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Series Foreword

Barry H. Kantowitz
BatteUe Human Factors Transportation Center 
Seattle, Washington

The domain of transportation is important for both practical and theoret
ical reasons. All of us are users of transportation systems as operators, 
passengers, and consumers. From a scientific viewpoint, the transportation 
domain offers an opportunity to create and test sophisticated models of 
human behavior and cognition. This series covers both practical and 
theoretical aspects of human factors in transportation, with an emphasis on 
their interaction.

The series is intended as a forum for researchers and engineers interested 
in how people function within transportation systems. All modes of 
transportation are relevant, and all human factors and ergonomic efforts 
that have explicit implications for transportation systems fall within the 
series purview. Analytic efforts are important to link theory and data. The 
level of analysis can be as small as one person, or international in scope. 
Empirical data can be from a broad range of methodologies, including 
laboratory research, simulator studies, test tracks, operational tests, field 
work, design reviews, or surveys. This broad scope is intended to maximize 
the utility of the series for readers with diverse backgrounds.

I expect the series to be useful for professionals in the disciplines of 
human factors, ergonomics, transportation engineering, experimental psy
chology, cognitive science, sociology, and safety engineering. It is intended 
to appeal to the transportation specialist in industry, government, or 
academia, as well as the researcher in need of a testbed for new ideas about 
the interface between people and complex systems.

The present book is especially appropriate to launch this series because of 
the outstanding job of integrating theoretical and practical aspects of
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SERIES FOREWORD

transportation human factors performed by the editors. I have always 
believed that the best practical tool is a good theory. The editors have 
honored this maxim by starting in Part I with four helpful theoretical 
perspectives. Part II explores human performance in the context of theory 
while Part III emphasizes practical applications. Part IV concludes with 
interesting speculations about the future that meld the theoretical and the 
practical. Forthcoming books in the series will continue this blend of 
practical and theoretical perspectives.



Foreword

Earl L Wiener 
University of Miami

“The question is no longer whether one or another function 
can be automated, but, rather, whether it should be.”

(Wiener & Curry, 1980)

In 1979 Renwick Curry and I, at the request of NASA, embarked on a 
project to determine the influence of cockpit automation on flight safety. 
We found what we later called “promises and problems,” good news and 
bad news. One of the questions we asked was whether cockpit automation 
had reached or passed a point of optimality, and was possibly doing more 
harm than good. Now, 15 years later, we still do not have an answer to that 
question.

The miracle of automated flight that the industry has witnessed over the 
last two decades was enabled by a device so tiny that you could hold 
hundreds of them in the palm of your hand. The development of the 
microprocessor chip ushered in a new generation of computer-based 
automatic devices in transport aircraft, and now in air traffic management. 
Automation has brought an era of fuel-efHcient and potentially airspace- 
efficient flight. But certain incidents and accidents in recent years have led 
many to question the designers’ claims for safety and even workload 
reduction in automatic flight. This is not due to shortcomings in the 
equipment itself, but to problems at the human interface. The equipment is 
highly reliable—as pilots like to say, it works “as advertised.”

Still the problems persist. In early 1995, following a string of incidents 
and disastrous crashes of the most modem airliners. Aviation Week and 
Space Technoiogy was moved to run a two-part series on human-computer
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interaction in the modern cockpit (Hughes and Domheim, 1995). Embla
zoned on the cover of the first issue was one of the questions that Curry and 
I had asked 15 years earlier, “Automated cockpits: who’s in charge?”

Designers and operators of the modern equipment may have underesti
mated the changes brought by automation in the style of flying, the increase 
in mental workload, and the demands on the crews to monitor the 
equipment and the status of flight. Terms such as “situational awareness” 
suddenly appeared, and rapidly became part of the lexicon of human 
factors. The popular but elusive term “complacency” was seen as part of the 
automation problem. Authors began to demand “human-centered” auto
mation. It seems ironic that after a half-century of human factors engineer
ing, it was necessary to call for human-centered (rather than technology- 
centered) design.

In many ways the situation in aviation today resembles that which was 
first encountered in the World War II era: highly capable machines 
outstripping the ability of the human operators to manage them. The 
problem was attacked from every angle by the emerging field of human 
factors engineering, and was brought under control. By the time the jet 
airliners were introduced in the early ’60s, cockpit human engineering was 
ready for the challenge.

With the microprocessor revolution upon us, we again find ourselves in 
the same position: an extremely sophisticated technology, which in many 
applications has not exploited its full potential, due to problems at the 
hiunan interface. I once stated that when the history of cockpit design is 
written, the present age will be called the “era of clumsy automation.”

As this volume indicates, the problem is ubiquitous. Aviation does not 
have exclusive rights to human factors problems, though it has generally 
been the case that other high-risk industries look in that direction for 
technological guidance. The papers assembled here paint a panorama of 
technology that has raced ahead of our understanding. They offer not 
despair, but directions for solution. Parasmaman and Mouloua are to be 
commended for creating a book with an understanding of the present and 
a vision for the future. The products of “the era of clumsy automation” will 
ultimately suffer the same fate as the World War II systems, largely at the 
hands of the authors of these chapters, their students and colleagues. 
History wiU describe the next generation of systems as “the era of effective, 
symbiotic, supportive automation.” Operator complacency will dwell no 
more, and there will be a ringing reply to the question, “Who’s in charge 
here?” The human operator, who else?

Finally, I reflect that when I was a graduate student, more years ago than 
I like to admit, something called “the systems approach” had emerged from 
post-war systems engineering, operations research, and human factors. 
Every author, in every paper it seemed, found it necessary, almost as if



driven by some scientific or political doctrine, to state that what was needed 
was a systems approach (in contrast to a component-wise approach) to 
problems.

Today is it difficult to understand why this needed to be said at all, in fact 
if one were to write such a thing, it would be an immediate target for a 
reviewing editor’s blue pencil. Why expound on the obvious, the editor 
would ask?

Let us hope that the time will not be distant before the same can be said 
of ‘‘human-centered automation.”

FOREWORD XIII
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6, 1995.
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Preface

There is perhaps no facet of modem society in which the influence of 
automation technology has not been felt. Whether at work or in the home, 
whUe traveling or while engaged in leisurely pursuits, human beings are 
becoming increasingly accustomed to using and interacting with sophisti
cated computer systems designed to assist them in their activities. Among 
these are diagnostic aids for physicians, automated teller machines for bank 
customers, flight management systems for pilots, navigational displays for 
drivers, and so on. As we approach the 21st century, it is clear that even 
more powerful computer tools will be developed, and that many of the 
more complex human-machine systems will not function without the added 
capabilities that these tools provide.

The benefits that have been reaped from this technological revolution 
have been many. At the same time, however, automation has not always 
worked as advertised; thus there is a real concern that the problems raised 
by automation could outweigh the benefits. Whatever the merits of any 
particular automation technology, however, it is clear that automation does 
not merely supplant human activity but also transforms the nature of 
human work. Understanding the characteristics of this transformation is 
vital for successful design of new automated systems. In general, the 
implementation of complex, “intelligent” automated devices in such do
mains as aviation, manufacturing, medicine, surface transportation, ship
ping, and nuclear power has brought in its wake significant challenges for 
human factors, cognitive science, and systems engineering.

The influence of automation technology on human performance has 
often been investigated in a fragmentary, isolated manner, with investiga
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tors conducting disconnected studies in different domains. Independent 
workshops and conferences have been held, for example, on automation in 
air traffíc control or automation in anesthesiology. There has been little 
contact between these endeavors, although the principles gleaned from one 
domain may well have implications for the other. Also, with a few 
exceptions, the research has tended to be empirical and only weakly theory 
driven. In recent years, however, various groups of investigators have 
begun to examine human performance in automated systems in general, and 
have begun to develop theories of human interaction with automation 
technology. Our goal in this book is to present these theories and to assess 
the impact of automation on different aspects of human performance. The 
contributors to this volume were asked to examine automation and human 
performance from the dual perspective of theory and multiple domains of 
application. By presenting both basic and applied research, we hope to 
highlight the general principles of human-computer interaction in several 
domains in which automation technologies are widely implemented. The 
major premise of this approach is that a broad-based, theory-driven 
approach will have signifícant implications for the effective design of 
automation technology in specific work environments.

