ELEMENTARY APPLICATIONS OF PROBABILITY THEORY Second edition

Henry C. Tuckwell

Texts in Statistical Science

Elementary Applications of Probability Theory

CHAPMAN \& HALL STATISTICS TEXTBOOK SERIES

Editors:

Dr Chris Chatfield
Reader in Statistics
School of Mathematical Sciences
University of Bath, UK

Professor Jim V. Zidek
Department of Statistics
University of British Columbia, Canada

OTHER TITLES IN THE SERIES INCLUDE

Practical Statistics for Medical Research D.G. Altman

Interpreting Data
A.J.B. Anderson

Statistical Methods for SPC and TQM D. Bissell

Statistics in Research and Development Second edition
R. Caulcutt

The Analysis of Time Series
Fourth edition
C. Chatfield

Problem Solving - A Statistician's Guide
C. Chatfield

Statistics for Technology
Third edition
C. Chatfield

Introduction to Multivariate Analysis
C. Chatfield and A.J. Collins

Modelling Binary Data
D. Collett

Modelling Survival Data in Medical Research
D. Collett

Applied Statistics

D.R. Cox and E.J. Snell

Statistical Analysis of Reliability Data
M.J. Crowder, A.C. Kimber, T.J.

Sweeting and R.L. Smith

An Introduction to Generalized Linear Models
A.J. Dobson

Multivariate Analysis of Variance and Repeated Measures
D.J. Hand and C.C. Taylor

The Theory of Linear Models
B. Jorgensen

Statistical Theory
Fourth edition
B. Lindgren

Essential Statistics
Second edition
D.G. Rees

Decision Analysis: A Bayesian Approach
J.Q. Smith

Applied Nonparametric Statistical Methods
Second edition
P. Sprent

Elementary Applications of Probability
Theory
H.C. Tuckwell

Statistical Process Control: Theory and Practice
Third edition
G.B. Wetherill and D.W. Brown

Statistics in Engineering
A practical approach
A.V. Metcalfe

Full information on the complete range of Chapman \& Hall statistics books is available from the publishers.

Elementary Applications of Probability Theory

With an introduction to stochastic differential equations

Second edition

Henry C. Tuckwell

Senior Research Fellow
Stochastic Analysis Group of the
Centre for Mathematics and its Applications
Australian National University
Australia

Published by Chapman \& Hall, 2-6 Boundary Row, London SE1 8HN, UK
Chapman \& Hall, 2-6 Boundary Row, London SEI 8HN, UK
Blackie Academic \& Professional, Wester Cleddens Road, Bishopbriggs, Glasgow G64 2NZ, UK

Chapman \& Hall GmbH, Pappelallee 3. 69469 Weinheim, Germany
Chapman \& Hall USA, One Penn Plaza, 41st Floor, New York NY 10119, USA

Chapman \& Hall Japan. ITP-Japan. K yowa Building, 3F, 2-2-1 Hirakawacho, Chiyoda-ku. Tokyo 102, Japan
Chapman \& Hall Australia. Thomas Nelson Australia. 102 Dodds Street. South Melbourne, Victoria 3205, Australia

Chapman \& Hall India, R. Seshadri, 32 Second Main Road, CIT East, Madras 600 035. India

First edition 1988
Second edition 1995
(C) 1988, 1995 Henry C. Tuckwell

Typeset in 10/12 pt Times by Thomson Press (India) Ltd. New Delhi

ISBN 0412576201
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act. 1988, this publication may not be reproduced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library
Library of Congress Catalog Card Number: 94-68995

