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Introduction

John R yan

Clifford analysis started as an attem pt to generalize one-variable com­
plex analysis to higher dimensions using Clifford algebras generated from 
Euclidean space. More recently, deep and unexpected links to classical 
harmonic analysis, several complex variables, and representation theory 
have been discovered. In the early stages the subject was developed exclu­
sively in three and four dimensions using the quaternionic division algebra, 
which is an example of a Clifford algebra. Later it was realized that re­
sults obtained in the quaternionic setting, particularly the generalization 
of Cauchy’s integral formula, did not exclusively rely on the division alge­
bra property of the quaternions, but that it is sufficient for an algebra to 
contain a vector subspace where all non-zero vectors are invertible in the 
algebra. In the Clifford algebra setting, this invertibility corresponds to 
the usual Kelvin inversion of vectors in Euclidean space. This fact is not 
too surprising, given th a t Clifford algebras are specifically designed to help 
describe the geometric properties of quadratic forms on vectors spaces, see 
for instance, [2]. For some time, it has been understood by most people 
working with Clifford analysis tha t most results so far obtained in quater­
nionic analysis more or less automatically extend to all finite dimensions 
using Clifford algebras.

In fact, Clifford algebras are remarkably simple algebras to set up. Loose­
ly speaking, one would like to consider R n as a subspace of some algebra, 
so th a t under the algebra multiplication we have th a t x 2 — — ||x ||2 for each 
vector x  in R n . If no other constraints are introduced, the minimal algebra 
satisfying this requirement is an example of a universal Clifford algebra. 
When n =  1, we obtain the complex number system. When n = 2 , we 
obtain the quaternions. For n > 2 , the algebra is no longer a division
algebra. However, each non-zero vector x  in R n is invertible in the algebra,

—x
with multiplicative inverse x ~ l = -——. This inverse corresponds, up to a

ll l̂l
sign, to the Kelvin inverse of the vector x.

Clifford algebras were introduced in the nineteenth century by mathe­
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maticians and mathematical physicists in various attem pts to provide a 
good foundation to geometric calculus in Euclidean space. An historical 
account of this development and Clifford’s role here is given in the intro­
duction of [10] and some papers therein, e.g., [26]. Clifford was a student 
of Maxwell’s. He is one of the youngest scientists ever to be elected a 
Fellow of the Royal Society, and he was Professor of Applied M athem at­
ics at University College, London. He died of tuberculosis at the age of 
thirty-three in 1879. His interest in the algebra that bears his name arose, 
in part, from his attem pts to place Maxwell’s work on electromagnetism 
in a more mathematically rigorous setting. His paper [11] describing these 
algebras appeared in the American Journal of Mathematics one year before 
his death.

The subject of Clifford analysis has been discovered and independently 
rediscovered about ten times in the last century. The earliest known work 
on the subject is by A.C. Dixon [16]. Alfred Cardew Dixon (1865-1936) 
was Professor of M athematics at Queen’s University, Belfast, from 1901 
to 1930. He was a Fellow of the Royal Society, and President of the Lon­
don M athematical Society from 1931 to 1933. Later, C. Lanczos described 
the rudiments of quaternionic analysis in his doctoral thesis [31]. In the 
1920’s, Felix Klein independently rediscovered the area, [30]. In the 1930’s 
and 1940’s, the Swiss m athematician Rudolph Fueter and his students pub­
lished about fifteen papers on the subject, e.g., [18]. Most of these papers 
appeared in the journal Commentarii Mathematici Helvetica An excellent 
summary of this work is given in a paper of A. Sudbery [56], and a more 
detailed account is given in some lecture notes of E. Bareiss [4]. Surpris­
ingly, many topics covered by Fueter and his collaborators have not been 
touched upon in more recent books on the subject, though Gursey and 
Tze [23] have used some of these results in their study of Yang Mills field 
equations.

At much the same time as Fueter’s work appeared, Moisil and Theodor- 
escu [39] worked on closely related results. This appears to have been the 
start of a period of research by Romanian mathematicians into aspects of 
Clifford analysis and related topics which spanned a period of over thirty  
years; see for instance, [27,41] and references therein. It was also during 
the 1930’s that possible links to mathematical physics were first noted. 
In particular, the differential operator arising in the generalized Cauchy- 
Riemann equations, and the “conjugate” of this operator combine to give 
the Laplacian in Euclidean space. This is in complete analogy to the fact

th a t in one-variable complex analysis, the operators — and — combine
dz dz

to give the Laplacian in two-dimensional space. Earlier, Dirac [17] had 
used a matrix representation of a Clifford algebra to introduce a factor­
ization of the wave operator, or d ’Alambertian, in terms of two first-order 
differential operators. For this reason, the differential operator arising in
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the generalized Cauchy-Riemann equations of Clifford analysis is often re­
ferred to as the Dirac operator. This operator corresponds to the d +  6 
operator acting on differential forms over R n , where d is deRham ’s exte­
rior derivative and 6 its adjoint. However, it should be pointed out that 
the alternating algebra does not possess the correct algebraic structure to 
admit a meaningful Cauchy integral formula, akin to the one from Clifford 
analysis. Essentially, the alternating algebra generated from R n does not 
incorporate Kelvin inversion.