We have divided the book into four parts. Part I covers broad theoretical 
perspectives and concepts in automation research. The opening chapter by 
Woods provides a general theoretical framework for “decomposing” the 
complexity of human-automation interaction and poses the research chal
lenges that must be met in the futme. In chapter 2, Riley outlines an 
empirically supported theory of automation usage patterns by human 
operators. The theoretical and empirical bases of an alternative approach to 
implementation of automation, adaptive automation, are described by 
Scerbo in chapter 3. Flach and Bennett in chapter 4 present an original 
theoretical framework, based on the concept of representation, for the 
design of user interfaces to automated systems.

Part II consists of eight chapters devoted to assessing the impact of 
automation on different aspects of human performance. The domains of 
human performance covered include: monitoring (Parasuraman, Mouloua, 
Molloy, & Hilburn, chap. 5); mental workload (Kantowitz & Campbell, 
chap. 6; Kramer, Trejo, & Humphrey, chap. 7); situational awareness 
(Endsley, chap. 8); vigilance (Warm, Dember, & Hancock, chap. 9); 
decision making (Mosier & Skitka, chap. 10); and supervisory control 
(Coury & Semmel, chap. 11). The final chapter in this section, by Bowers, 
Oser, Salas, and Cannon-Bowers, discusses aspects of team performance in 
automated systems.

The eight chapters in Part III discuss issues related to human perfor
mance in different domains in which automation technologies have been 
introduced. Historically, air travel is one area in which many automation 
innovations were first introduced. Aviation is also the area where much
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human factors research on automation has been carried out. Accordingly, 
the first three chapters in Part III are devoted to aviation automation—both 
airborne, in the cockpit (Sarter, chap. 13; Rogers, Schutte, & Latorella, 
chap. 14), and on the ground, in air traffíc management (Hopkin & Wise, 
chap. 15). Because the aim of this book was to examine human-automation 
interaction across domains of application, several systems other than those 
found in aviation are also discussed. The next two chapters describe 
automation in different modes of transportation: motor vehicles on the 
road (Hancock, Parasuraman, & Byrne, chap. 16), and maritime operations 
(Lee & Sanquist, chap. 17). The remaining three contributions discuss 
automation in medical systems (Guerlain & Smith, chap. 18), quality 
control and maintenance (Drury, chap. 19), and oil and gas pipeline 
operations (Meshkati, chap. 20).

Part IV consists of two chapters that look to the future. In chapter 21, 
Sheridan speculates on the future relationship between humans and auto
mation. Finally, in chapter 22, Hancock also discusses this relationship in 
the context of his theme of understanding the “teleology,” or grand purpose 
in design, of automation technology.

Many of the chapters in this book derive from papers presented at the 
First Automation Technology and Human Performance Conference, held 
in Washington, D.C. on April 7-9, 1994. This conference was conceived 
and organized by us, in collaboration with the following members of the 
Cognitive Science Laboratory, Catholic University of America: Charles A. 
Adams, Evan A. Byrne, Pamela Greenwood, David Hardy, Brian Hilburn, 
Robert Molloy, and Sangeeta Panicker. The assistance of the following 
members of the Scientific Committee is also gratefully acknowledged: Peter 
Hancock (University of Minnesota), Harold Hawkins (Office of Naval 
Research), James Howard, Jr. (Catholic University of America), Alan Pope 
(NASA Langley Research Center), Indramani L. Singh (Bañaras Hindu 
University), and Joel S. Warm (University of Cincinnati). The conference 
received financial support from the following institutions and agencies: 
NASA Langley Research Center, Hampton, Virginia; Office of Naval 
Research, Arlington, Virginia; and the School of Arts and Sciences, The 
Catholic University of America. Additional support for preparation of this 
volume was received from NASA Langley Research Center, the National 
Institute on Aging, and the Office of Naval Research. Finally, we express 
our gratitude to the following persons for their assistance in the preparation 
of this book: William J. Bramble Jr., Guillermo Navarro, Carolyn Inzana, 
Eric Gruber, and Jacqueline A. Duley.

Raja Parasuraman 
Washington, DC

Mustapha Mouloua 
Orlando, FL
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1 Decomposing Automation: 
Apparent Simplicity,
Real Complexity

David D. Woods
The Ohio State University

INTRODUCTION

We usually focus on the perceived benefits of new automated or comput
erized devices. Our fascination with the possibilities afforded by technology 
in general often obscures the fact that new computerized and automated 
devices also create new burdens and complexities for the individuals and 
teams of practitioners responsible for operating, troubleshooting, and 
managing high-consequence systems. First, the demands may involve new 
or changed tasks such as device setup and initialization, configuration 
control, or operating sequences. Second, cognitive demands change as well, 
creating new interface management tasks, new attentional demands, the 
need to track automated device state and performance, new communication 
or coordination tasks, and new knowledge requirements. Third, the role of 
people in the system changes as new technology is introduced. Practitioners 
may function more as supervisory controllers, monitoring and instructing 
lower-order automated systems. New forms of cooperation and coordina
tion emerge when automated systems are capable of independent action. 
Fourth, new technology links together different parts that were formerly 
less connected. As more data flows into some parts of a system, the result 
is often data overload. Coupling a more extensive system more tightly 
together can produce new patterns of system failure. As technology change 
occurs we must not forget that the price of new benefits is often a signiticant 
increase in operational complexity. Fifth, the reverberations of technology 
change, especially the new burdens and complexities, are often underap-



predated by the advocates of technology change. But their consequences 
determine when, where, and how technology change will succeed.

My colleagues and I have been studying the impact of technology change 
on practitioners—those people who do cognitive work to monitor, diag
noses and manage complex systems—pilots, anesthesiologists, process plant 
operators, space flight controllers (e.g.. Woods, Johanessen, Cook, & 
Barter, 1994). In these investigations we have seen that technology change 
produces a complex set of effects. In other words, automation is a wrapped 
package—a package that consists of changes on many different dimensions 
bundled together as a hardware/software system. When new automated 
systems are introduced into a fleld of practice, change is precipitated along 
multiple dimensions. In this chapter I examine the reverberations that 
technology change produces along several different dimensions:

4 WOODS

• Automation seen as more autonomous machine agents. Introducing 
automated and intelligent agents into a larger system in effect changes 
the team composition. It changes how human supervisors coordinate 
their activities with those of the machine agents. Miscommunications 
and poor feedback about the activities of automated subsystems have 
been part of accident scenarios in highly automated domains.
• Automation seen as an increase inflexibility. As system developers, 
we can provide users with high degrees of flexibility through multiple 
options and modes. We also have the ability to place multiple virtual 
devices on one physical platform so that a single device will be used in 
many contexts that can differ substantially. But do these flexibilities 
create new burdens on practitioners, burdens that can lead to predict
able forms of error?
• Automation seen as more computerization. Technology change 
often means that people shift to multifunction computer-based inter
faces as the means for acquiring information and utilizing new 
resources. Poor design of the computer interface can force users to 
devote cognitive resources to the interface itself, asking questions such 
as: Where is the data I want? What does the interface allow me to do? 
How do I navigate to that display? What set of instructions will get the 
computer to understand my intention? Successful computer interfaces 
(e.g., visualization, direct manipulation) help users focus on their task 
without cognitive resources (attention, knowledge, workload) being 
devoted to the interface per se.
• Automation seen as an increase in coupling across diverse parts and 
agents of a system. Tighter coupling between parts propagates effects 
throughout the system more rapidly. This can produce efficiency 
benefits by reducing transfer costs, but it also means that problems 
have greater and more complex effects, effects that can propagate



quickly. But when automated partners are strong, silent, clumsy, and 
difHcult to direct, then handling these demands becomes more difH- 
cult. The result is coordination failures and new forms of system 
failure.
• Much technology change is justified, at least in part, based on claims 
about the impact of technology on human performance—the new 
system will “reduce workload,” “help practitioners focus on the 
important part of the job,” “decrease errors,” and so on. But these 
claims often go unexamined. A number of studies have examined the 
impact of automation on the cognition and behavior of human 
practitioners. These studies, many of which are discussed in other 
chapters of this book, have shown repeatedly that systems introduced 
to aid practitioners in fact created new complexities and new types of 
error traps.
• The success of new technology depends on how it affects the people 
in the field of practice. The dimensions addressed earlier represent 
some of the ways that technology change can have surprising impacts 
on human and system performance. By closely examining the rever
berations of technology change we can better steer the possibilities of 
new technology into fruitful directions.