To Silvia Dori

Contents

Preface xi
Preface to the first edition xiii
1 A review of basic probability theory 1
1.1 Probability and random variables 1
1.2 Mean and variance 5
1.3 Conditional probability and independence 5
1.4 Law of total probability 7
1.5 Change of variables 8
1.6 Two-dimensional random variables 10
1.7 Hypothesis testing - the χ^{2} goodness of fit test 11
1.8 Notation 13
References 14
2 Geometric probability 16
2.1 Buffon's needle problem 16
2.2 The distance between two random points on a line segment 19
2.3 The distance between two points dropped randomly in a circle 21
2.4 Sum of two random variables 25
References 27
Exercises 27
3 Some applications of the hypergeometric and Poisson distributions 30
3.1 The hypergeometric distribution 30
3.2 Estimating a population from capture-recapture data 33
3.3 The Poisson distribution 37
3.4 Homogeneous Poisson point process in one dimension 38
3.5 Occurrence of Poisson processes in Nature 41
3.6 Poisson point processes in two dimensions 44
3.7 Compound Poisson random variables 48
3.8 The delta function 50
3.9 An application in neurobiology 52
References 56
Exercises 57
4 Reliability theory 61
4.1 Failure time distributions 61
4.2 Reliability function and failure rate function 63
4.3 The spare parts problem 69
4.4 Complex systems 70
4.5 Series and parallel systems 72
4.6 Combinations and other structures 75
Further reading 77
References 77
Exercises 77
5 Simulation and random numbers 81
5.1 The need for simulation 81
5.2 The usefulness of a random sample from a uniform distribution 83
5.3 Generation of uniform (0,1) random numbers 86
5.4 Generation of random numbers from a normal distribution 88
5.5 Statistical tests for random numbers 90
5.6 Testing for independence 92
References 96
Exercises 96
6 Convergence of sequences of random variables: the central limit theorem and the laws of large numbers 98
6.1 Characteristic functions 98
6.2 Examples 101
6.3 Convergence in distribution 104
6.4 The central limit theorem 107
6.5 The Poisson approximation to the binomial distribution 110
6.6 Convergence in probability 111
6.7 Chebyshev's inequality 113
6.8 The weak law of large numbers 115
References 119
Exercises 119
7 Simple random walks 123
7.1 Random processes - definitions and classifications 123
7.2 Unrestricted simple random walk 126
7.3 Random walk with absorbing states 131
7.4 The probabilities of absorption at 0 132
7.5 Absorption at $c>0$ 137
7.6 The case $c=\infty$ 138
7.7 How long will absorption take? 139
7.8 Smoothing the random walk - the Wiener process and Brownian motion 142
References 145
Exercises 145
8 Population genetics and Markov chains 148
8.1 Genes and their frequencies in populations 148
8.2 The Hardy-Weinberg principle 150
8.3 Random mating in finite populations: a Markov chain model 153
8.4 General description of Markov chains 154
8.5 Temporally homogeneous Markov chains 155
8.6 Random genetic drift 158
8.7 Markov chains with absorbing states 160
8.8 Absorption probabilities 162
8.9 The mean time to absorption 167
8.10 Mutation 171
8.11 Stationary distributions 173
8.12 Approach to a stationary distribution as $n \rightarrow \infty$ 174
References 178
Exercises 179
9 Population growth I: birth and death processes 183
9.1 Introduction 183
9.2 Simple Poisson processes 185
9.3 Markov chains in continuous time 187
9.4 The Yule process 188
9.5 Mean and variance for the Yule process 192
9.6 A simple death process 194
9.7 Simple birth and death process 196
9.8 Mean and variance for the birth and death process 199
References 201
Exercises 201
10 Population growth II: branching processes 204
10.1 Cell division 204
10.2 The Galton-Watson branching process 205
10.3 Mean and variance for the Galton-Watson process 207
10.4 Probability generating functions of sums of random variables 209
10.5 The probability of extinction 212
References 216
Exercises 217
11 Stochastic processes and an introduction to stochastic differential equations 219
11.1 Deterministic and stochastic differential equations 219
11.2 The Wiener process (Brownian motion) 222
11.3 White noise 226
11.4 The simplest stochastic differential equations - the Wiener process with drift 228
11.5 Transition probabilities and the Chapman-Kolmogorov equation 231
References 234
Exercises 234
12 Diffusion processes, stochastic differential equations and applications 237
12.1 Diffusion processes and the Kolmogorov (or Fokker-Planck) equations 237
12.2 Stationary distributions 242
12.3 The Wiener process with drift 244
12.4 The Ornstein-Uhlenbeck process 256
12.5 Stochastic integrals and stochastic differential equations 260
12.6 Modelling with stochastic differential equations 269
12.7 Applications 270
References 280
Exercises 282
Appendix Table of critical values of the χ^{2}-distribution 285
Index 286

Preface

For the second edition, two additional chapters, Chapters 11 and 12, have been written. The added material should make the book suitable for two consecutive courses in elementary and intermediate applications of probability.

The new material consists of an introduction to stochastic differential equations. It is hoped that this will be useful for applied mathematical modelling of the behaviour of many naturally occurring randomly fluctuating quantities. An attempt has been made to explain the material with a certain amount of rigour, but hopefully without so much detail that a practical understanding is impaired.

The stochastic differential equations in this book are first order equations with an additional noise term. This added term usually contains a Gaussian 'white noise' so that the resulting solution is called a diffusion process.

