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Preface

For the second edition, two additional chapters. Chapters 11 and 12, have 
been written. The added material should make the book suitable for two 
consecutive courses in elementary and intermediate applications of probability.

The new material consists of an introduction to stochastic differential 
equations. It is hoped that this will be useful for applied mathematical 
modelling of the behaviour of many naturally occurring randomly fluctuating 
quantities. An attempt has been made to explain the material with a certain 
amount of rigour, but hopefully without so much detail that a practical 
understanding is impaired.

The stochastic differential equations in this book are first order equations 
with an additional noise term. This added term usually contains a Gaussian 
'white noise’ so that the resulting solution is called a diffusion process.

Chapter 1 / starts with a brief reminder of the nature of ordinary determinis­
tic differential equations, followed by an explanation of the essential differences 
between deterministic and stochastic equations. These have been illustrated 
with data in neurophysiology and economics.

There follows a thorough discussion of the properties of the standard 
Wiener process which forms a cornerstone of the theory, and a section on 
white noise which is a useful concept, especially for modelling. The simplest 
stochastic differential equations, being those of the Wiener process with drift, 
are then introduced.

The analytical approach, by which is meant a study of such quantities as 
transition probabilities through the equations they satisfy, is introduced at 
the end of Chapter 11. This method of study is essential if one is to obtain 
accurate estimates for many properties of the random processes one is 
considering.

Chapter 12 starts with a continuation of the analytic method by introducing 
the equations of Kolmogorov (or Fokker-Planck). Steady state and time- 
dependent solutions of these equations are then found for problems of 
classical interest - those involving the Wiener and Ornstein- Uhlenbeck pro­
cesses.

in section 12.5, Ito’s stochastic integral and the corresponding stochastic 
differential equations are introduced. This is followed by a heuristic derivation



of the formula for change of variable. A brief treatment is given of Stratonovich's 
integral which leads to simpler rules of calculus.

Sections 12.6 and 12.7 concern certain aspects of modelling with stochastic 
differential equations. The connection between the analytical method and 
the direct method involving stochastic differential equations is given, followed 
by examples drawn from theoretical population biology, mathematical eco­
nomics and theoretical neurobiology.

Finally, a brief discussion is undertaken of various practical considérations- 
solution of stochastic differential equations by simulation, numerical methods 
of solution of equations for transition probabilities, and estimation of 
parameters.

Both Chapters 11 and 12 end with sets of exercises, some of those in 
Chapter 12 being suitable for project work.

It is a pleasure to thank the following colleagues for helpful suggestions 
with respect to the new material: Professors Joseph Gani and Christopher 
C. Hey de of the Institute of Advanced Studies in Canberra; and Professor 
James A. Koziol of Scripps Research Institute, La Jolla.

xii Preface

Henry C. Tuck well 
Versailles, June 1994



Preface to the first edition

This book concerns applications of probability theory. It has been written 
in the hope that the techniques presented will be useful for problems in 
diverse areas. A majority of the examples come from the biological sciences 
but the concepts and techniques employed are not limited to that field. To 
illustrate, birth and death processes (Chapter 9) have applications to chemical 
reactions, and branching processes (Chapter 10) have applications in physics 
but neither of these specific applications is developed in the text.

The book is based on an undergraduate course taught to students who 
have had one introductory course in probability and statistics. Hence it does 
not contain a lengthy introduction to probability and random variables, for 
which there are many excellent books. Prerequisites also include an elementary 
knowledge of calculus, including first-order differential equations, and linear 
algebra.

The basic plan of the book is as follows.

Chapter I: a review of basic probability theory;
Chapters 2-5: random variables and their applications;
Chapter 6: sequences of random variables and concepts of convergence; 
Chapters 7-10: theory and properties of basic random processes.

The outline is now given in more detail.
Chapter / contains a brief review of some of the basic material which will 

be needed in later chapters; for example, the basic probability laws, conditional 
probability, change of variables, etc. It is intended that Chapter 1 be used 
as a reference rather than a basis for instruction. Students might be advised 
to study this chapter as the material is called upon.

Chapter 2 illustrates the interplay between geometry and probability. It 
begins with an historically interesting problem and then addresses the 
problem of finding the density of the distance between two randomly chosen 
points. The second such case, when the points occur within a circle, is not 
easy but the result is useful.