It was also at this time that it was first noted tha t the analysis so far 
developed in the quaternion setting generalized to the Clifford algebra set­
ting; see for instance, a paper of Haefeli [24]. Some further work in this 
direction was developed in the 1950’s by See, [46].

In a four-year period in the late 1960’s and early 1970’s independent 
papers by Richard Delanghe [14], T.E. Littlewood and C.D. Gay [35], David 
Hestenes [25], and Viorel Iftimie [27] were published. Each of these papers 
illustrated how many aspects of one-variable complex analysis extend to 
Euclidean space using Clifford algebras. Here, fundamental, but implicit, 
use is made of Kelvin inversion to set up Cauchy’s integral formula, Laurent 
and Taylor series, etc. In particular, in [27] Iftimie sets up basic results on 
Cauchy transforms over domains in R n , and establishes Plemelj formulae 
for Holder continuous functions defined over compact Liapunov surfaces in 
Euclidean space. Using the Plemelj formulae, he is able to show that the 
square of the singular Cauchy transform over such a surface is, when acting 
on Holder continuous functions, the identity map. This is in complete 
analogy to the case in complex analysis. Consequently, the stage was set 
for applying Clifford analysis to study boundary value problems. More 
recently, these results have been extended to Lp-spaces over the boundaries 
of Lipschitz domains in R n ; see for instance [33,34].

Clifford analysis provides an extremely rich framework for generalizing 
many results from one-variable complex analysis. A review of the basic re­
sults of Clifford analysis is given in [21,Ch.4]. One subtle difference is that 
the generalized analytic functions, which are often called monogenic func­
tions, are defined on domains in R n , and usually take values in the Clifford 
algebra generated from th a t space or some spinor subspace of the algebra. 
One apparent limitation to the theory is that the pointwise multiplica­
tion of two monogenic functions is, in general, not a monogenic function. 
This follows from the noncommutativity of the algebra. Though it should 
be pointed out tha t in [51], a very natural product is introduced which 
reduces in the two-dimensional setting to the usual product. Other ba­
sic properties of one-variable complex analysis do not hold in the Clifford 
analysis setting, e.g., the Riemann mapping theorem.

The term  “Clifford analysis” was first coined in the late 1970’s, when the 
editor of this volume used it as a title of a manuscript. The manuscript 
was referenced by Sommen in [50], and most of the main results for this
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manuscript appeared in [42]. Later, the term  was used by Brackx, De- 
langhe, and Sommen, [8], for the title of the first book in the area.

During the 1970’s and 1980’s, research into Clifford analysis started 
to become significantly less sporadic and isolated. Richard Delanghe be­
gan to build a research group at Ghent State University, Belgium, which 
has become the largest group currently working in the area. In particu­
lar, Frank Sommen [51] independently rediscovered a result of Littlewood 
and Gay [35] showing th a t real analytic functions defined on domains in 
R n~ 1 have Cauchy-Kowalweski extensions to monogenic functions defined 
in some neighborhood in R n . Although this result is extremely simple, as 
are many basic results in Clifford analysis, it has a basic impact of linking 
problems in real analysis, in R n~l , to function theory over domains in one 
higher dimension. In particular, in [52] Sommen uses this idea to link up 
Clifford analysis in R n with the Fourier transform over R n~l . It is in this 
work and in his later work on plane wave decompositions, [53], th a t it is 
realized th a t this analysis requires both the use of complex numbers and 
their generalization, the real Clifford algebras. In particular, both algebras 
are used fundamentally to set up projection operators to describe the de­
composition of special classes of functions defined on R n_1 into classes of 
monogenic functions defined on upper- and lower-half-space in R n . For this 
reason, it becomes necessary to introduce complex Clifford algebras. For 
mathematicians, this effectively, and efficiently, dispenses with objections 
raised by some physicists to the use of complex Clifford algebras; see for 
instance, remarks made in [26].