Chapter $/ /$ starts with a brief reminder of the nature of ordinary deterministic differential equations, followed by an explanation of the essential differences between deterministic and stochastic equations. These have been illustrated with data in neurophysiology and economics.

There follows a thorough discussion of the properties of the standard Wiener process which forms a cornerstone of the theory, and a section on white noise which is a useful concept, especially for modelling. The simplest stochastic differential equations, being those of the Wiener process with drift, are then introduced.

The analytical approach, by which is meant a study of such quantities as transition probabilities through the equations they satisfy, is introduced at the end of Chapter 11. This method of study is essential if one is to obtain accurate estimates for many properties of the random processes one is considering.

Chapter 12 starts with a continuation of the analytic method by introducing the equations of Kolmogorov (or Fokker-Planck). Steady state and timedependent solutions of these equations are then found for problems of classical interest - those involving the Wiener and Ornstein-Uhlenbeck processes.

In section 12.5, Ito's stochastic integral and the corresponding stochastic differential equations are introduced. This is followed by a heuristic derivation
of the formula for change of variable. A brief treatment is given of Stratonovich's integral which leads to simpler rules of calculus.
Sections 12.6 and 12.7 concern certain aspects of modelling with stochastic differential equations. The connection between the analytical method and the direct method involving stochastic differential equations is given, followed by examples drawn from theoretical population biology, mathematical economics and theoretical neurobiology.
Finally, a brief discussion is undertaken of various practical considerationssolution of stochastic differential equations by simulation, numerical methods of solution of equations for transition probabilities, and estimation of parameters.

Both Chapters 11 and 12 end with sets of exercises, some of those in Chapter 12 being suitable for project work.

It is a pleasure to thank the following colleagues for helpful suggestions with respect to the new material: Professors Joseph Gani and Christopher C. Heyde of the Institute of Advanced Studies in Canberra; and Professor James A. Koziol of Scripps Research Institute, La Jolla.

Henry C. Tuckwell
Versailles, June 1994

Preface to the first edition

This book concerns applications of probability theory. It has been written in the hope that the techniques presented will be useful for problems in diverse areas. A majority of the examples come from the biological sciences but the concepts and techniques employed are not limited to that field. To illustrate, birth and death processes (Chapter 9) have applications to chemical reactions, and branching processes (Chapter 10) have applications in physics but neither of these specific applications is developed in the text.

The book is based on an undergraduate course taught to students who have had one introductory course in probability and statistics. Hence it does not contain a lengthy introduction to probability and random variables, for which there are many excellent books. Prerequisites also include an elementary knowledge of calculus, including first-order differential equations, and linear algebra.

The basic plan of the book is as follows.
Chapter 1: a review of basic probability theory;
Chapters 2-5: random variables and their applications;
Chapter 6: sequences of random variables and concepts of convergence;
Chapters 7-10: theory and properties of basic random processes.
The outline is now given in more detail.
Chapter 1 contains a brief review of some of the basic material which will be needed in later chapters; for example, the basic probability laws, conditional probability, change of variables, etc. It is intended that Chapter 1 be used as a reference rather than a basis for instruction. Students might be advised to study this chapter as the material is called upon.

Chapter 2 illustrates the interplay between geometry and probability. It begins with an historically interesting problem and then addresses the problem of finding the density of the distance between two randomly chosen points. The second such case, when the points occur within a circle, is not easy but the result is useful.

Chapter 3 begins with the properties of the hypergeometric distribution. An important application is developed, namely the estimation of animal populations by the capture-recapture method. The Poisson distribution is
then reviewed and one-dimensional Poisson point processes introduced together with some of their basic properties. There follows a generalization to two dimensions, which enables one to study spatial distributions of plants and to develop methods to estimate their population numbers. The chapter concludes with the compound Poisson distribution which is illustrated by application to a neurophysiological model.

Chapter 4 introduces several of the basic concepts of reliability theory. The relevant properties of the standard failure time distributions are given. The interesting spare parts problem is next and the concluding sections discuss methods for determining the reliability of complex systems.

Chapter 5 commences by explaining the usefulness of computer simulation. There follows an outline of the theory of random number generation using the linear congruential method and the probability integral transformation. The polar method for normal random variables is given. Finally, tests for the distribution and independence properties of random numbers are described.

Chapter 6 deals with sequences of random variables. Some methods for studying convergence in distribution and convergence in probability are developed. In particular, characteristic functions and Chebyshev's inequality are the main tools invoked. The principal applications are to proving a central limit theorem and a weak law of large numbers. Several uses for the latter are detailed.

