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Preface

“Quantum measurement” is a professional jargon word meaning “mea
surement with quantum effects taken into account” . This topic has been 
of great interest, for specialists as well as for the general public, since the 
beginning of quantum mechanics up the present time. In fact, the interest 
to this area has grown during the last decade.

From the very beginning the interest in quantum measurements was 
provoked by their unusual and paradoxical features, such as the impossi
bility of measuring the position and momentum of an elementary particle 
simultaneously and with arbitrarily high accuracy. Nowadays this interest 
continues for both theoretical and practical reasons.

From the practical point of view, even macroscopic measurements (such 
as the measurement of position of elements of gravitational-wave antenna) 
have become very precise and require quantum effects to be taken into ac
count. Moreover, in certain conditions these effects are the main restriction 
on measurement sensitivity.

The theoretical origin of constant and growing interest in quantum mea
surements is connected with the general interest in the foundations of quan
tum  mechanics, of which the quantum theory of measurements is a central 
point. Real insight into the principles of quantum mechanics is impossible 
without an understanding of quantum measurements.

It must be said, though, that from a practical point of view in most 
cases neither a “deep understanding” of quantum mechanics nor even ex
plicit consideration of quantum measurements is necessary for the quantum 
mechanical description of real systems and processes. But this is true only 
for narrow task of the most immediate applications. Anyone who is inter
ested in the first principles of quantum mechanics, or even in more distant 
applications, inevitably runs into the question of quantum measurements.

The first principles of quantum mechanics are especially im portant at 
the present time since quantum theory is undergoing fast development and 
expansion of its sphere of application. Particularly acute are questions 
of principle in such new areas of quantum mechanics as quantum grav
ity and quantum cosmology, the scientific directions developing before our 
eyes. However, the development of new technology encounters complicated 
quantum-mechanical problems and also requires deep penetration into the 
principles of quantum theory.

x i



x ii PREFACE

The subject of the present book is continuous quantum measurements,
i.e. measurements prolonged in time. It turned out that the most appropri
ate tool for describing such a measurement is the Feynman path integral. 
In the Feynman approach one describes the evolution of a quantum  sys
tem as though it follows a path, passing through one point after another. 
This is just like a classical system. However, if for a classical system each 
individual path forms a complete description of its evolution, for a quan
tum  system only the summation (integration) over all paths according to 
certain rules describes the evolution.

If a continuous measurement is performed during the evolution of the 
system, it produces certain information about the path the system takes. It 
is evident that summation in this case should be made not over all paths but 
over only those paths compatible with this information. This is the main 
idea of the path-integral approach to continuous quantum measurements. 
The technical development of this idea gives formulae for concrete physical 
effects.

An evident extension of this idea is from continuous measurements of 
quantum-mechanical systems to continual measurements of quantum  fields. 
The quantum  field dynamics can be described by an integral over all field 
configurations (this integral is often called the path integral too). The 
dynamics of the same field under a continual (stretched in time and space) 
measurement should evidently be described by an integral over those field 
configurations that are compatible with the measurement result (output).

W hat conclusions can be drawn from the theory of continuous (and 
continual) measurements? The main one is a specific uncertainty principle 
for processes (as distinct from the well known uncertainty principle for 
states). This principle can be formulated in terms of the action S[q] of 
the physical system and therefore may be called the action uncertainty 
principle. It states that the history [q] of a system can be traced, with 
the help of continuous measurement, with an error not less than the error 
corresponding to the uncertainty of the action 6S equal to the quantum  of 
action, h.

In practice, this means there is an optimal accuracy for each continuous 
measurement. If the measurement is rougher than the optimal one, it is 
inefficient because of the measurement error, as classical measurement the
ory predicts. If, on the contrary, the measurement is finer than the optimal 
one, it is inefficient because of large quantum fluctuations (which may be 
called quantum measurement noise). The optimal regime of measurement 
is at the boundary between the classical and quantum regimes, and its error 
places an absolute limit on the precision of a given type of measurement. 
The only way to overcome this limit is to choose the measurement from 
the class of so-called quantum-nondemolition (QND) measurements, which 
have no quantum  regime and no limit at all.



Many concrete applications of this general statem ent will be derived, 
from the sensitivity of the measurement of an oscillator’s frequency com
ponents to the emergence of time in a quantum Universe as a consequence 
of its self-measurement. Both practical and theoretical aspects of the the
ory will be considered.