The projection operators mentioned in the previous paragraph are, in 
fact, Fourier transforms of the Plemelj formulae/operators for upper- and 
lower-half-space. Moreover, the singular Cauchy transform over i?n_1 is 
the vector sum over R n~x of the Riesz transforms described by Stein and 
Weiss in [54,55]. So, this singular Cauchy transform can be seen as a 
generalization of the Hilbert transform over the line. It follows tha t the 
work of Stein and Weiss, [54,55], on FP-spaces in R n using conjugate har­
monic functions fits perfectly into the context of Clifford analysis. This 
point is well described in [20,Ch.2]. In fact, conjugate harmonic functions 
are vector-valued harmonic functions whose derivatives are symmetric, and 
have vanishing trace. Such a system of equations is called a Riesz system, 
and is a special case of the Cauchy-Riemann equations arising in Clifford 
analysis.

It was during the mid-1980’s tha t R. Coifman had the idea th a t many 
hard problems in classical harmonic analysis could either be simplified or 
solved using Clifford analysis. This arose in the context of the Coifman- 
Mclntosh-Meyer theorem, [13], which establishes the L2-boundedness of 
the double-layer potential operator over Lipschitz graphs in R n . This was 
a landmark result in classical harmonic analysis which was cited at the 
time in a report to the American M athematical Society listing three recent
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dramatic examples of progress in theoretical mathematics. The original 
proof for the case n — 2 uses the complex number system, but in higher 
dimensions the Calderon rotation method is used. Coifman suggested that 
the two-dimensional proof can be mimicked in higher dimensions using 
Clifford algebras and Dirac operators, giving rise to a more natural proof. 
This was carried out for Lipschitz graphs with small Lipschitz constant 
by Margaret Murray, [40]. The argument was completed for all Lipschitz 
constants by Alan McIntosh [36]. A key idea here is tha t the double-layer 
potential operator over a sufficiently smooth surface is the real, or scalar, 
part of the singular Cauchy transform over the surface in R n. This idea 
and these results had the impact of opening up the field to a much broader 
spectrum of mathematical interests.

Originally, the L2-boundedness of the double-layer potential operator 
was worked out over Liapunov surfaces. So, the surface is C 1 with a Holder 
continuous derivative. This added smoothness gives sufficient cancellation 
for one to deduce that the operator is weakly singular. It follows that
the operators - I  ±  D L P  are Fredholm, where I  is the identity and D L P  
is the double-layer potential operator. Some more work reveals that these 
operators are injective, and so they are invertible. Consequently, it becomes 
an easy m atter to use invertibility to produce solutions to the interior and 
exterior Dirichlet problems for such domains.

When one replaces Liapunov surfaces by Lipschitz surfaces, one no longer 
has the cancellation property mentioned in the previous paragraph. So 
the Fredholm operator theory is no longer available, and one needs to 
find different techniques. The first step in solving the Dirichlet problem 
over Lipschitz surfaces is to establish the L2-boundedness of the double­
layer potential over such surfaces. Several proofs of this result have now 
appeared, and some of them make use of Clifford analysis. One main 
advantage of the Clifford algebra-based proofs is that they bring to light 
the functional calculus of Dirac operators over Lipschitz surfaces, and unify 
much of the existing theory.

Also, in the 1980’s, Ahlfors rediscovered results of Vahlen [58] and showed
[1] that Mobius transformations in R n could be described using a group of 
2 x 2 matrices with values in a Clifford algebra. This inspired some authors 
to use Vahlen matrices to find analogues of Schwarzian derivatives on R n 
[9,44].

The analogue of the Vahlen group over Minkowski space is the Lie group 
S U (2 , 2 ). This group is used, [29], to describe the conformal covariance 
of the Dirac operator and its iterates over Minkowski space. This too, 
can be placed in the context of Clifford algebras. These ideas, together 
with ideas described in a paper of Im aeda’s [28] and many other references 
given in this introduction, have inspired the editor of this volume to study 
intertwining operators for conformally covariant operators over Euclidean



12 Introduction

space and Cn, and to study Clifford analysis over very general types of cells 
of harmonicity in Cn, together with links with several complex variables, 
see for instance, [43,45], and references therein.

The introduction of Vahlen matrices has inspired some authors in the 
early 1990’s to develop Clifford analysis over hyperbolic space. Also, fol­
lowing ideas presented in [29] and mentioned in the previous paragraph, it 
would seem desirable to see further work done on the links between Clif­
ford analysis and twistor theory. Work in this direction has been initiated 
in the last chapter of [15]. It would also seem likely that work previously 
done on automorphic forms and involving the use of Lie groups such as 
S U ( n ,n ), Sp(n,ii!), and 5p(n, C) could also be developed using Vahlen 
matrices over Minkowski-type spaces. Hopefully, some new and interesting 
results are awaiting discovery here. In addition, it would be nice to see 
closer ties developed between Clifford analysis and the study of Dirac op­
erators over general spin manifolds, and to see links with the Atiyah-Singer 
index theorem as developed in [5,6,20,32].

