methods for the solution of large linear sys-
tems of algebraic equations. In particular, we focus on systems derived as discrete
counterparts to partial differential equations. Such systems are usually very sparse,
i.e., only a small fraction of the coefficient matrix contains nonzero entries. For this
type of problems, iterative solvers have proven to be efficient and valuable strategies.
This observation is indeed present as technological developments expand our compu-
tational power, thus encouraging the numerical solution of larger and larger systems.
Moreover, high-performance computing puts us in a position where we are able to
study mathematical models at complexity levels far beyond the limits of currently
available analytic tools. For these reasons, the development of efficient and reliable
procedures for solving linear systems will have continuing impact on computational
mathematics.

The main objective of this survey is to present a compact overview of modern
iterative solvers. There are already several thousands of papers published in this
field, and it may seem as a overwhelming task to search this literature for the in-
formation that is relevant to one’s own work. Hopefully, this presentation may help
non-specialists to find suitable methods for their problems and also serve as a guide
to the existing literature. However, due to the vast amount of publications in this
area, this survey does not pretend to be exhaustive. Instead it presents a subjec-
tive selection of recent developments that presumably is of interest to many groups
of users. We apologize therefore to anyone whose work is left out or not given the
attention it deserves.

Besides the presentation of several iterative solvers, we also focus on the basic
principles behind such methods. Starting with simple stationary iterations like Ja-
cobi and SOR, we end up discussing a framework for a family of Krylov projection
solvers such as the conjugate gradient method. We also review further developments
that have led to methods like GMRES, BICGSTAB and QMR. In order to achieve
a satisfactory convergence behaviour, iterative methods should usually be combined
with an appropriate preconditioning strategy. Indeed, when solving general nonsym-
metric problems, preconditioning may be required to obtain convergence at all. In
the present survey, we pay special attention to algebraic preconditioners such as in-
complete factorizations and matrix polynomials. We also outline the construction of
some preconditioners that are closely connected to the original continuous problem,
e.g. multigrid and domain decomposition.

Realizing that it would be next to impossible to compile this survey without sub-
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1. Introduction

This survey is devoted to iterative methods for solving large linear systems of algebraic
equations

Az = b, (1.1)

where A € R™" is nonsingular and z,b € R*. Such systems are natural parts of
applications in many different disciplines, e.g. structural analysis, electrical engineer-
ing, oil reservoir modeling, computer aided geometric design, atmospheric pollution,
chemical engineering and economic modeling. In many cases, some dynamic process
is modeled in mathematical terms, e.g. as a partial differential equation, and (1.1) is
derived as the discrete counterpart of the continuous model. Even for nonlinear and
time-dependent problems, linear systems like (1.1) naturally arise at intermediate
steps of the global computation.

Since World War II, and in particular over the last decade, the increased access to
computational power has encouraged studies of mathematical models at complexity
levels far beyond the limits of currently available analytic tools. There is no doubt
that such technological developments, at present ranging from modern workstations
to supercomputers with vector and/or parallel processing capabilities, will have con-
tinuing impact on mathematical applications. According to Lax [259], the influence of
fast computers on mathematics is “comparable to the role of telescopes in astronomy
and microscopes in biology”. However, due to the gap between theoretical insight and
computability, there is urgent need for robust, as well as efficient, methods for dealing
with intricate mathematical models. In particular, it is observed that the solution of
linear algebraic systems is a fundamental, and often the most time-consuming, part of
many simulation codes. Thus, we recognize the need for fast and reliable procedures
for solving such systems, motivated by practical as well as economical reasons.

1.1 A model problem

As indicated above, we are primarily concerned with linear systems obtained by
discretization of a corresponding continuous problem. For a typical example, we
consider the following elliptic model problem in a domain  C R?

d " i B
fo=-3 2 (K-‘(e)g—&) + L VO 5 +HEu =1 (12)

=1



subject to the boundary conditions

d
Bu=oau+ ,353 =g (1:3)

on the piecewise smooth boundary dQ0 with outwards directed normal n. Denoting
the closure of 2 as & = QU 8N, we have & = (£,...,£) € 0 for some d € {1,2,3}.
The functions K*,V*, H : f§ - R are assumed to be sufficiently smooth and fulfill the
inequalities K* > K};, > 0and H > 0 for i = 1,...,d. Choosing (a,8) = (1,0) or
(e, B) = (0,1) gives Dirichlet or Neumann boundary conditions, respectively. When
both a and B are nonzero, the boundary conditions are said to be of Robin type.
Allowing the parameters to be functions of the spatial position §, we are able to assign
different types of conditions to specific segments of 3. Restrictions that ensure the
existence of a unique solution u may be found in many textbooks on elliptic boundary
value problems, see for instance Gilbarg and Trudinger [192]. To this end, we will
assume that these requirements are satisfied and that the corresponding linear system
is nonsingular.