1. DECOMPOSING AUTOMATION

HOW TO MAKE AUTOMATED SYSTEMS TEAM PLAYERS

Heuristic and algorithmic technologies expand the range of subtasks and 
cognitive activities that can be automated. Automated resources can, in 
principle, offload practitioner tasks. Computerized systems can be devel
oped that assess or diagnose the situation at hand, alerting practitioners to 
various concerns and advising practitioners on possible responses.

Our image of these new machine capabilities is that of a machine alone, 
rapt in thought and action. But the reality is that automated subtasks exist 
in a larger context of interconnected tasks and multiple actors. Introducing 
automated and intelligent agents into a larger system changes the compo
sition of the distributed system of monitors and managers and shifts the 
human’s role within that cooperative ensemble (Hutchins, 1994). In effect, 
these “intelligent” machines create joint cognitive systems that distribute 
cognitive work across multiple agents (Hutchins, 1990; Roth, Bennett, & 
Woods, 1987). It seems paradoxical, but studies of the impact of automa
tion reveal that design of automated systems is really the design of a new 
human-machine cooperative system. The design of automated systems is 
really the design of a team and requires provisions for the coordination 
between machine agents and human practitioners (e.g., Layton, Smith, & 
McCoy, 1994).



However, research on human interaction with automation in many 
domains, including aviation and anesthesiology, has shown that automated 
systems often fail to function as team players (Billings, 1991; Malin et al., 
1991; Sarter & Woods, 1994b). To summarize the data, automated systems 
that are strong, silent, clumsy, and difficult to direct are not team players. 
Automated systems are:
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Strong when they can act autonomously.
Silent when they provide poor feedback about their activities and 

intentions.
Clumsy when they interrupt their human partners during high workload 

or high criticality periods, or when they add new mental burdens during 
these high-tempo periods.

Difficult to direct when it is costly for the human supervisor to instruct 
the automation about how to change as circumstances change.

Systems with these characteristics create new problems for their human 
partners and new forms of system failure.

“Strong” automation refers to two properties of machine agents. In 
simpler devices, each system activity was dependent on immediate operator 
input. As the power of automated systems increases, machine agents, once 
they are instructed and activated, are capable of carrying out long sequences 
of tasks without further user interventions. In other words, automated 
systems can differ in degree o f autonomy (Woods, 1993). Automated 
systems also can differ in degree o f authority. This means that the 
automated system is capable of taking over control of the monitored 
process from another agent if it decides that intervention is warranted based 
on its perception of the situation and its internal criteria (Sarter & Woods, 
1994a).

Increasing autonomy and authority create new monitoring and coordi
nation demands for humans in the system (Norman, 1990; Sarter & Woods, 
1995; Wiener, 1989). Human supervisors have to keep track of the status 
and activities of their automated partners. For example, consider the 
diagnostic situation in a multi-agent environment, when one notices an 
anomaly in a process being monitored (Woods, 1994). Is the anomaly an 
indication of an underlying fault, or does the anomaly indicate some 
activity by another agent in the system, unexpected by this monitor? In fact, 
in a number of different settings, we observe that human practitioners 
respond to anomalies by first checking for what other agents have been or 
are doing to the process jointly managed (Johannesen, Cook, & Woods, 
1994).

When machine agents have high autonomy, they will act in the absence of 
immediate user input. Human practitioners have to anticipate how the
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automated system will behave as circumstances change. Depending on the 
complexity of the system and the feedback about system activities, this may 
be difficult. As one commentator has put it, the most common questions 
people ask about their automated partners are: What is it doing? Why is it 
doing that? What will it do next? How in the world did we get into that 
mode? (Wiener, 1989). These questions are indications of coordination 
breakdowns—what has been termed “automation surprises.” Automation 
surprises are situations where automated systems act in some way outside of 
the expectations of their human supervisors. Data from studies of these 
surprises in aviation and medicine (Moll van Charante, Cook, Woods, Yue, 
& Howie, 1993; Norman, 1990; Sarter & Woods, 1994b) indicate that poor 
feedback about the activities of automated systems to their human partners 
is an important contributor to these problems.

Autonomy and authority are properties that convey an agentlike status 
on the system from the point of view of human observers. This raises an 
important point. Automated systems have two kinds of interpretations. 
Based on knowledge of underlying mechanisms, an automated system is 
deterministic and predictable. However, those who monitor or interact with 
the system in context may perceive the system very differently. For example, 
with the benefit of knowledge of outcome and no time pressure, one can 
retrospectively show how a system’s behavior was deterministic. But as 
system complexity increases, and depending on the feedback mechanisms 
available, predicting the system’s behavior in context may be much more 
difficult.

A user’s perception of the device depends on an interaction between its 
capabilities and the feedback mechanisms that influence what is observable 
about system behavior in relation to events in the environment. What 
feedback is available depends on the “image” the device presents to users 
(Norman, 1988). When a device is complex, has high autonomy and 
authority, and provides weak feedback about its activities (what has been 
termed “low observability”), it can create the image of an animate agent 
capable of independent perception and willful action. We refer to this as the 
perceived animacy of the automated system. In effect, the system, although 
determinate from one perspective, seems to behave as if it were an animate 
agent capable of activities independent of the operator (Sarter & Woods, 
1994a).

Flightdeck automation on commercial transport jets illustrates how 
autonomy combined with low observability can create the perception of 
animacy (Sarter & Woods, 1994b). Pilots sometimes experience difficulties 
with tracking system behavior in situations that involve indirect mode 
transitions. In these situations, the system changes its behavior independent 
of any immediate pilot instructions. The system acts in response to reaching 
a preset target (e.g., leveling off at a target altitude) or because an envelope
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protection threshold is crossed. In other words, based on the programmed 
mechanisms, the system “realizes” the need for a mode change, carries it out 
without requesting pilot consent, and provides only weak feedback about 
the change or the implications of the change for future aircraft behavior. It 
is in this type of situation that pilots are known to ask questions such as: 
What is it doing? Why did it do this? What will it do next? (Wiener, 1989). 
These are questions one asks about another agent with an agenda of its own 
and an agent that does not communicate very well.

Much work in this area has noted that poor feedback on system status 
and behavior is at the heart of automation surprises. But what does it mean 
to say “poor feedback?” When we take a close look at the data provided to 
the operators of many advanced systems, it becomes quite clear that the 
amount of data available to the human is increasing. All of the necessary 
data to build a picture of their automated partner’s activities is present in 
general. But the effectiveness of this data depends on the cognitive work 
needed to turn it into a coherent interpretation in context.

Effective feedback depends on more than display formats; it is a relation 
among the system’s function, the image the system presents to outsiders, 
and the observer embedded in an evolving context (Woods, 1995). As a 
result, it is better to refer to interface and feedback issues in terms of 
observability. This term captures the fundamental relationship among thing 
observed, observer, and context of observation that is fundamental to 
effective feedback. Observability depends on the cognitive work needed to 
extract meaning from the data available. We, as researchers, need to make 
progress on better ways to measure this property of cognitive systems.

Because automated systems are deterministic, if one has complete 
knowledge of how a system works, complete recall of the past instructions 
given to the system, and total awareness of environmental conditions, then 
one can project accurately the behavior of the automated partner. How
ever, as the system becomes more complex, projecting its behavior also 
becomes more cognitively challenging. One has to have an accurate model 
of how the system works, one has to call to mind the portions of this 
knowledge that are relevant for the current situation, one has to recall past 
instructions that may have occurred some time ago and may have been 
provided by someone else, one has to be aware of the current and projected 
state of various parameters that are inputs to the automation, one has to 
monitor the activities of the automated system, and one has to integrate all 
of this information and knowledge together in order to project how the 
automation will behave in the future. As a result, an automated system can 
look very different from the perspective of a user in context as compared to 
an analyst taking a bird’s-eye view with knowledge of outcome. The latter 
will see how the system’s behavior was a direct and natural result of 
previous instructions and current state; the former will see a system 
that appears to do surprising things on its own. This is the paradox of
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perceived animacy of automated systems that have high autonomy and 
authority but low observability (Fig. 1.1). This situation has strong 
implications for error analysis and incident reconstruction (Woods et al., 
1994).