Chapter 7 starts with the definition of random (siochastic) processes and introduces the important Markov property. The rest of the chapter is mainly concerned with the elementary properties of simple random walks. Included are the unrestricted process and that in the presence of absorbing barriers. For the latter the probability of absorption and the expected time of absorption are determined using the difference equation approach. The concluding section briefly introduces the Wiener process, so fundamental in advanced probability. The concept of martingale and its usefulness are discussed in the exercises.

Chapter 8 is on Markov chains. However, the theory is motivated by examples in population genetics, so the Hardy-Weinberg principle is discussed first. Elementary general Markov chain theory is developed for absorbing Markov chains and those with stationary distributions.

Chapter 9 concerns birth and death processes, which are motivated by demographic considerations. The Poisson process is discussed as a birth process because of its fundamental role. There follow the properties of the Yule process, a simple death process and the simple birth and death process. The treatment of the latter only states rather than derives the equation satisfied by the probability generating function but this enables one to derive the satisfying result concerning the probability of extinction.

Chapter 10 contains a brief introduction to the theory of branching processes, focusing on the standard Galton-Watson process. It is motivated
by the phenomenon of cell division. The mean and variance are derived and the probability of extinction determined.

It should be mentioned that references are sometimes not to the latest editions of books; for example, those of Hoel, Pielou, Strickberger and Watson.

In the author's view there is ample material for a one-quarter or onesemester course. In fact some material might have to be omitted in such a course. Alternatively, the material could be presented in two courses, with a division at Chapter 6, supplemented by further reading in specialist areas (e.g. ecology, genetics, reliability, psychology) and project work (e.g. simulation).

I thank the many Monash students who have taken the course in applied probability on which this book is based. In particular, Derryn Griffiths made many useful suggestions. It is also a pleasure to acknowledge the helpful criticisms of Dr James A. Koziol of Scripps Clinic and Research Foundation, La Jolla; and Drs Fima Klebaner and Geoffrey A. Watterson at Monash University. I am also grateful to Barbara Young for her excellent typing and to Jean Sheldon for her splendid artwork.

Henry C. Tuckwell
Los Angeles, April 1987

1

A review of basic probability theory

This is a book about the applications of probability. It is hoped to convey that this subject is both a fascinating and important one. The examples are drawn mainly from the biological sciences but some originate in the engineering, physical, social and statistical sciences. Furthermore, the techniques are not limited to any one area.

The reader is assumed to be familiar with the elements of probability or to be studying it concomitantly. In this chapter we will briefly review some of this basic material. This will establish notation and provide a convenient reference place for some formulas and theorems which are needed later at various points.

1.1 PROBABILITY AND RANDOM VARIABLES

When an experiment is performed whose outcome is uncertain, the collection of possible elementary outcomes is called a sample space, often denoted by Ω. Points in Ω, denoted in the discrete case by $\omega_{i}, i=1,2, \ldots$ have an associated probability $P\left\{\omega_{i}\right\}$. This enables the probability of any subset A of Ω, called an event, to be ascertained by finding the total probability associated with all the points in the given subset:

$$
P\{A\}=\sum_{\omega_{1} \varepsilon A} P\left\{\omega_{i}\right\}
$$

We always have

$$
0 \leqslant P\{A\} \leqslant 1
$$

and in particular $P\{\Omega\}=1$ and $P\{\varnothing\}=0$, where \varnothing is the empty set relative to Ω.

A random variable is a real-valued function defined on the elements of a sample space. Roughly speaking it is an observable which takes on numerical values with certain probabilities.

Discrete random variables take on finitely many or countably infinitely many values. Their probability laws are often called probability mass functions. The following discrete random variables are frequently encountered.

2 Basic probability theory

Binomial

A binomial random variable X with parameters n and p has the probability law

$$
\begin{align*}
p_{k}=\operatorname{Pr}\{X=k\} & =\binom{n}{k} p^{k} q^{n-k} \tag{1.1}\\
& \doteq b(k ; n, p), \quad k=0,1,2, \ldots, n
\end{align*}
$$

where $0 \leqslant p \leqslant 1, q=1-p$ and n is a positive integer (\doteq means we are defining a new symbol). The binomial coefficients are

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

being the number of ways of choosing k items, without regard for order, from n distinguishable items.

When $n=1$, so we have

$$
\operatorname{Pr}\{X=1\}=p=1-\operatorname{Pr}\{X=0\}
$$

the random variable is called Bernoulli.
Note the following.