The book is organized in such a way that its main ideas can be under
stood without thorough study. Thus some sections or even whole chapters 
may be skipped. When this is possible without detriment to understanding, 
the corresponding remarks are made. The minimum possible path through 
the book is following:

Chapter 1 —► Chapter 4 —► . .. —► Chapter 11.

Chapters 5-10 can be selected by the reader according to taste.
The list of references provided in this book is not complete. It contains 

only those papers that have been used in the author’s work. A number 
of additional references, mostly to books and review papers, have been in
cluded when discussing related topics. However, their choice depends on 
the specific point of view of the author in the subject discussed. Many 
im portant books and papers have not been included because their inclu
sion would require consideration of the same subjects from other points of 
view, and this was difficult in the framework of the present book. An at
tem pt was made to compensate partly for this incompleteness by including 
short remarks on the literature. The aim is to give an idea about areas of 
quantum measurement theory not considered in this book and to provide 
a preliminary directions to the literature in these areas.

I am indebted to V B Braginsky, who awoke my interest in the theory of 
precise measurements and specifically in practical aspects of the quantum 
theory of measurement. V N Rudenko was the first to point out the impor
tance of evaluating quantum effects in continuous measurements. This was 
a starting point for the investigation, which led later to the path-integral 
theory of continuous quantum measurements. My deep gratitude is to 
K S Thorne, who considered my first paper on the subject (see Mensky 
1979a) to be interesting and recommended it for Physical Review. I am 
obliged to G A Golubtsova, who was my collaborator and a coauthor of 
an im portant paper on quantum-nondemolition measurements. I also had 
useful discussions of some questions with C M Caves, H Borzeszkowski, 
R Onofrio, C Presilla, J Halliwell and many other colleagues.

Moscow, Russia 
November 13, 1991

Michael B Mensky
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1

Introduction to Continuous Quantum  
Measurements

The main topic of this book is the path-integral theory of continuous 
quantum measurements. In this introductory chapter we shall expose the 
principal ideas of this theory on a qualitative level with a minimum of 
mathematical apparatus.

All physical systems are in fact quantum, but in certain circumstances 
some of them may approximately be described as classical. This depends 
on the error with which the action of the system is known (section 1.1). If 
the system should be considered as a quantum  one, then a specific quantum 
description is necessary and specific quantum features in the behaviour of 
the system arise. The main distinction in the description of a quantum 
system is the concept of a probability amplitude (section 1.2), and the 
principal feature of the quantum system is an uncertainty principle.

A detailed analysis of the concept of an amplitude in the situation when 
the system undergoes some measurement allows one to obtain a theory of 
quantum  measurement even if the measurement is continuous (prolonged 
in time). In the latter case, the different paths the system moves along 
should be considered as alternatives for the motion and characterized by 
amplitudes (section 1.3).

The uncertainty principle in its well known form A q A p > h  is appro
priate to instantaneous measurements. For continuous measurements a 
modified uncertainty principle can be formulated in terms of the action 
(section 1.4). According to this principle (in its simplest but weak form) 
a continuous measurement produces information such that the uncertainty 
in the action is not less than the quantum of action 6S >h.

The reader may skip Chapters 2 and 3, and go directly from this chapter 
to Chapter 4 without any detriment to understanding of the main points of 
the theory. Chapter 2 is necessary only for those who have special interest 
in the link between von Neumann’s theory of instantaneous quantum  mea
surements and the path-integral theory of continuous quantum measure
ments (though the latter can and will be developed quite independently).

1



2 INTRODUCTION

Chapter 3 will be useful for a deeper study of the m athem atical formalism 
of path integrals than the level used in Chapter 4.

1.1 Q U A N T U M  A N D  CLASSIC AL SY STE M S

Quantum  mechanics appeared as a theory of microscopic bodies when 
it had been proved that the motion of microscopic systems cannot be de
scribed in the framework of classical physics. However, quantum effects 
may be im portant even for macroscopic bodies. The main criterion is in 
fact inaccuracy in the value of the action S  typical for description of the 
motion in the framework of the given approximation.

The action 5  is a functional characterizing the dynamics of a system:

tn
■S'M =  f  L(q,q, t )d t .

Jt'

Here L is the Lagrangian of the system, which in the simple case of a 
one-dimensional mechanical system takes the form

L =  im g 2 -  V(t,q),

and

[«] =  {«(0 I * ' < * < * " }

is a path (a trajectory) of the system. It is im portant that the action 
functional S[q] may be evaluated not only for the actual path the classical 
system takes but also for an arbitrary path in the configuration space of the 
system. In fact, nonclassical paths play a key role in quantum mechanics 
and specifically in the theory of continuous measurements.