The area of Clifford analysis which has seen the most rapid growth in 
recent years has been the one inspired by Coifman on applications to clas­
sical harmonic analysis and the theory of singular integrals. Besides the 
references th a t we have cited so far, there is also the work of Auscher and 
Tchamitchian [3], Gaudry, Long, and Qian [19], and M itrea [38], where 
Clifford algebra-valued Haar wavelets/martingales are used to deduce the 
L 2-boundedness of the double-layer potential operator over Lipschitz sur­
faces in R n . This extends to Euclidean space a proof due to Coifman, Jones, 
and Semmes, of the same result in the complex plane using complex-valued 
Haar wavelets; see [12].

A very good summary of these results, together with the Clifford T(b) 
theorem is given in the M aster’s thesis of Terrance Tao [57]. Further very 
interesting results involving Clifford analysis within singular integral theory 
have been developed in recent times by Stephen Semmes [47,48,49]. Besides 
these recent developments on singular integrals and their applications to 
boundary value problems, Giirlebeck and Sprossig [22] have also considered 
related problems over Liapunov surfaces. Their approach also considers the 
use of colocation methods and other numerical techniques.

It should be pointed out that this review of the development of Clifford 
analysis, though intended to be fairly thorough, is by no means complete. 
Firstly, it is almost certain tha t there are still some long-forgotten papers 
in the area which will eventually be rediscovered. This seems inevitable, 
as such papers keep turning up with a fair regularity. Also, constraints 
of space and time prevented us from pointing out some further interesting 
developments and works in this area, or related areas.

This volume is based on a conference held in Fayetteville, Arkansas dur­
ing the Easter weekend, April 8-10th, 1993. The conference was entitled 
“Clifford Algebras in Analysis” , and the principal speaker was Alan Mein-
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tosh, of Macquarie University, Australia. Though there have been three 
other conferences on Clifford algebras and their applications in m athem at­
ical physics, [7,10,37], including one which took place one month after this 
one, this is the first conference, together with the proceedings, which deals 
almost exclusively with the impact of Clifford analysis on harmonic anal­
ysis. We were fortunate to be able to gather a highly-distinguished group 
of researchers in classical harmonic analysis and Clifford analysis for the 
meeting. It is hoped that the meeting and this volume will help set the 
pace for future research in this fascinating and growing area of m athem at­
ics. To this end, we have included a selection of open problems provided 
by many researchers with interests in this area. The idea for such a list 
came from a similar problem book in function theory developed by Walter 
Hayman and David Brannan. It is hoped that the problem book produced 
here will be added to with the passage of time, and will be addressed in 
future publications and conferences.
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Problem Book

H. B la ine Lawson (S ta te  U n iversity  o f N ew  York at Stonybrook)

equation over (spin) manifolds with negative curvature?

John R yan (U n iversity  o f Arkansas, F ayetteville)

Suppose M  is a smooth, real, n-dimensional, compact manifold in Cn, 
satisfying

(i) M  n N{z)  = {z}
(ii) T M Z n N(z )  = {z}

for each z e M  (N(z)  — {z!_ E C n : (z — z ')2 =  0 }—the null cone in C n).
Suppose Q is a domain in Cn with M  C Q and h : Q, —> C is a complex 

harmonic function so that h(z)  is holomorphic and

Is it true th a t for each such M  we have th a t H \ m  satisfies a maximum 
principle?

P ascal A uscher (U n iversite  de R ennes, France)

It is known th a t the Clifford Haar-type b-wavelets for the T(b) theorem 
can be defined when b(x) is not only accretive, i.e.,

Is there a reproducing kernel of Cauchy type for solutions to the Dirac

n

b(x) = b0{x)e0 -  l ' ^ 2 b i (x)ei ,b0(x) > 60 > 0 . AO

but pseudo-accretive, i.e.,

A. 1
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and even para-accretive: 3<$o > 0 , 8\ < 1 , for each cube Q, there exists a 
sub-cube R  such that

isi L b(x)d3 > Sq > 0 and \R\ > 6i\Q\. A.2

Smooth Clifford 6-wavelets can be obtained under conditon (A.0) with 
arbitrary high regularity.

Smooth Clifford b-wavelets can also be obtained under condition (A .l), 
but the regularity seems to be related to the smallness of So: the smaller 
So, the smaller r  (r is then the Holder regularity of the 6-wavelets).

Problem 1: W hat is the exact relation between regularity of the b-wavelets 
and So of condition (A .l)?