Chapter 3 begins with the properties of the hypergeo metric distribution. 
An important application is developed, namely the estimation of animal 
populations by the capture- recapture method. The Poisson distribution is



then reviewed and one-dimensional Poisson point processes introduced 
together with some of their basic properties. There follows a generalization 
to two dimensions, which enables one to study spatial distributions of plants 
and to develop methods to estimate their population numbers. The chapter 
concludes with the compound Poisson distribution which is illustrated by 
application to a neurophysiological model.

Chapter 4 introduces several of the basic concepts of reliability theory. 
The relevant properties of the standard failure time distributions are given. 
The interesting spare parts problem is next and the concluding sections discuss 
methods for determining the reliability of complex systems.

Chapter 5 commences by explaining the usefulness of computer simulation. 
There follows an outline of the theory of random number generation using the 
linear congruential method and the probability integral transformation. The 
polar method for normal random variables is given. Finally, tests for the 
distribution and independence properties of random numbers are described.

Chapter 6 deals with sequences of random variables. Some methods for 
studying convergence in distribution and convergence in probability are 
developed. In particular, characteristic functions and Chebyshev’s inequality 
are the main tools invoked. The principal applications are to proving a 
central limit theorem and a weak law of large numbers. Several uses for the 
latter are detailed.

Chapter 7 starts with the definition of random (stochastic) processes and 
introduces the important Markov property. The rest of the chapter is mainly 
concerned with the elementary properties of simple random walks. Included 
are the unrestricted process and that in the presence of absorbing barriers. 
For the latter the probability of absorption and the expected time of 
absorption are determined using the difference equation approach. The 
concluding section briefly introduces the Wiener process, so fundamental in 
advanced probability. The concept of martingale and its usefulness are 
discussed in the exercises.

Chapter 8 is on Markov chains. However, the theory is motivated by 
examples in population genetics, so the Hardy-Weinberg principle is discussed 
first. Elementary general Markov chain theory is developed for absorbing 
Markov chains and those with stationary distributions.

Chapter 9 concerns birth and death processes, which are motivated by 
demographic considerations. The Poisson process is discussed as a birth 
process because of its fundamental role. There follow the properties of the 
Yule process, a simple death process and the simple birth and death process. 
The treatment of the latter only states rather than derives the equation 
satisfied by the probability generating function but this enables one to derive 
the satisfying result concerning the probability of extinction.

Chapter 10 contains a brief introduction to the theory of branching 
processes, focusing on the standard Galton-Watson process. It is motivated

xiv Preface to the first edition



by the phenomenon of cell division. The mean and variance are derived and 
the probability of extinction determined.

It should be mentioned that references are sometimes not to the latest 
editions of books; for example, those of Hoel, Pielou, Strickberger and 
Watson.

In the author’s view there is ample material for a one-quarter or one- 
semester course. In fact some material might have to be omitted in such a 
course. Alternatively, the material could be presented in two courses, with a 
division at Chapter 6, supplemented by further reading in specialist areas (e.g. 
ecology, genetics, reliability, psychology) and project work (e.g. simulation).

I thank the many Monash students who have taken the course in applied 
probability on which this book is based. In particular, Derryn Griffiths made 
many useful suggestions. It is also a pleasure to acknowledge the helpful 
criticisms of Dr James A. Koziol of Scripps Clinic and Research Foundation, 
La Jolla; and Drs Fima Klebaner and Geoffrey A. Watterson at Monash 
University. I am also grateful to Barbara Young for her excellent typing and 
to Jean Sheldon for her splendid artwork.

Preface to the first edition xv

Henry C. Tuckwell 
Los Angeles, April 1987
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A review of basic 
probability theory

This is a book about the applications of probability. It is hoped to convey that 
this subject is both a fascinating and important one. The examples are drawn 
mainly from the biological sciences but some originate in the engineering, 
physical, social and statistical sciences. Furthermore, the techniques are not 
limited to any one area.

The reader is assumed to be familiar with the elements of probability or to be 
studying it concomitantly. In this chapter we will briefly review some of this 
basic material. This will establish notation and provide a convenient reference 
place for some formulas and theorems which are needed later at various 
points.

1.1 PROBABI LI TY AND RAND OM VARI ABLES

When an experiment is performed whose outcome is uncertain, the collection 
of possible elementary outcomes is called a sample space, often denoted by Q. 
Points in Q, denoted in the discrete case by cu¿, / = 1,2,... have an associated 
probability P{o)¡}. This enables the probability of any subset A ofO, called an 
event, to be ascertained by finding the total probability associated with all the 
points in the given subset:

P{A]

We always have

= I  P{^i)
coje A

0 ^ P { A ]  ^  1,

and in particular P{il\ ^  1 and P { 0 ]  =0, where 0  is the empty set relative 
to Q.