To judge whether the system is quantum or not it is necessary to compare 
its action with the Planck constant, or the quantum of action, h =  1.055 x 
10-27 erg s.

Let us make this more precise. Any system is in fact a quantum  one. 
However, in an approximate description the quantum features of a certain 
system may turn out to be negligible. Then this system in this approxima
tion may be considered to be a classical one.

The action of the system provides a quantitative criterion for this. If the 
errors, characteristic of the given approximation, lead to an indeterminacy 
A S  in the action S[q] large compared with the quantum  of action, A S  h ,
then the system may be considered to be classical. If the action S[q] is given 
with a rather small error, A S< 7i, then the system needs to be treated as 
a quantum one.
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Figure 1.1: The two-slit experiment leads to an interference pattern if it is 
not known which slit the particle has passed through (a), but it gives no 
interference if an additional observation shows which slit was used (6).

1.2 A M P L IT U D E S A N D  ALTER N ATIV ES

From a certain point of view the main object in quantum mechanics is a 
probability amplitude because it expresses the principal difference between 
quantum and classical theory.1 The probability amplitude of some event is 
a complex number A such that p — \A\2 is the probability of this event.

Quantum mechanics differs in that not probabilities but probability am
plitudes should be summed up for a quantum system. Suppose that some 
event can occur through one of two alternative channels and that the prob
ability amplitudes for these channels are A\  and A 2. Then the complete 
probability amplitude for the event under consideration is

A = A x + A 2 (1.1)

and its probability is
P — \ A \ 2 — 1^1 +  ^ 2 | 2 -

A typical example is a particle passing through one of two slits in an 
opaque screen (figure 1.1), with A\  being the amplitude for the particle to 
pass through one of the slits and A 2 that for it to pass through the other. 
It is because of the law of amplitude summation (1.1) that passing through 
one of the slits cannot be considered independently from passing through 
the other slit. The consequence of this law is an interference pattern at the 
scintillation screen when a series of particles passes through two slits. This 
phenomenon is discussed in much detail in many textbooks on quantum 
mechanics (see for example Bohm 1952).

The formula (1.1) is valid, however, only if there is no means of knowing 
which of two possible alternatives has actually occurred. In this case the

1 Dirac (1972) argued that the most important distinction of quantum theory is not 
in operators but in amplitudes.
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alternatives are called, according to Feynman, interfering. They may also 
be called quantum alternatives.

If an additional observation (measurement) is performed giving informa
tion about which route has been followed, then the amplitude summation 
rule changes into the probability summation rule (see Feynman and Hibbs 
1965):

V — P i  +  P2 — | ^ l | 2 +  |^ 2 1 2 •

As a consequence, no interference pattern will arise in the two-slit experi
ment if, for example, the flow of photons falls on the opaque screen so that 
scattering of the photons shows which of two slits the particle has passed 
through .2 In such a situation Feynman called the alternatives incompatible. 
It also seems convenient to use the term classical alternatives.

The amplitude summation rule is also valid for many alternative chan
nels,

A  =  A\  4- A 2 -f . . .  -f A n (1*2)

provided that there is no possibility of discovering which channel has been 
actually followed. If some observation (measurement) is performed giving 
information about the channel followed, then the amplitude summation rule 
must be corrected. The method of correction depends upon the information 
provided by the measurement.

The information may be complete so that the channel followed is known 
precisely. Then the probabilities of separate channels should be summed 
instead of their amplitudes:

P -  P l  + P 2  +  • • • +  Pn,  Pi  -  M « |2 -

For another type of observation information may be only partial. This 
means that the measurement is rougher. For example, let the measurement 
permit one to know whether the number of the channel followed belongs 
to one of the following pairs:

(1,2); (3,4); . . . ( n - l , n )

(we suppose that the total number of channels is even). Then the proba
bilities corresponding to separate pairs are to be summed but amplitudes 
should be summed inside the pairs:

P — P l  - f  P2 +  • • • +  Pn/2> Pi — | ^ 2 i ' - l  +  ^ 2 i  |2 - ( 1 - 3 )

In this case the alternatives inside each pair are interfering (quantum), 
while those in different pairs are incompatible (classical) alternatives for

2 Of course, one can say that in this case quite a different physical system  is being  
dealt with. But it is equally valid to talk about an additional observation of the same 
system . This is typical of the quantum theory of measurement: there is arbitrariness 
in what part of the real world is included in the system  and what is included in the 
measuring device.
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the final event. In the case of yet rougher measurement all channels may 
be divided into triplets:

P  — P l  +  P2 4- • • • - f  P n / 3 )  Pi  — | ^ 3 t - 2  +  ^ 3 t - l  +  ^ 3 t | 2 - (1*4)

Here p* are probabilities for different results (outputs) of the measure
ment. For example, the value

Pi  =  1̂ 4-2* —l +  ^ 2 * | 2

in equation (1.3) is the probability for the 1'th pair to emerge as the output 
of the measurement. The value

îth pair — ̂ 2*-l 2̂i (1*5)
is nothing but the probability amplitude for the measurement to give the 
result expressed by the ith  pair. More precisely, this is the amplitude for 
the event under consideration to occur and the measurement of pairs of 
channels to show the zth pair.

The situation described by formulae (1.3) and (1.4) can be modelled 
in a many-slit experiment. The photon flow should then be directed at 
the opaque screen in such a way that pairs or triplets of slits could be 
distinguished by the photon scattering rather than individual slits.3

1.3 PATH S A N D  C O N T IN U O U S M E A SU R E M E N T S

This argument may be applied to Feynman paths considered as quan
tum  alternatives. The amplitude A(q" , q1) for a particle to move from the 
point q' to the point qn is called a propagator.4 It has been expressed by 
Feynman (1948) in the form of sum (or rather integral) of the amplitudes 
A[q] corresponding to all possible paths [<?] connecting the points q' and q":

A(q",q') = j A[q]d[q}. (1.6)

Actually this formula is valid for a propagator of any quantum system if q 
is understood as a coordinate (or a set of coordinates) of the configuration 
space of this system. For most arguments it is sufficient to consider a 
one-dimensional system.

3 It might be interesting to perform an experiment of this type for direct experi
mental investigation of quantum and classical alternatives and the modified amplitude 
summation rules (1.3) and (1.4).

4In the subsequent chapters we shall denote this amplitude by U(qn , q') because it is 
closely connected with the evolution operator U.



6 INTRODUCTION

The formula (1.6) is analogous to equation (1.2) but for paths in the 
role of quantum  alternatives. And analogously to the above argument 
equation (1.6) for the propagator is valid only if there is no possibility of 
finding out which path is followed when a particle moves from q' to q". 
This is usually the case. However, suppose that a continuous measurement  
is performed simultaneously with this transition. Let the output a  of this 
measurement give some information about the path of the transition. Such 
information can be expressed by some set of paths Ia .5 If the measurement 
gives the result (output) a  then the transition follows one of the paths 
[q] belonging to the set Ia . Then, in analogy with equation (1.5), the 
amplitude for the transition from q' to qn can be expressed as an integral 
over paths belonging to Ia :

A a (q" ,q ' )= [  A[q]d[q]. (1.7)
Jla

The idea of using restricted path integrals in such a way was proposed in 
a short remark by Feynman (1948). Some attem pts were made to elaborate 
this idea (see for example Bloch and Burba 1974) but, to our mind, not 
successfully. The present author, being unaware of this remark of Feynman 
and subsequent work, proposed this idea again and elaborated it (Mensky 
1979a, b, 1983a). In this book other applications of this approach will be 
considered.6

A typical example of continuous measurement is monitoring of the coor
dinates of the system under consideration. (One may think, for example, of 
monitoring the position of an elementary particle). Then the measurement 
gives the value a(t) of the coordinate q(t) at each instant t (of some time 
interval) with the error A a determined by the precision of measurement. 
Then the output of the measurement a  can be identified with the path [a] 
expressed by the curve a(t).

Knowing the output a  =  [a] of the position monitoring, one knows in 
fact that the actual path of the system [q] could differ from [a] by no more 
than the value A a. Therefore any path [q] lying in the corridor Ia of 
width 2Aa around [a] is possible, while no other path is impossible as an 
actual path of the system (taking the measurement output a  into account). 
Information supplied by the measurement output a  is expressed in this 
case by the corridor Ia of paths. Integration in the Feynman path integral 
should therefore be performed only over paths in the corridor Ia . Moreover, 
the corridor Ia may be identified with the output a  of the measurement. 
In fact this corridor represents the output of position monitoring better

5 In fact the set Ia represents the measurement output adequately. This is why we 
shall later identify the concepts and denote the measurement output and the correspond
ing set of paths by the same letter a.

6 The author was probably influenced by Feynman’s (1948) paper though unaware of
it.