Problem 2: Construct smooth Clifford b-wavelets under para-accretivity 
condition (A.2).

T. Tao (P rin ceton  U n iversity)

Let Pi be an open subset of R m, and let u be a scalar-valued bounded 
harmonic function on Pi. Does there always exist a bi-monogenic function 
/  on Pi such that [f]o = u (i.e., the scalar part of /  is u) when

(a) Pi is a sphere, or a rectangular box? (Answer: Yes, explicit condition 
possible)

(b) Pi is a bounded star-like region?
(c) Any generalizations (e.g., Pi with null m th homotopy group)?

Also, can /  always be chosen so that R ange(f)  C span{eo, e \ , . . . ,  em)?

(Editor’s comment: When Pi is star-shaped, one can construct a left-mono­
genic function whose real part is u. See, for instance: A. Sudbery Quater­
nionic Analysis, Math. Proc. of the Cambridge Philosophical Society 86 
(1979) 199-225, or J. Ryan Complexified Clifford analysis, Complex Vari­
ables 1 (1982) 151-171. Also, where Pi is a Lipschitz domain the answer is 
yes. See M. Mitrea cClifford algebras and boundary estimates for harmonic 
functions’ Clifford Algebra and their Applications in Mathematical Physics, 
ed by F. Brackx, R. Delanghe and H. Serras, Kluwer, 1993.)

P alle  E .T . Jorgensen  (U niversity  o f Iowa)

Let Pi C R n , n > 1, be open and bounded, and let D =  
be the corresponding Dirac/Clifford operator, acting on vector functions 
which are C°° and compactly supported in PI. Then D  is a symmetric 
Hilbert space operator with dense domain and corresponding adjoint D*. 
Give a geometric description of the domain of D*. In Jorgensen’s talk,
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a selfadjoint extension, D a , was described, D  C Da  C Find the
spectrum of ZA4 , and relate it directly to the geometry of fl.

Let the operator Da  be defined as above, and associated with some 
ft C R n. Suppose n = 2, and ft is one of the following:

Then answer the problems for these special cases. For Ex. 3, 
j  — 1,2 (two symmetric operators in L 2(ft)), have commuting selfadjoint 
extension operators in the scalar space L 2(Q). Relate the joint spectrum 
of these to the spectrum of D a -

N ikolai Vasilevski and M ichael Shapiro  
(E SFM  del I.P .N ., M exico City, M exico)

Let ft be a domain in H, the quaternions. Also, let

Ex. 1.

Ex. 2.

Ex. 3.
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for /  : Q -> H. Introduce the Bergman kernel function of the domain ft 

B (x ,  f) =  (D^Dxg) (x , 0  = DX- D$g(x, £), 

where g(x,£) is the classical Green function of f2, and the Bergman operator

(Bf) (x)  = [  B ( x , Z ) m d Z : L 2( S l ) ^ L 2(Sl).
Jn

Let Xo(x)  be a characteristic function at a subdomain PIq of fb

Problem: Calculate A =  sp (B  — X q(x ) /)2.

This problem is an essential step for describing various algebras generated 
by Bergman operators. It is known that A C [0,1], and most probably:
A =  [0,1]-

Each /  : Pi —> H can be represented in the “complex” form

/  =  / (1) +  / (2)j,

where

f (k) : Q C R 4 =  C 2 -> C.

We have

and thus the set of hyperholomorphic functions contains (but does not 
coincide with) the set of all holomorphic (in the sense of complex analysis) 
mappings /  =  ( / (1), / (2)) : f i  C C 2 —> C.

Problem: Find connections between the Bergman function B (x ,£ )  of a 
domain Q and the two-dimensional complex analysis Bergman function of 
a domain fb

Zhijian W u (U niversity  o f A labam a, T uscaloosa)

Let

A = < /  : f ( x , y )  monogenic in  R " +1 : t  J  J  ̂  \ f ( x ,y ) \2dxdy < oo

A is a subspace of L2(R™+1). One can find the orthonormal projection 
P  : L2(R™+1) A. P  can be expressed as an integral operator.

Q uestion: Can we express I  — P  as an integral operator?
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Example: If n =  1, the answer for this question is Yes. In fact, if ip G 
c 0~ (R 2+ ),

/ x / x f  d(p(z)Im z  7(I  -  P)(<p)(w) =     - d x d y .
7 R 2_ ( w  - z ) ( w -  z )

John R yan (U n iversity  o f Arkansas, F ayettev ille), and Tao Qian  
(U n iversity  o f  N ew  England, A ustralia)

The surfaces of star-shaped domains have global parametrizations that 
may allow us to solve some boundary value problems first on these domains, 
and then transfer the solutions to more general domains. The following 
question then arises: W hat are the domains in R n, n > 3, that are the 
ranges under conformal mappings of the star-shaped ones? When n — 2, 
simply connected domains are the ranges under conformal mappings of 
the star-shaped ones. In the higher-dimensional case, the only conformal 
mappings are the elements of the Mobius transform group, and they are 
not monogenic functions.