The trend in automation seems to be for greater increases in system 
autonomy and authority, whereas feedback mechanisms are stagnant at 
best. The result appears to be that “strong and silent” automation is on the 
increase (Norman, 1990). Yet the research to date has revealed that there are 
latent dangers of powerful yet silent automation (e.g.. Cook, Woods, & 
Howie, 1992).

Designing automated systems is more than getting that machine to 
function autonomously, it is also making provisions for that automated 
agent to coordinate its activity with other agents. Or, perhaps more 
realistically, it is making provisions so that other human agents can see the 
assessments and activity of the automated agent so that these human 
practitioners can perform the coordination function by managing a set of 
partially autonomous subordinate agents (see Billings, 1991; Woods et al., 
1994).

Animate Mechanistic

What is it doing? 
Why is it doing that? 
What win it do next?
How did we ever get 
into that mode?

Pilot(s)/Operators

INCIDENT/
ACCIDENT

Lack of Mode Awareness 
Mode Errors 
'Automation Surprises'

How could that happen ? 
The system performed as 
advertized, and all the 
information was there.

Accident Investigators 
System Designers y

System Determinism 
Data Availability

Time
FIG. 1.1. A paradox associated with perceived animacy. Automated systems that have 
high autonomy and authority but low observability appear to behave as if they are 
animate agents capable of activities independent of the operator. However, such 
systems are deterministic, and their behavior is predictable if one has complete and 
available knowledge of how the system works, complete recall of the past instructions 
given to the system, and total awareness o f the situation and environmental conditions.



FLEXIBILITY: BURDENSOME OR INSTRUMENTAL?

Flexibility and customizability are central to the perceived advantages of the 
growth in technological powers (Woods, 1993). New automated systems are 
often flexible in the sense that they provide a large number of functions and 
options for carrying out a given task under different circumstances. For 
example, the computers on commercial jet flightdecks provide at least five 
different mechanisms at different levels of automation for changing 
altitude. This customizability is construed normally as a benefit that allows 
practitioners to select the mode or option best suited to a particular 
situation. However, it also creates a variety of new demands.

To utilize highly flexible systems, the practitioner must learn about all of 
the available options, learn and remember how to deploy them across the 
variety of real operational contexts that can occur, and learn and remember 
the interface manipulations required to invoke different modes or features. 
Monitoring and attentional demands are also created as practitioners must 
keep track of which mode is active. All of this represents new burdens on 
the practitioner to set up and manage these capabilities and features.

If the new tasks and workload created by such flexible systems tend to 
congregate at high-workload and high-criticality periods, the result is a 
syndrome called clumsy automation by Wiener (1989). Clumsy automation 
is a form of poor coordination between the human and machine in the 
control of dynamic processes where the benefits of the new technology 
accrue during workload troughs and the costs or burdens imposed by the 
technology (i.e., additional tasks, new knowledge, forcing the user to adopt 
new cognitive strategies, new communication burdens, new attentional 
demands) occur during periods of peak workload, high-criticality, or 
high-tempo operations (Cook & Woods, 1995; Sarter & Woods, 1994b). 
Significantly, deficits like this can create opportunities for new kinds of 
human error and new paths to system breakdown that did not exist in 
simpler systems (Woods et al., 1994).

The result is that we need to understand the difference between two types 
of flexibility in cognitive artifacts: (a) flexibilities that serve to increase 
practitioners’ range of adaptive response to the variability resident in the 
field of activity, and (b) flexibilities that simply create new burdens on 
practitioners, especially at high-tempo or high-criticality periods (Woods, 
1993).

PROPERTIES OF THE COMPUTER SHAPE PRACTITIONER 
COGNITION AND BEHAVIOR

10 WOODS

Today, technological change is transforming the workplace through the 
introduction and spread of new computer-based systems. Thus, automation
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can be seen in part as computerization. But there are a variety of properties 
of the computer as a medium that shape practitioner cognition and behavior 
in predictable but problematic ways.

Computer-based information technology allows designers to combine 
multiple features, options, and functions onto a single physical platform. 
The same physical device can be designed to operate in many different 
contexts, niches, and markets simply by taking the union of all the features, 
options, and functions that are needed in any of these settings. In a sense, 
the computer medium allows one to create multiple virtual devices concat
enated onto a single physical device. After all, the computer medium is 
multifunction—software can make the same keys do different things in 
different combinations or modes, or provide soft keys, or add new options 
to a menu structure; the CRT or other visual display unit (VDU) allows one 
to add new displays that can be selected if needed to appear on the same 
physical viewport.

But to do this pushes the designer to proliferate modes and thereby create 
the potential for mode errors, to proliferate displays hidden behind the 
narrow viewport and create navigation problems, to assign multiple func
tions to controls so that users must remember complex and arbitrary 
sequences of operation. In other words, the modularity of the computer 
medium helps designers follow Norman’s (1988) tongue-in-cheek advice on 
how to do things wrong in designing computer-based devices. Such systems 
appear on the surface to be simple because they lack large numbers of 
physical display devices and controls; however, underneath the placid 
surface of the CRT workstation a variety of clumsy features may exist that 
produce operational complexities.

Computerization also has tremendously advanced our ability to collect, 
transmit, and transform data. In all areas of human endeavor, we are 
bombarded with computer-processed data. But our ability to digest and 
interpret data has failed to keep pace with our abilities to generate and 
manipulate greater and greater amounts of data. Thus, we are plagued by 
data overload. User interface technology has allowed us to concentrate this 
expanding field of data into one physical platform, typically a single visual 
display unit (VDU). Users are provided with increased degrees of flexibility 
for data handling and presentation in the computer interface through 
window management and different ways to display data. The technology 
provides the capability to generate tremendous networks of computer 
displays as a kind of virtual perceptual field viewable through the narrow 
aperture of the VDU. These changes effect the cognitive demands and 
processes associated with extracting meaning from large fields of data 
(Woods, 1995).

We have demonstrated in several studies how characteristics of computer- 
based devices influence cognition and behavior in ways that increase the
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potential for erroneous actions and assessments. In one case (Cook & 
Woods, in press), a new operating-room patient-monitoring system was 
studied in the context of cardiac anesthesia. This and other similar systems 
integrate what was previously a set of individual devices, each of which 
displayed and controlled a single sensor system, into a single CRT display 
with multiple windows and a large space of menu-based options for 
maneuvering in the space of possible displays, options, and special features. 
The study consisted of observing how the physicians learned to use the new 
technology as it entered the workplace.

By integrating a diverse set of data- and patient-monitoring functions 
into one computer-based information system, designers could offer users a 
great deal of customizability and options for the display of data. Several 
different windows could be caUed, depending on how the users preferred to 
see the data. However, these flexibilities all created the need for the 
physician to interact with the information system—the physicians had to 
direct attention to the display and menu system and recaU knowledge about 
that system. Furthermore, the computer keyhole created new interface 
management tasks by forcing serial access to highly interrelated data and by 
creating the need to periodically declutter displays to avoid obscuring data 
channels that should be monitored for possible new events.

The problem occurs because of a fundamental relationship, the escalation 
principle: the greater the trouble in the underlying system or the higher the 
tempo of operations, the greater the information processing activities 
required to cope with the trouble or pace of activities (Woods et al., 1994). 
For example, demands for monitoring, attentional control, information, 
and communication among team members (including human-machine 
communication) all tend to go up with the tempo and criticality of 
operations. This means that the burden of interacting with the display 
system tends to be concentrated at the very times when the practitioner can 
least afford new tasks, new memory demands, or diversions of his or her 
attention away from patient state to the interface per se.