A random variable is a real-valued function defined on the elements of a 
sample space. Roughly speaking it is an observable which takes on numerical 
values with certain probabilities.

Discrete random variables take on finitely many or countably infinitely 
many values. Their probability laws are often called probability mass functions. 
The following discrete random variables are frequently encountered.



( 1 . 1 )

2 Basic probability theory
Binomial

A binomial random variable X  with parameters n and p has the probability law

= b(k; n,p\ /c = 0, 1,2,..., n,

where 0 ^  p ^  1, ^ = 1 — p and n is a positive integer ( = means we are defining 
a new symbol). The binomial coefficients are

nl
k J k\{n — k)V

being the number of ways of choosing k items, without regard for order, from n 
distinguishable items.

When n = 1, so we have

Pr{X= \ } = p =  1 -  P r{ ^ = 0 } ,

the random variable is called Bernoulli.
Note the following.

Convention
Random variables are always designated by capital letters (e.g. V) whereas 
symbols for the values they take on, as in Pr = A}, are always designated by 
lowercase letters.

The converse, however, is not true. Sometimes we use capital letters for non- 
random quantities.

Poisson

A Poisson random variable with parameter 2 > 0 takes on non-negative 
integer values and has the probability law

Pr{-V = k\
( 1.2)

For any random variable the total probability mass is unity. Hence if pj, is 
given by either (1.1) or (1.2),

1
k

where summation is over the possible values k as indicated.



F(x) = P r{ X ^ x } , -  CO < X < CO.

Continuous random variables take on a continuum of values. Usually the 
probability law of a continuous random variable can be expressed through its 
probability density function, /(x), which is the derivative of the distribution 
function. Thus

Random variables 3
For any random variable X,  the distribution function is

f{x} = ^ F { x )

= lim
A jc -»0

= lim
Ajc-̂ O

= lim
A jc-*0

= lim
Aa -0

F(x -f- Ax) -  F{x)

Pr{X ^ x  +Ax} -  Pr{X ^ x }
Â^

Pr {x < X ^  X + Ax}

Pr {Xe(x,x + Ax]}
“Â 7

1.3)

The last two expressions in (1.3) often provide a convenient prescription for 
calculating probability density functions. Often the latter is abbreviated to 
p.d.f. but we will usually just say 'density’.

If the interval (xi,X2 ) is in the range of X then the probability that X 
takes values in this interval is obtained by integrating the probability density 
over (Xi,X2 ).

Pr {xj < X < X2 } ^ f (x)dx.
a; Xl

The following continuous random variables are frequently encountered.

Normal (or Gaussian)

A random variable with density

■ 0 0  <  X  <  0 0 , (1.4)

where -  co < ¡j < co and 0 < < oo,

is called normal. The quantities /u and are the mean and variance 
(elaborated upon below) and such a random variable is often designated



A/(jU, (t). If /i = 0 and a = 1 the random variable is called a standard normal 
random variable, for which the usual symbol is Z.

4 Basic probability theory

Uniform

A random variable with constant density

f M  = b -  a
- c o < a ^ x ^ b < c o .

is said to be uniformly distributed on (a, b) and is denoted U(a, b)Aia = 0, b = I 
the density is unity on the unit interval,

f (x)  =1, 0 ^  X ^  1

and the random variable is designated U(0, I).

Gamma

A random variable is said to have a gamma density (or gamma distribution) 
with parameters A and p if

f(x) =
k(kxY- V,p  -  1 -  À X

rip)
x ^  0: Z p > 0.

The quantity f(p} is the gamma function defined as

np)  = x^~ "" dx, p > 0.

When p = 1 the gamma density is that of an exponentially distributed random 
variable

f(x) = Ac ■ X > 0.

For continuous random variables the density must integrate to unity:

/(x )d x =  1

where the interval of integration is the whole range of values of X.



1.2 MEAN AND VARI ANCE 

Eel X be a discrele random variable with

P r { X = x J = p t ,  k = \ , 2 , . . . .

The mean, average or expectation of X is

Conditional probability 5

E{X) = Y,PkXk-k

For a binomial random variable E{X)^np  whereas a Poisson random 
variable has mean E(X) = L

For a continuous random variable with density /(x),

E{X) = X  f (x)dx.