Tao Qian (U n iversity  o f N ew  E ngland, A ustralia)

Singular integral theory with holomorphic (monogenic) kernels has been 
developed on Lipschitz surfaces and Lipschitz perturbations of the n-torus 
(see the expository papers of A. McIntosh and T. Qian in this collection).

W hat is the analogue on n-dimensional solid balls? W hat is the analogue 
on n-dimensional complex balls?

P ertti L ounesto (H elsinki U n iversity  o f Technology, F inland)

The Maxwell equations can be condensed into one equation by Clifford 
bivectors (at least in an isotropic and homogeneous media). The Maxwell 
equations are also conformally covariant (as photons are massless). Fur­
thermore, the solutions of sourceless Maxwell equations are monogenic. 
Under a Mobius transformation x  —> g(x) = (ax + b)/(cx + d), a monogenic 
function F{x) is transformed as follows

F(x)  -  G(x) = , CX+t  F(g(x)),
w  w  \cx + d\n

where G{x) is also monogenic. However, for a bivector field F(x),  the trans­
formed field G(x) is not, in general, a bivector. Is it possible to transform 
the electromagnetic bivector field F(x)  under Mobius transformations so 
that the transformed field is also a bivector?
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K laus G iirlebeck (Technical U n iversity  o f C hem nitz, G erm any)

It is known in complex function theory tha t under certain conditions a 
continuous function r defined on a closed curve T can be factorized in the 
following form,

r (t) = r - ( t ) t Kr+(t)Vt e  r ,  (1)

where r_  allows a holomorphic extension into the exterior domain and r + 
has a holomorphic extension into the interior domain with boundary V. 
The value ft is an integer. If r is a rational function, one can show in a 
constructive way that there exists a factorization (1) with rational functions 
r_  and r+.

Problem: Is it possible to find a similar factorization (explicitly?), also for 
functions defined on the boundary T of a bounded domain G, in i?n , with 
values in (real) Clifford algebras? The most interesting case for applications 
is the case of quaternionic-valued functions.

W olfgang Sprofiig (Bergakadem ie Freiberg Technische  
U n iversita t, Freiberg, G erm any)

Suppose a; is a closed, bounded rectangle in R 2. Then u  x R  C R 3 is 
called a channel-domain. For a channel-domain with density p  we have the 
electric field

3

E  = 'Y ^ E id ,
2 = 1

the magnetic field
3

K = J2 Hie < >

and the electric conductivity ft, dielectric constant e, and permeability p. 
We consider in the channel the solution of the following stationary Maxwell 
equations:

div eE_ — 0 div pEi =  0 rot E  = 0 rot B_ =  nE.

Prove the existence, uniqueness, and regularity of the solution, if the normal 
components of the solution is given on the boundary of the channel; so tha t 
s • H_ =  g for g belonging to a suitable function space.

P ertti L ounesto (H elsinki U n iversity  o f Technology, F in land)

Does the Clifford algebra version of the Bott periodicity theorem dic­
tate  results in Clifford analysis which vary from dimension to dimension? 
For instance, are there results in three dimensions which do not hold in
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seven dimensions, even though there might be similar results in 11 =  8 -f 3 
dimensions?

M arius M itrea  (U niversity  o f South  Carolina)

Recall the generalized Hardy spaces H p{d) discussed by Kenig in [Ke] 
for Q a (special) Lipschitz domain in the complex plane. For 1 < p < oo, 
they also have a natural (and in many respects, satisfactory) extension to 
higher dimensions within the Clifford algebra framework (cf., e.g., [Mi]). In 
this setting, establish a Riesz boundary behavior theory for the end-point 
case p — 1.

References:

[Ke ] C.E. Kenig, Weighted H p spaces on Lipschitz domains, Am. J. 
Math. 102(1980), 129-163.

[Mi ] M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, 
Lecture Notes in M ath., 1575, Springer-Verlag (1994).

Josefina A lvarez (N ew  M exico S ta te  U niversity)

Let T  be a Calderon-Zygmund operator in the sense of R. Coifman and 
Y. Meyer. That is to say, assume that the distribution kernel k(x ,y )  of T  
satisfies the pointwise condition

\ k { x , y ) - k { x , z ) \ < C ^ _ f l +6

if 2\y — z\ < \x — z\, for some 0 < 6 < 1. Concerning the continuity of the 
operator T  on Hardy spaces, the following results are known.

n
(i) T  maps continuously H p into Lp for -------   < p < 1, and this result

n  H- o
is optimal.