The physicians tailored both the system and their own cognitive strategies 
to cope with this bottleneck. In particular, they were observed to constrain 
the display of data into a flxed, spatially dedicated default organization 
rather than exploit device flexibility. They forced scheduling of device 
interaction to low-criticality self-paced periods to try to minimize any need 
for interaction at high-workload periods. They developed stereotypical 
routines to avoid getting lost in the network of display possibilities and 
complex menu structures.

These are all standard tactics people use to cope with complexities created 
by the clumsy use of computer technology (Woods et al., 1994). We have 
observed that pilots, space flight controllers, as well as physicians cope with 
new burdens associated with clumsy technology by learning only a subset of



Stereotypical methods, underutilizing system functionality. We have ob
served these practitioners convert interface flexibility into fixed, spatially 
dedicated displays to avoid interacting with the interface system during busy 
periods. We have observed these practitioners escape from flexible but 
complex modes of automation and switch to less automated, more direct 
means of accomplishing their tasks when the pace of operations increases. 
This adaptation or tailoring process occurs because practitioners are 
responsible not just for the device operation, but also for the larger 
performance goals of the overall system. As a result, practitioners tailor 
their activities to insulate the larger system from device deficiencies (Cook 
& Woods, in press; Woods et al., 1994).

1. DECOMPOSING AUTOMATION 13

HIGHLY COUPLED SYSTEMS BREAK DOWN 
IN NEW WAYS

The scale of and degree of coupling within complex systems creates a 
different pattern for disaster where incidents develop or evolve through a 
conjunction of several small failures, both machine and human (Perrow, 
1984; Reason, 1990). There are multiple contributors; all are necessary, but 
they are individually insuMcient to produce a disaster. Some of the multiple 
contributors are latent; that is, conditions in a system that produce a 
negative effect but whose consequences are not revealed or activated until 
some other enabling condition is met. This pattern of breakdown is unique 
to highly coupled systems and has been labeled the latent failure model o f  
complex system breakdown (Reason, 1990).

Computerization and automation couple more closely together different 
parts of the system. Increasing the coupling within a system has many 
effects on the kinds of cognitive demands to be met by the operational 
system. And increasing the coupling within a system changes the kinds of 
system failures one expects to see (Perrow, 1984; Reason, 1990). The latent 
failure model for disaster is derived from data on failures in highly coupled 
systems.

Automation and computerization increase the degree of coupling among 
parts of a system. Some of this coupling is direct, some is based on potential 
failures of the automation, and some is based on the effects of automation 
on the cognitive activities of the practitioners responsible for managing the 
system. For example, higher coupling produces more side effects to failures. 
A failure is more likely to produce a cascade of disturbances that spreads 
throughout the monitored process. Symptoms of faults may appear in what 
seem to be unrelated parts of the process (effects at a distance). These and 
other effects can make fault management and diagnosis much more 
complicated.



Highly coupled processes create or exacerbate a variety of demands on 
cognitive functions (Woods, 1988). For example, increased coupling cre
ates:

• New knowledge demands (e.g., knowing how different parts of the 
system interact physically or functionally).

• New attentional demands (e.g., deciding whether or not to interrupt 
ongoing activities and lines of reasoning as new signals occur).

• More opportunities for situations to arise with conflicts between 
different goals. New strategic trade-offs can arise as well. Creating 
or exacerbating conflicts and dilemmas produces new forms of 
system breakdown (see Woods et al., 1994).

Automation may occur in the service of stretching capacity limits within 
a system. But these efficiency pressures may very well create or exacerbate 
double binds that practitioners must face and resolve. These pressures may 
also reduce margins, especially by reducing the error tolerance of the system 
and practitioners’ ability to recover from error and failures. Characteristics 
such as error tolerance and the degree of observability through the 
computer interface can change the ability of practitioners to buffer the 
system in the face of contingencies and complications (Woods et al., 1994).

Technology change often facilitates greater participation by formerly 
remote individuals. People, who represent different but interacting goals 
and constraints, now can interact more directly in the decision-making 
process. Coordination across these diverse people and representatives and 
cooperation among their interacting interests must be supported.

Overall, changes in automation, through increased coupling, make 
systems more vulnerable to the latent failure type of system breakdown 
where multiple contributors come together in surprising ways (see also 
Hollnagel, 1993; Woods et al., 1994). Thus, increases in level of automation 
can change the kinds of incidents, their frequency, and their consequences 
in ways that can be very difficult to foresee. Interestingly, the signature of 
failure in tightly coupled systems is often misperceived and labeled as 
simply another case of human error.

14 WOODS

TECHNOLOGY CHANGE TRANSFORMS OPERATIONAL 
AND COGNITIVE SYSTEMS

These effects of technology change run counter to conventional wisdom 
about automation. There are two broad themes that run throughout the 
previous discussion.

First, changes in level of automation transform systems. Technology



change is an intervention into an ongoing field of activity (Flores, Graves, 
Hartfield, & Winograd, 1988; Winograd & Flores, 1987). When developing 
and introducing new technology, one should realize that technology change 
represents new ways of doing things; it does not preserve the old ways with 
the simple substitution of one medium for another (e.g., paper for 
computer-based; hardwired for digital; automatic for manual).

Marketing forces tout the universal benefits of all types of new tech
nology without reservations. However, the difference between skillful and 
clumsy use of technological powers lies in understanding how automation 
can transform systems. For example, where and when does it create new 
burdens? How does the keyhole property of the computer shape practi
tioner cognition in ways that reduce error and failure recovery? What are 
the new patterns of system breakdown? What is the new cooperative or 
joint human-machine system created by more automation? How does this 
cooperative system function when complicating factors arise at and beyond 
the margins of normal routines?

Understanding the potential transformations allows one to identify and 
treat the many postconditions necessary for skillful use of technological 
possibilities. To do this one must unwrap the automation package. In doing 
so we must come to recognize that new technology is more than object in 
itself. When we design new automated and computerized systems we are 
concerned with more than just a hardware and software object. We are also 
designing;

• A dynamic visualization of what is happening and what may happen 
next that provides practitioners with feedback about success and 
failure and about activities and their effects.

• A tool that helps practitioners respond adaptively to the many 
different circumstances and problems that can arise in their field of 
activity.

• A team of people and machine agents that can coordinate their 
assessments and activities as a situation escalates in tempo, diffi
culty, and criticality.

1. DECOMPOSING AUTOMATION 15

APPARENT SIMPLICITY, REAL COMPLEXITY

Conventional wisdom about automation makes technology change seem 
simple. Automation is just changing out one agent (a human) for another. 
Automation provides more options and methods. Automation frees up 
people for other more important jobs. Automation provides new computer 
graphics and interfaces. However, the reality of technology change, as 
revealed through close examination of device use in context, is that



technological possibilities often are used clumsily, resulting in strong, silent, 
difficult-to-direct systems that are not team players.

The discussion of how technology change transforms systems points out 
the irony present in conventional claims about the effects of automation. 
The very characteristics of computer-based devices that have been shown 
empirically to complicate practitioners’ cognitive activities and contribute to 
errors and failures are generally justified and marketed on the grounds that 
they reduce human workload and improve human performance. Technol
ogists assume that automation will automatically reduce skill requirements, 
reduce training needs, produce greater attention to the job, and reduce 
errors.

New technology can be used skillfully to increase skilled practice and to 
produce more reliable human-machine systems, but not through wishful 
thinking or superficial claims about the impact of new technology on 
human-machine systems. Understanding or predicting the effects of tech
nology change requires close examination of the cognitive factors at work in 
the operational system. Studying and modeling joint human-machine 
cognitive systems in context is the basis for skillful as opposed to clumsy use 
of the powers of technology (Woods et al., 1994).
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2 Operator Reliance 
on Automation: 
Theory and Data

Victor Riley
Honeywell Technology Center

INTRODUCTION

On June 30, 1994, an Airbus A330 crashed during a test flight, killing all 
seven on board. The test was being performed to evaluate how well the 
aircraft’s autopilot system performed with an engine out, simulated hy
draulic failure, and rear center of gravity just after takeoff. According to 
the investigating committee, the crew appeared overconfident and did not 
intervene in time to prevent the accident. They calculated that if the test 
pilot had retaken manual control four seconds earlier than he actually did, 
the accident would have been avoided (Sparaco, 1994).