If X is normal with density given by (1.4) then E(X) = ¡u: a uniform (a,b) 
random variable has mean E{X) ^  j(r/-f- b); and a gamma variate has mean 
E(X) = p/L

The nth moment of X is the expected value of X”:

E(X )̂ =
^  p^xl if X is discrete, 

x' ' f{x)dx if X is continuous.

If n = 2 we obtain the second moment E{X^). The variance, which measures the 
degree of dispersion of the probability mass of a random variable about its 
mean, is

V 2 i r ( X ) ^ E U X  -  E { X ) f ]

=  E ( X ^ ) -  EHX).

The variances of the above-mentioned random variables are: 

binomial, npq; Poisson, 2; normal, cr̂ ; uniform, -  a) :̂ gamma, p/P,

The square root of the variance is called the standard deviation.

1.3 C O N D I T I O N A L  PROBABI LI TY AND 
I N D E P E N D E N C E

Let A and B be two random events. The conditional probability of A given B is, 
provided Pr {B} ^  0,



6 Basic probability theory

Pr {A\B} = Pr {AB} 
Pr{B}

where AB is the intersection of A and B, being the event that both A and B 
oeeur (sometimes written / t o 6). Thus only the oceurrenees of A which are 
simultaneous with those of B are taken into account. Similarly, if X, Y are 
random variables defined on the same sample space, taking on values
Xi,i = 1,2,..., y j j  = 1,2...... then the conditional probability that X = x,-given
Y = yj is, if Pr { Y = y,-} ^  0,

P r { y = x , ,  y = ŷ .|
Pr {X=x, | k=y , . }  =

Pr{y = y,.}

ihe comma between X = x,- and Y = yj meaning 'and’.
The conditional expectation of X given Y = y-j is

£ ( y | y  = y, )=X^,-Pr{2f = x, |y = y,.}.
/

The expected value of X y is

E( XY) =Y^x , y^Pr \ X=x , . Y  = y^],

and the covariance of X, Y is

Cov(X, y) = E[{X -  E{X)) (Y-  E(Y))]
= E{XY)~ E(X)E{Y).

The covariance is a measure of the linear dependence of X on Y.
If X, Y are independent then the value of Y should have no effect on the 

probability that X takes on any of its values. Thus we define X, Y as 
independent if

Pr {X = x,-| y = yj} = Pr {X x j,  all ij.

Equivalently X, Y are independent if

P r { X = x , , y = y , . }  = P r { X = x , } P r i y = y , . [ ,

with a similar formula for arbitrary independent events.
Hence for independent random variables

E{XY) = E(X)E(Yl

so their covariance is zero. Note, however, that Cov (X, X) = 0 does not always 
imply X, y are independent. The covariance is often normalized by defining 
the correlation coefficient

P k y  =
Cov(X, Y)



where ct;̂ , cry are ihe standard deviations of X, Y. pxy is bounded above and 
below by

Law of total probability 7

1 ^  P x y  ^

Let X X2,- .., X„ be mutually independent random variables. That is,

Pr{X ^eA^,X2eA2,. . . .X„eA^}
= Pv{X,GA,}Pr{X2EA2}. . .Pr{X^EA„l  

for all appropriate sets A], . . . ,  A„. Then

Var I  X, = X YariXd

SO that variances add in the case of independent random variables. We also 
note the formula

Var (aX +bY) = a^ Var [X) + b^ Var (T),

which holds if X, Y are independent. If X,, X 2 , . . . ,  are independent 
identically distributed (abbreviated to i.i.d.) random variables with E(X J  = p, 
Var(X,) = cr̂ , then

X Var^ X

If X is a random variable and {X ^ X 2. . . . ,  X„} are i.i.d. with the distribution 
of X, then the collection {X^} is called a random sample of size n for X. 
Random samples play a key role in computer simulation (Chapter 5) and of 
course are fundamental in statistics.

1.4 LAW OF TOTAL PROBABI LI TY

Let Q be a sample space for a random experiment and let {Â , i = 1,2,...} be a 
collection of nonempty subsets of Q such that

(i) AfAj = 0 .
(ii) \j Ai = Q.

i
(Here 0  is the null set, the impossible event, being the complement of Q.) 
Condition (i) says that the Aj represent mutually exclusive events. Condition (ii) 
states that when an experiment is performed, at least one of the Af must be 
observed. Linder these conditions the sets or events {/I¿, / = 1,2,...} are said to 
form a partition or decomposition of the sample space.
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The law or theorem of total probability slates that for any event (set)

P r { ^ } -  J^Pr{B\A.,} Pr{A;