(ii) T  maps continuously H 7̂  into L^+^,0°.
n

(iii) T  maps continuously H PjOC into Lp,°°, for ——-  < p < 1.

Problem: Is the result in (iii) optimal? If not, what continuity result can
be formulated for p = -------?

n + 6

Zhenyuan X u (R yerson P olytechn ica l U niversity, Canada)

It is well known tha t the index plays a very im portant role in the study 
of boundary value problems in complex analysis. For instance, consider the
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Riemann-Hilbert problem

— w =  0, in Pi. 
dz

R e [A (z) w(z)] — 7  (2), o n T  — dPl,

where Pi is a unit disk with center at the origin. The index is defined by

Then, for k > 0, the Riemann-Hilbert problem is solvable for any Holder 
continuous functions A(z) and 7 (z). Moreover, the solution linearly de­
pends on 2n +  1 real arbitrary constants. For k < 0, the Riemann-Hilbert 
problem is not solvable, except when A(2 ) and y(z) satisfy —2k — 1 con­
sistent conditions. Is there an analogue of the index for Clifford-valued 
functions in R m?

D aniel B . D ix  (U niversity  o f South  Carolina)

I will employ the notation described in my paper.

(1) Consider a homogeneous “scalar” Dirac equation D m  =  T (x ,u)m , 
where v(k ' ,t)  is a C n-valued function of k! G R n and t G R. T (x ,v )  
is a linear operator, depending parametrically on x  and t?, which acts 
on m ( x , t , k), and yields a distribution on R n+1, parameterized by x 
and £, which is an appropriate right-hand side for the inhomogeneous 
Dirac equation. Suppose this equation has a solution with asymptotic 
behavior

The coefficients Qh,(i) t) °f this asymptotic expansion satisfy a com­
plicated coupled system of nonlinear evolution equations. Can simple 
examples of the operator T {x ,v )  and a linear evolution of v(k ' , t )  be 
found such tha t this infinite coupled system of evolution equations ef­
fectively reduces to a coupled system involving only finitely many of 
the coefficients and their partial derivatives in the x  variables? If so, 
then this would be a truly multidimensional example of a nonlinear 
system of partial differential equations solvable by a Clifford inverse 
scattering method. In such an example, how would one define the 
forward scattering transform?

(2) In complex analysis, we have the notion of the sheaf of holomorphic 
functions on a complex manifold. In particular, we can discuss holo­
morphic functions defined on a neighborhood of 00 on the Riemann

00

h=0 \_(l )enh / S h
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sphere. Is there some analogue of this in Clifford analysis? In par­
ticular, how would one make sense out of the “sheaf of monogenic 
functions” on 5 n+1 =  R n+1 U {oo}? Is there a monogenic analogue 
of (some substantial portion of) the theory of Riemann surfaces?

Stephen  Sem m es (R ice U niversity, H ouston, Texas)

G eneralizations o f C om plex A nalysis to  H igher C odim ensions

There are two particularly prominent methods for generalizing classical 
complex analysis in the plane to R n for n  > 2. The first is to use a Cauchy- 
Riemann system, like the classical Riesz system (of vector fields which 
are curl- and divergence-free) or Clifford holomorphicity. These are first- 
order linear elliptic systems of partial differential equations. The second 
main approach is to look at quasi-regular mappings, which are (roughly 
speaking) maps for which the maximal stretching of the differential at any 
point is bounded by a constant multiplied by the minimal stretching at 
that point. These two approaches are very different in style—the first is 
better suited for linear analysis, while the second is more geometric in 
focus—but they are also at opposite extremes in terms of dimensions. This 
point is illustrated by the following observation. Let f ( x )  be a Clifford- 
holomorphic function on some domain in R n. For each point xq in the 
domain, the differential of /  at xo is controlled by its restriction (as a 
linear mapping) to any hyperplane through the origin in R n. This follows 
from the definition of Clifford holomorphicity, which provides a formula for 
the derivative in any given direction v in terms of the derivatives in the 
remaining n  — 1 directions. By contrast, if f ( x )  is quasi-regular, then the 
differential of /  at Xo is controlled by its restriction to any line through the 
origin, by definition of quasi-regularity.

I like to think of Clifford analysis (and other Riesz systems) as being 
“codimension- 1 complex analysis” on R n. This is also related to the usual 
integration formulas in Clifford analysis (like Cauchy’s theorem) which in­
volve integrals over hypersurfaces. Similarly, quasi-regular mappings define 
a kind of codimension-(n — 1) complex analysis.