As illustrated by this accident, the decision to rely or not rely on 
automation can be one of the most important decisions an operator of a 
complex system can make. Indeed, the decision has been a critical link in the 
chains of events that have led to many incidents and accidents in aircraft, 
railroad, ship, process control, medical, and power plant operations. In 
these cases, the operators may rely too much on the automation and fail to 
check up on it or monitor its performance, or they may defeat the 
automation because they have high, possibly misplaced, confidence in their 
own abilities to perform the tasks manually. Several aircraft accidents 
illustrate the former problem; the Chernobyl nuclear power plant accident 
is one example of the latter.

Until recently, little has been known about what factors influence the 
decision to use or not use automation and what types of bias to which this 
decision may be subject. A better understanding of these factors and biases 
may help system developers anticipate the conditions under which operators
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may underrely or overrely on automation and guide the development of 
training methods and user interfaces to encourage rational automation use.

At a time when automation was being given increasing authority in 
complex systems, Sheridan and Farrell (1974) expressed concern about the 
changing roles of human operators and automation, and included operator 
trust in the automation as one of the fundamental elements of supervisory 
control tasks. Several investigators have since investigated human trust in 
automated systems. Muir (1987) performed a literature review on trust and 
developed a theory of trust in automation that combined two previous 
theories of trust between humans. Muir (1989) went on to perform two 
experiments using a process control simulation to demonstrate that oper
ator trust in automation could be measured using a subjective scale, that 
operators could distinguish between faulty and reliable components of a 
system, and that a subjective measure of trust in a component correlated 
with the operator’s use of that component.

Lerch and Prietula (1989) examined how attributions of qualities to 
agents affected operator trust in the agent. They also found evidence that it 
was harder to recover trust in an agent after a failure than to build trust in 
it initially, in support of one of the hypotheses proposed by Muir (1987). 
Will (1991) performed a study with petroleum engineers to determine the 
extent to which they relied on an expert system to perform well analysis. 
The expert system was intended to examine the well data and recommend a 
solution, but the experimenters had introduced a fault that would cause the 
system to make the wrong recommendation. Initially, all subjects used the 
system and expressed confidence in the result. One expert subject later redid 
the analysis by hand and discovered the error. The only signiflcant 
difference between the expert and novice subjects was their expressed 
opinion of the utility of the system, with experts saying they would have 
done just as well without the system (without knowing that the answer they 
had reached was wrong).

Riley (1989) suggested that an operator’s decision to rely on automation 
may not depend only on the operator’s level of trust in the system, but 
rather on a more complex relationship among trust, self-confidence, and a 
number of other factors. The major thrust of this argument was that if the 
operator had more confidence in his or her own ability to do the task than 
trust in the automation, the operator was likely to do the task manually, 
whereas if the operator’s trust in the automation was higher than the 
operator’s self-confidence, the operator was likely to rely on the automa
tion. However, this relationship was mediated by other factors, including 
the operator’s level of workload and the level of risk associated with the 
situation. For example, a higher level of risk may exaggerate the effects of 
trust and self-confidence, or it might bias an operator toward manual 
control because of the operator’s fiduciary responsibility for the process.



The theory is shown in Fig. 2.1, where arrows represent hypothesized 
influences between factors. The “reliance” factor represents the probability 
that an operator will use automation and is influenced by the operator’s 
self-confidence and level of trust in the automation. Trust, in turn, is 
influenced by the actual reliability of the automation and a “duration” 
factor, which is meant to account for increasing stability of the operator’s 
opinion of the automation as the operator gains experience with it.

Muir’s (1989) results provide support for the proposed relationship 
among automation accuracy, trust in automation, and reliance. In addition, 
Lee (1992) (also Lee & Moray, 1992) performed an extensive series of 
studies to investigate these relationships and the relationship among trust, 
self-confidence, and automation use. Using an extension of the process 
control simulation used by Muir (1989), Lee provided evidence that the 
combination of trust in automation and self-confidence can influence 
automation use. He also found a very high level of variance due to 
individual differences in automation use and task performance strategy. 
However, the relationships proposed in Fig. 2.1 among workload, self- 
confidence, and automation use have not received as much support because 
little workload-related research has looked at the question of automation 
use. Parasuraman, Molloy, and Singh (1993) demonstrated that an element 
of workload is necessary for the development of automation related 
“complacency.” Harris, and Arthur (1993) attempted to determine whether 
giving subjects advance notice of workload increases would prompt them to 
tiurn automation on as a workload management strategy, but were unable to
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demonstrate a significant effect, partly due to a high degree of between- 
subject variance. Taken with the previously discussed findings, this evi
dence provides support for some of the relationships proposed in Fig. 2.1 
while leaving others in question. The rest of this chapter summarizes the 
results of a series of studies to investigate these and further relationships.
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AN INVESTIGATION OF FACTORS 
THAT INFLUENCE AUTOMATION RELIANCE 

USING A SIMPLE COMPUTER GAME

The experiments summarized here made use of a simple computer-based 
testbed (Riley, 1994). The primary purpose of this testbed was to enable 
independent manipulations of subject workload, the difficulty or uncer
tainty associated with the task that could be automated, automation 
reliability, and the riskiness of decisions. The ability to investigate the 
independent effects of these factors was a critical requirement for the 
testbed. In real operations, such as flight and process control, it is often 
difficult or impossible to separate factors. For example, when the level of 
risk in a situation rises, workload and task uncertainty often rise at the same 
time. This makes it difficult to attribute automation use decisions observed 
in real operations to specific factors. Isolating and testing these factors in 
the laboratory might shed light on how they may operate in the real world.

Another objective was to minimize the possibility that subjects’ automa
tion use decisions would depend on, or be influenced by, their different 
strategies in performing the task. In complex systems, many different 
system management strategies can be taken, and automation use decisions 
may be a fundamental part of these strategies. This was illustrated by Lee 
(1992). By using a very simple task with few possible strategies, automation 
use differences due to subject differences can be separated from task 
strategy differences.

The testbed used two tasks, one of which could be turned over to 
automation at the subject’s discretion. The first task required the subject to 
categorize a character as either a letter or a number. The level of uncertainty 
of this task could be controlled by introducing characters that were neither 
letter nor number at some known rate, and scoring these characters 
randomly as if they were one or the other. This task could be turned over 
to an automated “aid” that performed the classifications for the subject. A 
distraction task required the subject to correct random disturbances of a 
marker from a target location. Workload could be controlled by varying the 
probability that the marker would move in a given trial. This task could not 
be automated, and scoring on the categorization task was contingent on the 
placement of the marker over the target at the end of each trial. Each trial



lasted 1.75 seconds and trials were forced paced: If the subject did not 
respond to a trial, it was counted as wrong and the next trial began on 
schedule. All experiments summarized here ran for 2,050 trials (about an 
hour). A depiction of the screen used in the experiments is shown in Fig. 
2.2.

Automation reliability was controlled by setting the probability that the 
automation would make a correct classification. Pretesting showed that 
subjects were approximately 85% accurate in performing the task manu
ally, so automation was set at 90% accuracy in three of the experiments for 
the case when it was working and 50% (chance performance) when it failed; 
this would make the automation’s performance resemble that of a good 
human operator, yet make it difficult to discriminate between own reli
ability at manual control and automation reliability. The approximation of 
expected subject accuracy and the remaining uncertainty due to random 
wrong answers was thought to reduce the influence of rational comparisons 
of own and automation accuracy in automation use decisions, making these 
decisions more open to influence from the factors of interest (workload, 
automation failures, uncertainty, and risk). Three of the experiments 
contained two automation failures in isolation and one failure in the
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FIG. 2.2. The screen layout used by subjects in the computer game.



presence of higher workload and higher uncertainty, and workload and 
uncertainty also varied, both two times over the hour-long timeline. The 
primary dependent variable in three of the experiments was the proportion 
of subjects who used the automation during each trial. Because of the wide 
confidence limits for a proportion score, at least 30 subjects took part in 
each experiment.