Throughout this survey, unless otherwise stated, we consider the linear system
(1.1) as a result of discretizing the model problem (1.2), (1.3) by a finite difference
method, cf. [113, 275, 313], or a finite element method, cf. [32, 114, 429]. In many
situations we will refer to the simplified model problem obtained for K* =1, V' =
and H = 0 subject to homogeneous Dirichlet boundary conditions,

—Au

u

f z e€Q=(0,1)
0 z € 09. (1.4)

This is the Poisson equation, which for d = 2 is posed on the unit square. Defining the
mesh size h = 1/(q + 1) for some positive integer g, we introduce the computational
grid ©, and its “closure” {;:

% = (Ghih): GEL), ko= {G):1siisad,
B = {Ghih): G el),  Ih = {Gj):0<ij<q+1). (D)

Il
i

A second-order finite difference approximation of problem (1.4) is then given by
— Uiy — Ui+ AU — U — v = B2 fiy, 4,0 =1,2,...,9, (1.6)

where f;; = f(ih,jh) and u,;; is the computed approximation to u(ik,jh) which
vanishes on the discretized boundary 99, = Q, \ ,. This system of equations is of
form (1.1) with n = ¢? provided A denotes the usual five-point discrete Laplacian,
z = (up1,Uz1,..- ,u,,_,,)T and b = R*(fy1, fan,---, fye)T- Similar discretization for
d = 3 leads to a seven-point difference scheme.



1.2 Direct versus iterative methods

Given a linear system Az = b, there are essentially two possible approaches for
solution. Traditionally, such problems have been solved by a direct method such as
Gaussian elimination (or Cholesky decomposition), where the exact factorization of
A = LU into lower and upper triangular matrices L and U is computed, see Golub
and van Loan [194, Ch. 4). For the general n x n problem such procedures need
O(n?/3) flops, while the solution of the triangular systems Ly = b and Uz = y
needs O(n?) flops. If A is not needed for other purposes, it may be overwritten by
its computed factors L and U in order to save storage.

REMARK 1.1 A flop is essentially the cost of the statement S = S + A(I,K)*B(K,J), ie., a
floating point multiplication and addition including some subscripting, cf. [194]. [ ]

Direct methods for sparse problems. Linear systems derived by discretization
of elliptic boundary value problems are typically sparse. This means that relatively
few entries of the coefficient matrix A are nonzero, e.g. five or seven contributions
for each row, such that the total number of nonzeros are O(n). Depending on the
geometry of the problem and the chosen discretization procedure, the sparsity pattern
of A will be structured or practically random, cf. Figure 1.1. In many cases A has a
banded structure such that a;; = 0 whenever i > j + p, or j > ¢ + p,. The constants
p1 and p, are referred to as lower and upper bandwidths. If p = p; = p;, we may
also use the term halfbandwidth. For the system (1.6) we have p; = p, = ¢ = n'/2,
When solving banded systems the operation count for the unpivoted factorization
procedure is O(np,p,) flops, since the banded structure is maintained in L and U.
This estimate is significantly smaller than n®/3 whenever p, or p; is much smaller than
n. In (1.6), the discrete Poisson problem in two dimensions, this estimate is reduced
to O(n?). Exploiting the symmetry of A, the number of arithmetic operations can
be further halved. In terms of storage we obtain similar reductions from n? floating
point numbers in the general case to n(p; + p, + 1) for a banded matrix. Whenever
A is symmetric we have p = p; = p,, and only n(p + 1) entries need to be stored.

If a direct solver such as Gaussian elimination is applied to a sparse system, we
introduce a large number of additional nonzero entries into the coefficient matrix.
These fill-in values will destroy the sparse structure of the problem and thus increase
the storage requirements significantly.

The conditioning of A may have bad influence on the numerical errors that occur
during the elimination process, or in any other solution method, see for instance
Stewart and Sun [362, Ch. III]. Since problems like (1.2) typically lead to a spectral
condition number k(A) = O(h~?), the numerical difficulties increase as we tend to
solve larger systems, e.g. as a result of more computational power. To compensate for
this behaviour, we may be forced to employ high-precision computations which will
further increase the cost of storage and processing. However, there are other remedies
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Figure 1.1: Some examples of sparsity patterns, where the dots indicate nonzero
entries. The figure to the left describes a typical five-point finite difference
discretization, e.g. the discrete model problem (1.6). From left to right, the system
sizes are n = 144, n = 465 and n = 991.

for this problem such as iterative refinement techniques, see Duff et al. [145], Golub
and van Loan [194] and Zlatev [430, 431]. There also exist other direct strategies, e.g.
nested dissection and frontal methods, that are well suited for solving sparse systems.
For a discussion of such methods in the context of finite element discretizations we
refer to Axelsson and Barker [32, Ch. 6], while general introductions to this field are
provided by George and Liu [191] and Duff et al. [145]. Considerable improvement
over simple (banded) Gaussian elimination is achievable by these methods. However,
due to their complicated nature, implementation for general problems is a nontrivial
task.