A similar relation holds for expeetations. By definition the expeetation of X 
eonditioned on the event Af is

E { X \ A , ) = J ^ x ,  P r { X = x , \ A , ] ,
k

where is the set of possible values of X. Thus 

E{X)=J^x,  P r{ ^ = x ,}
k

= Z  Pr {A i ]Y . x^  P r i x  =xj/l,.}.
/ k

Thus

E(X)=J^E(X\A,)  Pr{/I,}

whieh we ealJ the law of total probability applied to expectations.
We note also the fundamental relation for any two events A, B in the same 

sample spaee:

Pr{/lufi} = Pr{/I} + Pr{B} -  Pr{d^}

where A u  Bis the union of A and B, eonsisting of those points whieh are in A or 
in B or in both A and B.

1.5 C H A N G E  OF VARI ABLES

Let X be a eontinuous random variable with distribution funetion E^ and 
density Let

y = gM
be a strietly inereasing funetion of x (see Fig. 1.1) with inverse funetion

X = h(y).
Then

F = ^ ( X )

is a random variable whieh we let have distribution funetion Ey and density fy.
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It is easy to see that X implies Y ^ g(x). Hence we arrive at 

Pr^X = Pr{ y <6f(x)}

By the definition of distribution functions this can be written

F xix) = F y(g(x)). (1.5)
Therefore

Fy{y) = Fxihiy)).

On differentiating with respect to y we obtain, assuming that h is 
differentiable.

dFy _ dFxix) 
dy dx

dh

or in terms of densities
d/7

fYiy) = f x(h{y))^.dy

If is a strictly decreasing function of x we obtain

Pr{X ^ x }  = Pr{Y^g{x)}.

Working through the steps between (1.5) and (1.6) in this case gives

(  d h \
/r(y) = /ri% ))( -  )•

( 1.6)

(1.7)
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Both formulas (1.6) and (1.7) are covered by the single formula

f r iy )  =  fxihiy))

where | | denotes absolute value. Cases where g is neither strictly increasing
nor strictly decreasing require special consideration.

1.6 T W O - D I M E N S I O N A L  RAND OM VARI ABLES

Lei X, y be random variables defined on the same sample space. Then their 
joint distribution function is

y ) = P r { X ^ x , Y ^ y } .

The mixed partial derivative of if it exists, is the joint density of X and Y:

fxYi^^y) = dxdy

As a rough guide we have, for small enough Ax, Ay,

/Yy^(x,y)A xA y ^  Pr {X  e (x, x  4- Ax], Y e (y ,y  + Ay]}.

If X, Y are independent then their joint distribution function and joint 
density function factor into those of the individual random variables:

F^y(x,y) = FxixiFyiyl 
fxYÌx^y)=fxMfYÌy)-

In particular, if A, Y are independent standard normal random variables,

fxY(x,y) =
1

exp
1

y i n
exp ■ y

which can be written

f x  Ax, y) = — exp { -  Ì

-  00 <  X, y <  00,

( 1.8)

In fact if the joint density A, Y is as given by (1.8) we may conclude that A, Y 
are independent standard normal random variables.

Change of variables

Let C, V be random variables with joint density /^j/(w, r). Suppose that the 
one-one mappings
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X=^Gy(U,  V)
Y=G2iU.  V)

transform 17, V to the pair of random variables X, Y. Let the inverse 
transformations be

U = H, (X.  Y)
V = H2(X, Y).

Then the joint density of X, Y is given by

f y )  — fu v i^  1 y)-> ^ y))|7(x,y)|

a w ,

ÔX dy

Ô H 2 Ô H 2

7 T

where J(x,y) is the Jacobian of the inverse transformation given by

J{x,y) =

and IJI is its absolute value. A proof of this result is given in Blake (1979).

1.7 H Y P O T HE S I S  T ES TI N G - THE G O O D N E S S  
OF FIT TEST

In testing the validity of a stochastic (also called random, probabilistic) model 
it is often necessary to perform statistical tests on data. The basic idea is to 
consider a random variable which can be observed when the random 
experiment of interest is performed. Such a random variable is called a test 
statistic. If under a given hypothesis values of a test statistic occur (when the 
experiment is performed) which are considered unlikely, one is inclined to 
reject that hypothesis.

random variables

Apart from a test for independence developed in Section 5.6, the only 
statistical test which is used in this book is called the /  ̂  goodness of fit test. We 
first define random variables and then see how these are useful in testing 
hypotheses about probability distributions.