Thirty University of Minnesota students enrolled in undergraduate 
psychology courses took part in Experiment One. The primary purpose of 
this experiment was to estimate the magnitudes of influence from automa
tion reliability, task uncertainty, and workload on automation use deci
sions. A $25 award was offered to the subject who posted the highest score 
in the game, to provide an incentive and something of value that might be 
lost due to error, a necessary element of the risk manipulation to be 
explored later.

Fig. 2.3 shows the profiles of automation accuracy, workload, and task 
uncertainty over the course of Experiments One, Three, and Four. Exper
iment Two used a similar automation profile which will be described later. 
As shown, the experiment started with automation accuracy at 90%, 
workload at 40%, and task uncertainty at 10%. Because the experiment 
returned to this combination of conditions periodically, this will be referred 
to as the “normal” condition. After about 6 minutes, the workload

24 RILEY

time In minutes
FIG. 2.3. The profiles of independent variables used in the computer game.
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manipulation occurred, with workload rising to 80% for about 6 minutes. 
The normal condition then returned for about 4̂ 2 minutes, followed by the 
uncertainty manipulation where a variety of new uncategorizable characters 
appeared. In this condition, there was a 40% chance that the subject would 
be given a nonnumber/nonletter character, such as an asterisk or pound 
sign, reducing the expected level of manual task performance by 15%. The 
uncertainty manipulation lasted for about 6 minutes, followed by a return 
to the normal condition for 4̂ 2 more minutes before the first automation 
failure. This failure lasted for about V/a minutes, then the normal condition 
returned for about 6 more minutes before the automation failed again for 
P/a minutes. Following this failure, the normal condition returned for about 
5̂ 2 minutes, then a combined manipulation occurred, started by a workload 
increase that was augmented, after about 3 minutes, by an increase in 
uncertainty. After about 3 minutes of the workload and uncertainty 
combination, the automation failed again for V/a minutes, then recovered. 
After about 6 more minutes, both workload and uncertainty returned to the 
normal level, which was maintained for the last 6 minutes of the game 
phase.

Fig. 2.4 shows the proportion of students who used the automation over 
the course of Experiment One in relation to the manipulation profiles. One

1 j  automation reliability

0.9

10 20 30 40

time in minutes

50 60

FIG. 2.4. The profile of the proportion of subjects who used the automation during 
each trial of Experiment One.
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unexpected characteristic of the student automation use profile was its low 
overall level. In the normal condition, automation use tended to return to 
about a 35% level, although there was a gradually rising trend over the 
course of the experiment. Even during the uncertainty manipulation, when 
even the most skilled subject would expect to make a large number of errors, 
only about half the students relied on the automation. Although counter to 
an optimal strategy, this apparent bias toward manual control is consistent 
with observations by Lee (1992). Another surprising finding was that there 
was no apparent reluctance to use the automation after failures. Contrary 
to predictions based on Muir’s (1987) investigation of human trust, subjects 
did not delay turning the automation back on when it appeared to recover 
after failure events, and automation use after each failure was not less than 
before the failure. However, the amount of dithering in the profile 
prevented precise comparisons across the profile, so the dynamics of trust 
in automation use were explored in more detail in the second experiment.

The independent parameters in Experiment One were very highly auto- 
correlated. To illustrate, consider that with three automation failures, the 
expected reliability of the automation changed only six times over 2,050 
trials, and there were only 14 state changes (trials during which one of the 
independent variables changed value) overall. For this reason, a full 
regression analysis could not be performed to estimate parameter signifi
cance levels. Instead, the timeline was divided into segments corresponding 
to system states (combinations of automation reliability, workload, and 
task uncertainty), and the proportion of subjects using the automation in 
each segment was estimated by averaging across the last 10 data points in 
each segment. This allowed the profile to stabilize after each change of 
conditions and provided a good estimate of the stable value of automation 
use in the segment. A regression analysis of this estimator against workload, 
uncertainty, automation reliability, and the number of automation failures 
showed that uncertainty and reliability were both significant (p = .0008 and 
.00004, respectively), but that workload was not (p = .%). The regression 
produced a good fit, with R = 0.94 (F =  17.45, p  = .0003). The 
Durbin-Watson statistic of this regression was 2.6, indicating that there was 
no serial correlation present.

One of the interesting results of Experiment One was the list of reasons 
given by subjects for choosing whether or not to rely on the automation. A 
comparison of total automation use and average lateness of automation use 
by reason given for using automation revealed differences in the strategies 
used by subjects. For example, subjects who cited fatigue tended to use the 
automation less and later than did other subjects, suggesting that they 
followed a manual control strategy for much of the experiment but turned 
the automation on late. Subjects who cited a high level of self-confidence in 
doing the task themselves used the automation very little, and those who
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cited the uncertainty manipulation used it differently from those who cited 
workload or errors. These results suggest that large individual differences 
exist in automation use strategies, and that the theory of automation use 
shown in Fig. 2.1 may not apply to individuals, but rather across a group; 
individuals may use much simpler strategies influenced by small numbers of 
factors.

The amount of dithering in the automation use profile prevented reliable 
comparisons that would have shed light on some interesting questions, such 
as whether it was more difficult to recover trust in the automation after 
failures than to gain trust in it initially. Experiment Two was intended to 
better understand the influences and dynamics of trust in automation and to 
separate the element of trust from possible uncertainty about automation 
states. Unlike the other three experiments, the workload and uncertainty 
levels remained constant and automation was 100*7o accurate when it 
worked and 0% when it failed. This was intended to reduce the subject’s 
uncertainty about whether the automation or subject was better at the task. 
The dependent measure was the response time to state changes: how long it 
took for subjects to turn the automation on initially, off in response to the 
first failure, on in response to the first recovery, and so on. Three 
conditions were run with 17 subjects in each condition. As in Experiment 
One, subjects were students in undergraduate psychology courses at the 
University of Minnesota.

The three conditions differed only in the amount of information that 
subjects were given about the automation prior to playing the game. In the 
Trust/State condition, subjects had no prior information about the auto
mation, so when an automation failure was encountered, subjects would be 
uncertain both about whether the automation had entered a partially or 
fully unreliable state and how long the state change would last; thus, both 
trust and state uncertainty would influence automation use decisions in this 
condition. In the Trust condition, subjects were told that the automation 
could only get all the answers right or wrong at a time. This was intended 
to eliminate the subjects’ suspicion that the automation may have entered a 
partially reliable state, leaving trust (the subjects’ projection of the auto
mation’s accuracy into the future) as the sole remaining influence. In the 
None condition, subjects were also told how long the automation would 
stay failed and recovered in each state transition, so neither trust nor state 
uncertainty would influence decisions. Differences among the three condi
tions would reveal the contributions of each element (state uncertainty and 
trust) to subject automation use decisions.

The response time data exhibited a large amount of skew, so a log 
transformation was applied to normalize the data for illustration. However, 
other characteristics of the data prevented the use of analysis of variance: 
because automation was fully under subject control, there were many cases



in which a subject did not turn automation on or off prior to a state change, 
so no response was required for that state change. This meant that some of 
the cells in the data matrix were empty. For these reasons, nonparametric 
techniques were applied to estimate the signiflcance of response time 
differences. Fig. 2.3 shows the normalized response times for reference; the 
normalized data correspond better to the significance levels of the differ
ences diagnosed by the nonparametric measmes than do the raw data.

The results of Experiment Two demonstrated that both state uncertainty 
and trust affect automation use decisions, but only early in the subjects’ 
experience with the automation. Prior to the first failure, subjects in the 
None condition turned the automation on significantly faster than did those 
in the other two conditions, suggesting that low trust in the automation 
delayed subject use of the automation. However, trust was developed by 
flawless automation behavior over the first 20 minutes of the timeline, so 
high trust delayed subject responses to the first failure. Contrary to popular 
theories of trust, however, subjects did not show any reluctance to use the 
automation again after the first failure; in the Trust condition, subjects 
turned the automation on following the failure significantly faster than they 
turned it on initially, which opposes the hypothesis that trust would be 
harder to recover following failures than to gain initially, and there was no
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difference between on responses from subjects in the Trust and None 
conditions, suggesting that trust did not play a role in this response. After 
the first failure and recovery, differences between the conditions disap
peared, suggesting that subjects learned to recognize automation states and 
anticipate its behaviors. This demonstrates that system-specific information 
can replace other factors as influences on automation use decisions.