Problem: Find interesting kinds of “codimension-d” complex analysis on 
R n for other choices of d.

It is not clear exactly what this means, but there are some basic prin­
ciples. By definition, “complex analysis” should deal with a class of func­
tions or mappings which are distinguished by a condition on their first 
derivatives. In codimension-d complex analysis, the differential of a “holo­
morphic” object should be controlled (somehow) by its restriction to any 
codimension-d-plane through the origin. One might hope for nice integral 
formulae, but for codimension-d submanifolds. There should be some in­



26 Problem B ook

teresting interplay between “holomorphic” objects on the complement of a 
d-dimensional submanifold and their boundary behavior. These principles 
should be viewed more as illustrative than definitive, and I am certainly 
not saying that there is at most one reasonable codimension-d complex 
analysis.

W hen d > 1, I don’t believe that there is a nice codimension-d complex 
analysis that is based on a first-order linear system and which has roughly 
the same analytic features as for Riesz systems and Clifford analysis when 
d =  1. I envision two types of theories, one which is nonlinear, not so 
algebraic, and more brutally geometric, and another which is linear, has 
interesting integral formulae, and which probably uses differential forms 
more seriously and is more degenerate analytically when d > 1 than  when 
d =  1. Of course, we see part of this dichotomy already in the contrast 
between Clifford analysis and quasi-regular mappings in R n when n > 2 .

One reason for raising the issure of codimension-d complex analysis is 
tha t I would like to have a nice higher-codimension version of some of the 
results in [DS], [SI], [S2], and [S3]. In particular, in [SI] and [S2] there are 
some integration-by-parts computations which are used to good advantage, 
and I would like to have suitable extensions of these arguments to higher 
codimensions. In these extensions, there should be integral formulae with 
topological content, just as the Cauchy formula in codimension-1 contains 
the information of when a point lies in a given domain or its exterior. In 
the higher-codimension case, the analogous topological issue is the linking 
number of pairs of spheres (and other submanifolds). There are, of course, 
classical integral formulae for computing linking numbers (see [F], espe­
cially p.79ff), but I have never managed to use them to obtain interesting 
analytic information, as occurs in codimension- 1 in [SI] and [S2].

I am not convinced that singular integral operators will have such an 
im portant role in higher-codimension (linear) complex analysis as in co- 
dimension-1. I am more optimistic about approximations to the identity 
and square functions estimates. In codimension-1 complex analysis, there 
are some interesting approximations to the identity on hypersurfaces which 
are built out of the Cauchy kernel and which contain interesting geometric 
information about the surface (see [S3], especially (1 .0) on p. 1010). One 
can imagine analogous objects in higher codimensions, using differential 
forms and Clifford algebras. These higher-dimensional analogues could be 
associated to (d — l)-spheres which link a given codimension-d submanifold 
(on which we are to have the approximation to the identity), just as in 
the codimension- 1 case the approximation to the identity is defined using 
pairs of points which lie in different components of the complement of the 
hypersurface (i.e., linking 0-spheres). Unfortunately, I have not succeeded 
in producing anything tha t I can work with analytically. See [DS, Sect.8 , 
Ch.3, Part III] for different remarks on the same general topic.
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R odolfo H. Torres (U n iversity  o f M ichigan at A nn A rbor) and  
Grant W elland (U niversity  o f M issouri at Saint Louis)

Let D  be a bounded Lipschitz domain in R 3, and let N  be the unit out­
ward normal to the boundary of the domain. Let k be a complex number, 

e ik\X\
and let 4>(X) =  r-rr be the fundamental solution for the Helmholtz

4tt\X\
operator A +  k2I.

Problem: Find the spectrum in L ^(dD )  (square integrable vectors fields 
on dD) of the operator M  given by

M F (P )  = p.v. f N ( P ) x curl (4>(P -  Q)F(Q)) dcr(Q).
J d D

This operator arises in the study of boundary value problems for Maxwell 
equations using the method of layer potentials. The knowledge of the 
spectrum will be im portant in solving some transmission problems. For 
transmission problems in Lipschitz domains, see, for example,

(1) L. Escauriaza, E. Fabes, and G. Verchota, “On a regularity theorem 
for weak solutions to transmission problems with internal Lipschitz 
boundaries” , Proc. Am. Math. Soc. 115(1992), pp .1069-1076.

(2) M. Mitrea, R. Torres, and G. Welland, “Regularity and approxima­
tion results for the Maxwell problem in C 1 and Lipschitz domains” , 
in this proceedings.

(3) R. Torres, “A transmission problem in the scattering of electromag­
netic waves by a penetrable object” , preprint.