Definition is a /^-random variable with n degrees of freedom if its density is

/nW  = ;
I

-

2"‘̂ r(nl2y jr>  0; n=  1,2,. .9)
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The mean and variance of such a random variable are given by

Var(X„) = 2/7.

Also, it may be shown that the density (1.9) is that of a sum of squares of n 
independent standard normal random variables Z^J=  l,...,/7;

^ n = t

The statistic

Suppose that when a random experiment is performed, observations may fall 
into any of n distinct categories. Assuming the truth of a particular hypothesis, 
Hq, let the probability be pi that any observation falls in category i. If there are 
N observations altogether, the expected number, under Hq, that fall in 
category i is Np,-. We may compare this with the number, N̂ , of observations 
that actually do fall in category i (A/,- is random, N is not). To obtain an overall 
view of how well the observed data fits the model (Hq) we compute the sum of 
the n squares of the deviations of the N,- from the Np̂ , each term in the sum 
being divided by the expected number Np{. Thus the goodness of fit test statistic 
is the random variable

D „ =  I (Nj -  Npi)^
Np,

When N is large the random variable has approximately the same 
probability distribution as X, a /^-random variable whose number of degrees 
of freedom is determined as described below. We therefore put

= I
i = 1

in, -
NPi

( 1. 10)

where «,■ is the observed value of N and call (l.lOllhe value of the/^-statistic.
If there is close agreement between the observed values (/ij) and those 

predicted under Ho(Np;), then the values of (A/,- -  Npif  and hence will be 
small. Large observed values of the /^-statistic therefore make us inclined to 
think that Hq is false.

Critical values of denoted by Xn.â  are defined as follows;

P ^ { ^ n > x L \ = ^
If the value of obtained in an experiment is less than the critical value, it is 

argued that the differences between the values of A/,- and Np  ̂ are not large 
enough to warrant rejecting Hq. On the other hand, if exceeds the critical 
value, Hq is considered unlikely and is rejected. Often we put oc = .05, which
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means that 5% of the time, values of greater than the critical value occur 
even when is true. That is, there is a 5% chance that we will (incorrectly) 
reject when it is true.

In applying the above goodness of fit test, the number of degrees of 
freedom is given by the number n, of 'cells’, minus the number of linear 
relations between the /V,-. (There is at least one, /V.) The number of
degrees of freedom is reduced further by one for each estimated parameter 
needed to describe the distribution under Hq.

It is recommended that the expected numbers of observations in each 
category should not be less than 5, but this requirement can often be relaxed. A 
table of critical values of y^ is given in the Appendix, p. 219.

For a detailed account of hypothesis testing and introductory statistics 
generally, see for example Walpole and Myers (1985), Hogg and Craig (1978) 
and Mendenhall, Scheaffer and Wackerly (1981). For full accounts of basic 
probability theory see also Chung (1979) and Feller (1968). Two recent books 
on applications of probability at an undergraduate level are those of Ross 
(1985) and Taylor and Karlin (1984).

1.8 NO T AT I ON 

Little o

A quantity which depends on Ax but vanishes more quickly than Ax as Ax 0 
is said to be 'little o of Ax’, written o(Ax). Thus for example (Ax)  ̂ is o(Ax) 
because (Ax)  ̂ vanishes more quickly than Ax. In general, if

ajc- o Ax

we write
^(Ax) ^  o(Ax).

The little o notation is very useful to abbreviate expressions in which terms 
will not contribute after a limiting operation is taken. To illustrate, consider 
the Taylor expansion of

■ = 1 + Ax +
(Ax)  ̂ (Ax)-̂

2!

+ Ax + o(Ax).

+
3! T •••

We then have

dx
= lim

JC = 0 Ax̂ o
1

Ax
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lim
Ax̂ O

1 + Ax + o(Ax) -  1
Â i

Ax o(Ax) = lim ^  + — —  
Aa: -> 0 Ax Ax

Equal by definition
As seen already, when we write, for example,

q =  {\ - p )

we are defining the symbol q to be equal io \ -  p. This is not to be confused 
with approximately equal to, which is indicated by

Unit step function
The unit (or Heaviside) step function located at Xq is

fO, x <Xq,
1, X^Xo-

Thus H(x — Xq) has a jump of + 1 at Xq and it is right-continuous. 

i.i.d.

H{X -  Xq) =

As seen already, the letters i.i.d. stand for independent and identically 
distributed.

Probability
Usually the probability of an event A is written

Pr{A}

but occasionally we just write

P{A}.
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