One interesting feature of the response times was the large amount of 
skew observed. Histograms of all response times showed a cluster of 
responses early, then a scattering of responses late. This suggested that 
some of the subjects were responding directly to the manipulations whereas 
others turned the automation on or off in response to other factors, such as 
fatigue, boredom, or distraction. This was confirmed by the reasons given 
by subjects for making automation use decisions following the completion 
of the experiment. The large range of individual differences demonstrated 
here agrees with Lee (1992) and Harris et al. (1993) and suggests that large 
subject pools are required for automation studies.

Experiments One and Two provided important data regarding the 
fundamental influences on automation use decisions, but the use of 
university students and the artificial nature of the experiment environment 
prevent generalizing these conclusions to real systems. The first step toward 
drawing such generalizations is to determine whether the operators of real 
systems, with high levels of training and experience with advanced automa
tion, exhibit the same automation use characteristics as did the students. 
After understanding the behaviors of real system operators in this highly 
controlled environment, we should be better able to interpret their behav
iors in real systems.

Experiment Three was intended to carry out this first step. Experiment 
Three replicated Experiment One, but commercial airline pilots, who are 
trained and highly experienced with advanced automation, served as 
subjects. Although there was no evidence to suggest that pilots would use 
the automation any differently from the students, the fact that pilots use 
automation so extensively in real systems and the importance of their 
automation use decisions made this a topic of great interest. Thirty-four 
pilots from a major airline took part, and the conditions of Experiment One 
were replicated as closely as possible, except for two differences: First, the 
pilots were offered a $100 award for best performance due to their higher 
expected income than the students’; and second, the pilots were run using a 
laptop computer whereas the students were run on a desktop machine. The 
types of stimuli used and a comparison of the visual characteristics of the 
two displays suggested that any display differences would not produce task 
performance differences.

The automation use profile produced by the pilots is shown along with 
that produced by the students in Fig. 2.6. The pilot profile virtually
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FIG. 2.6. The profile of the proportion of pilots who used the automation during each 
trial of Experiment Three, compared with student use of automation in Experiment 
One. The pilots used the automation much more than the students did, but the dynamic 
characteristics of automation use were very similar.

duplicated the student profile in its dynamic behaviors, but the pilots’ 
overall level of automation use was much higher and showed a substantial 
bias in favor of automated control. The proportions were separated by an 
average of 34% {p < .01), and the greater number of trials over which 
automation was used by the pilots was highly signiHcant (p < .00005, 
two-tailed test). Secondary tests supported no explanations for this differ
ence due to age, willingness to accept risk, attitudes toward automation, or 
other differences between the groups. This result suggests that some aspect 
of pilot experience or training biases them in favor of automation use. 
However, the dynamic characteristics of pilot automation use almost 
replicated those of student use; workload was insignificant (p = .90), 
uncertainty significant (p = .01), and automation reliability highly signif
icant {p = 8.14E-7), using the same method of taking the last 10 data points 
in each segment as point estimators for regression analysis.

One of the surprising aspects of the pilot automation use profile was its 
high level during automation failures. Fully one third of the pilots 
continued to use the automation throughout the failure periods. However, 
those pilots who did turn the automation off in response to failures did so 
somewhat faster than the students did, arguing against the possibility that
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those pilots who did not turn the automation off simply did not notice the 
failure. These results, however, do not imply that pilots will overrely on 
automation on the flightdeck; this particular experiment used a highly 
artificial environment, and the potential loss of a $100 award does not 
compare with the consequences of errors committed on the flightdeck. To 
investigate whether differences in risk, defined as the likelihood and 
consequences of error, might influence automation use, the final experi
ment was developed with an additional penalty for categorization errors. 
The expectation going into this experiment was that when the consequences 
of error increased, subjects would want to assume manual control, prefer
ring errors of commission over errors of omission (letting the automation 
have control and make the costly errors).

Experiment Four replicated Experiment Three, but each categorization 
error produced a 5% probability of the loss of 10% of the subject’s current 
point total. Over the course of 2,050 trials, each subject was expected to lose 
10% of his or her current points between 10 and 15 times. As in Experiment 
Three, subjects in Experiment Four were offered a $100 award for the 
highest score posted on the game. Experiment Four subjects were pilots 
from the same airline as those in Experiment Three. Thirty-one pilots took 
part.

The automation use proportion produced by subjects in Experiment Four 
is shown in Fig. 2.7 along with the profile from Experiment Three. The 
Experiment Four profile matched that produced in Experiment Three until 
after the second automation failure. Subjects in the higher risk condition 
then took much longer to turn the automation back on following the failure 
and ended up using the automation at a much lower rate after the third 
failure. The ending difference between the proportions was about 20%, 
which was significant {p = .05). Otherwise, the close match between the 
two profiles prior to the second failure reinforced the results of Experiment 
Three, with the same high reliance on automation throughout failures.

Other questions of interest were also explored in the four experiments. It 
was thought that subjects may use automation in relation to their own level 
of manual proficiency; if a subject were able to accurately assess his or her 
own level of accuracy doing the task manually and compare that with the 
automation’s apparent accuracy, that would influence the decision to rely 
on automation. As stated earlier, the levels of automation accuracy were 
selected to make this comparison difficult, to make the reliance decision 
more open to influence from the other factors of interest. To determine 
whether subject proficiency still played a part in the decision, the correla
tion between manual accuracy and automation use was examined, and no 
relationship was found. In addition, a measure of subject self-confidence 
was constructed by giving subjects the opportunity to perform additional 
trials under manual control and receive double the additional number of
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FIG. 2.7. The profile of the proportion of pilots who used the automation during each 
trial of Experiment Four compared with the automation use profile from Experiment 
Three. Pilots in the higher-risk condition tended to use the automation less than did 
those in the lower-risk condition after the second automation failure.

points if they performed those trials perfectly. There was no correlation 
between actual manual performance accuracy during the game phase and 
the number of addition^ trials selected, indicating that subjects were not 
good at estimating their own proficiency.

However, behavior in this additional trials task could also have been 
influenced by risk-taking attributes, and these attributes might also account 
for other differences of interest, such as between the student and pilot 
populations and between the low- and high-risk conditions in the pilot 
experiments. To examine this possibility, a subjective and an objective 
measure of risk taking were incorporated into all experiments. No differ
ences in risk-taking attitudes were found between any of the groups using 
either measure.

Finally, it was thought that pilots and students might have different 
attitudes toward automation, and that this difference would account for 
behavior differences. To examine this possibility, the Complacency Poten
tial Rating Scale developed by Singh, Molloy, and Parasuraman (1993) was 
administered to all subjects. No differences were found between groups 
using this scale.
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CONCLUSIONS

Taken together, these results provide firm support for more of the 
relationships proposed in Fig. 2.1 and for some new ones. Fig. 2.8 shows a 
revised theory of automation use, incorporating these results. Dashed lines 
indicate those relationships that were originally hypothesized but not 
supported by the evidence (they were examined in this series of studies but 
the results are not reported here; see Riley, 1994, for a complete treatment), 
whereas solid lines indicate relationships for which evidence was gained in 
these and other existing studies. Fatigue and learning about system states 
now replace the duration factor in the first theory, and learning is shown as 
influencing trust and reliance directly. The influence of learning on trust is 
necessary to account for the effect that experience with the automation has 
on trust (as demonstrated in Experiment Two), but the direct influence of 
learning on reliance replaces the influence of trust on reliance as subjects are 
better able to recognize system states and anticipate system behaviors 
rationally. The results also reaffirm the wide range of individual differences 
in automation use. Therefore, the theory shown in Fig. 2.8 should not be 
considered as applying to an individual’s automation use decisions, but 
rather to represent automation use behaviors produced across a group. It is 
likely that an individual uses a much simpler strategy than this theory 
suggests, and that individual strategies are influenced by a few factors or 
small subsets of this overall theory.
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FIG. 2.8. The revised theory of automation use. Dotted arrows show hypothesized 
relationships that have not been confirmed by experimental evidence, whereas solid 
lines represent those relationships supported by evidence from these studies.