Convention

Random variables are always designated by capital letters (e.g. X, Y) whereas symbols for the values they take on, as in $\operatorname{Pr}\{X=\boldsymbol{k}\}$, are always designated by lowercase letters.

The converse, however, is not true. Sometimes we use capital letters for nonrandom quantities.

Poisson

A Poisson random variable with parameter $\lambda>0$ takes on non-negative integer values and has the probability law

$$
\begin{equation*}
p_{k}=\operatorname{Pr}\{X=k\}=\frac{e^{-\lambda} \lambda^{k}}{k!}, \quad k=0,1,2, \ldots . \tag{1.2}
\end{equation*}
$$

For any random variable the total probability mass is unity. Hence if p_{k} is given by either (1.1) or (1.2),

$$
\sum_{k} p_{k}=1
$$

where summation is over the possible values k as indicated.

For any random variable X, the distribution function is

$$
F(x)=\operatorname{Pr}\{x \leqslant x\}, \quad-\infty<x<\infty .
$$

Continuous random variables take on a continuum of values. Usually the probability law of a continuous random variable can be expressed through its probability density function, $f(x)$, which is the derivative of the distribution function. Thus

$$
\begin{align*}
f(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} F(x) \\
& =\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\operatorname{Pr}\{X \leqslant x+\Delta x\}-\operatorname{Pr}\{X \leqslant x\}}{\Delta x} \tag{1.3}\\
& =\lim _{\Delta x \rightarrow 0} \frac{\operatorname{Pr}\{x<X \leqslant x+\Delta x\}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\operatorname{Pr}\{X \in(x, x+\Delta x]\}}{\Delta x}
\end{align*}
$$

The last two expressions in (1.3) often provide a convenient prescription for calculating probability density functions. Often the latter is abbreviated to p.d.f. but we will usually just say 'density'.

If the interval $\left(x_{1}, x_{2}\right)$ is in the range of X then the probability that X takes values in this interval is obtained by integrating the probability density over (x_{1}, x_{2}).

$$
\operatorname{Pr}\left\{x_{1}<x<x_{2}\right\}=\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x .
$$

The following continuous random variables are frequently encountered.

Normal (or Gaussian)

A random variable with density

$$
\begin{align*}
f(x)= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}, \tag{1.4}
\end{align*} \quad-\infty<x<\infty,
$$

is called normal. The quantities μ and σ^{2} are the mean and variance (elaborated upon below) and such a random variable is often designated
$N(\mu, \sigma)$. If $\mu=0$ and $\sigma=1$ the random variable is called a standard normal random variable, for which the usual symbol is Z.

Uniform

A random variable with constant density

$$
f(x)=\frac{1}{b-a}, \quad-\infty<a \leqslant x \leqslant b<\infty,
$$

is said to be uniformly distributed on (a, b) and is denoted $U(a, b)$. If $a=0, b=1$ the density is unity on the unit interval,

$$
f(x)=1, \quad 0 \leqslant x \leqslant 1
$$

and the random variable is designated $U(0,1)$.

Gamma

A random variable is said to have a gamma density (or gamma distribution) with parameters λ and ρ if

$$
f(x)=\frac{\lambda(\lambda x)^{\rho-1} e^{-\lambda x}}{\Gamma(\rho)}, \quad x \geqslant 0 ; \quad \lambda, \rho>0 .
$$

The quantity $\Gamma(\rho)$ is the gamma function defined as

$$
\Gamma(\rho)=\int_{0}^{\infty} x^{\rho-1} e^{-x} \mathrm{~d} x, \quad \rho>0
$$

When $\rho=1$ the gamma density is that of an exponentially distributed random variable

$$
f(x)=\lambda e^{-\lambda x}, \quad x>0
$$

For continuous random variables the density must integrate to unity:

$$
\int f(x) \mathrm{d} x=1
$$

where the interval of integration is the whole range of values of X.

1.2 MEAN AND VARIANCE

Let X be a discrete random variable with

$$
\operatorname{Pr}\left\{X=x_{k}\right\}=p_{k}, \quad k=1,2, \ldots
$$

The mean, average or expectation of X is

$$
E(X)=\sum_{k} p_{k} x_{k}
$$

For a binomial random variable $E(X)=n p$ whereas a Poisson random variable has mean $E(X)=\lambda$.