Iterative methods. As an a]ternative to direct methods we may apply an iterative
solver to the system (1.1), see Golub and van Loan [194, Ch. 10]. Such methods
start with an initial guess z° for the solution z = A~'b and compute a sequence
of approximations {z*} which hopefully converges to z. When using an iterative
method, the coefficient matrix A is involved (directly or indirectly) only in terms of
matrix by vector products. Thus there is no need for storing the zero entries of A, and
it is possible to implement algorithms that are extremely cost-effective with respect to
computing time as well as storage, see Example 1.1. In addition to matrix by vector
products, many iterative solvers are based on vector operations like y = az+y, a €R,
(commonly called a SAXPY operation) and inner products (z,y) = 7y. Thus,
except for some possible problems related to the global communication needed for
the computation of inner products, such iterative methods are well suited for parallel
and vectorized implementations, cf. Dongarra et al. [140, Ch. 7] and Saad [339].

EXAMPLE 1.1 Consider the three-dimensional model problem (1.2) posed on the unit cube with
Ki@€)=1+ e~ PU61=1/3)+(€2=1/2)+(€2-1/2)"] 1,2,3,

Vi=H =0and f =1 subject to u = 0 on Q. We want to solve the associated n x n system
of linear equations obtained by a centered second order difference approximation. In Table 1.1

4



n Direct solver Iterative solver Ratio
CPU (s) Memory (Mb) || CPU (s) | Memory (Mb) CPU Memory
3 375 14.4 59 0.2 0.29 72.3 20.3
8 000 109.7 245 0.5 0.63 219.3 38.9
15 625 531.3 74.7 1.2 117 442.6 63.8
27 000 1922.1 185.8 2.2 1.95 924.0 95.3
64 000 5.4 hours® 782.2 6.1 4.44 3 158.1° 176.2
125 000 1.4 days® 2 386.1 16.3 8.46 7 503.3° 282.0
216 000 6.7 days* 5 935.9 323 14.37 1.8-10* 413.1
512 000 83.7 days® 2.5-10* 96.0 33.35 7.5-10% 749.9
1 000 000 1.7 years® 7.6 - 10* 2214 64.30 2.4-10%" | 11868
3 375 000 || 62.8 years® 5.8 - 108 929.0 213.29 21-10° | 2 7165
8 000 000 || 832.0 years® 24-108 2594.8 501.21 10-107" | 4 871.2

Table 1.1: Measured CPU times and memory requirements for Example 1.1.

we show the CPU times and memory requirements for a typical direct method compared to the
performance of a well-known iterative solver. The direct method is banded Gaussian elimination
adapted to symmetric problems, while the iterative procedure is a conjugate gradient iteration
combined with a MILU preconditioner, see Sections 3.3.1 and 4.2.1. Highly optimized versions of
both methods have been implemented and executed on a Silicon Graphics Onyx workstation with
1 Gb of memory, running only on a single processor. All computations have been done in double
precision arithmetics. The iterative solutions were computed with a relative residual norm less or
equal 10~¢, see Section 3.5.

The columns labeled “Ratio” refers to the ratio between values obtained for the direct ver-
sus the iterative method. All entries marked * are based on estimated values and not on actual
measurements. ]

By its nature, an iterative procedure does not accumulate rounding errors in the
same way as a direct method. Nevertheless, the accuracy of the iterative solution
is still affected by the conditioning of A, see for instance Wozniakowski [413] and
Greenbaum [198]. As demonstrated by Brussino and Sonnad [89], iterative methods
are very often attractive alternatives to direct solvers. However, a proper strategy
should be chosen on basis of the problem we want to solve. On some occasions, direct
methods may be preferable to iterative procedures, cf. Howard et al. [229] and Poole
et al. [321] for relevant discussions.

In this presentation we regard two widely used classes of iterative methods ap-
plicable to the algebraic problem (1.1). First, there are several iterative schemes
based on splittings of the coefficient matrix, e.g. A = M — N, which include tradi-
tional methods like Jacobi, Gauss-Seidel and successive overrelaxation (SOR). Such
methods are widely covered in the monographs of Varga [391] and Young [420], see
also Hageman and Young [225] and Hadjidimos [223]. Secondly, a large number of
methods is based on approximating the exact solution £ = A~!b by some 2™ € ¥,,,
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