For a continuous random variable with density $f(x)$,

$$
E(X)=\int x f(x) \mathrm{d} x
$$

If X is normal with density given by (1.4) then $E(X)=\mu$; a uniform (a, b) random variable has mean $E(X)=\frac{1}{2}(a+b)$; and a gamma variate has mean $E(X)=\rho / \lambda$.

The nth moment of X is the expected value of X^{n} :

$$
E\left(X^{n}\right)= \begin{cases}\sum_{k} p_{k} x_{k}^{n} & \text { if } X \text { is discrete } \\ \int^{n} x^{n} f(x) \mathrm{d} x & \text { if } X \text { is continuous. }\end{cases}
$$

If $n=2$ we obtain the second moment $E\left(X^{2}\right)$. The variance, which measures the degree of dispersion of the probability mass of a random variable about its mean, is

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E(X))^{2}\right] \\
& =E\left(X^{2}\right)-E^{2}(X)
\end{aligned}
$$

The variances of the above-mentioned random variables are:
binomial, npq; Poisson, λ; normal, σ^{2}; uniform, $\frac{1}{12}(b-a)^{2}$; gamma, ρ / λ^{2}.
The square root of the variance is called the standard deviation.

1.3 CONDITIONAL PROBABILITY AND INDEPENDENCE

Let A and B be two random events. The conditional probability of A given B is, provided $\operatorname{Pr}\{B\} \neq 0$,

$$
\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A B\}}{\operatorname{Pr}\{B\}}
$$

where $A B$ is the intersection of A and B, being the event that both A and B occur (sometimes written $A \cap B$). Thus only the occurrences of A which are simultaneous with those of B are taken into account. Similarly, if X, Y are random variables defined on the same sample space, taking on values $x_{i}, i=1,2, \ldots, y_{i} j=1,2, \ldots$, then the conditional probability that $X=x_{i}$ given $Y=y_{j}$ is, if $\operatorname{Pr}\left\{Y=y_{j}\right\} \neq 0$.

$$
\operatorname{Pr}\left\{X=x_{i} \mid Y=y_{j}\right\}=\frac{\operatorname{Pr}\left\{X=x_{i}, Y=y_{j}\right\}}{\operatorname{Pr}\left\{Y=y_{j}\right\}},
$$

the comma between $X=x_{i}$ and $Y=y_{j}$ meaning 'and'.
The conditional expectation of X given $Y=y_{j}$ is

$$
E\left(X \mid Y=y_{j}\right)=\sum_{i} x_{i} \operatorname{Pr}\left\{X=x_{i} \mid Y=y_{j}\right\} .
$$

The expected value of $X Y$ is

$$
E(X Y)=\sum_{i, j} x_{i} y_{j} \operatorname{Pr}\left\{X=x_{i}, Y=y_{j}\right\},
$$

and the covariance of X, Y is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =E(X Y)-E(X) E(Y) .
\end{aligned}
$$

The covariance is a measure of the linear dependence of X on Y.
If X, Y are independent then the value of Y should have no effect on the probability that X takes on any of its values. Thus we define X, Y as independent if

$$
\operatorname{Pr}\left\{X=x_{i} \mid Y=y_{j}\right\}=\operatorname{Pr}\left\{X=x_{i}\right\}, \quad \text { all } i, j .
$$

Equivalently X, Y are independent if

$$
\operatorname{Pr}\left\{X=x_{i}, Y=y_{j}\right\}=\operatorname{Pr}\left\{X=x_{i}\right\} \operatorname{Pr}\left\{Y=y_{j}\right\} .
$$

with a similar formula for arbitrary independent events.
Hence for independent random variables

$$
E(X Y)=E(X) E(Y),
$$

so their covariance is zero. Note, however, that $\operatorname{Cov}(X, Y)=0$ does not always imply X, Y are independent. The covariance is often normalized by defining the correlation coefficient

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

where σ_{X}, σ_{Y} are the standard deviations of $X, Y, \rho_{X Y}$ is bounded above and below by

$$
-1 \leqslant \rho_{X Y} \leqslant 1
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be mutually independent random variables. That is,

$$
\begin{aligned}
& \operatorname{Pr}\left\{X_{1} \in A_{1}, X_{2} \in A_{2}, \ldots, X_{n} \in A_{n}\right\} \\
& \quad=\operatorname{Pr}\left\{X_{1} \in A_{1}\right\} \operatorname{Pr}\left\{X_{2} \in A_{2}\right\} \ldots \operatorname{Pr}\left\{X_{n} \in A_{n}\right\},
\end{aligned}
$$

for all appropriate sets A_{1}, \ldots, A_{n}. Then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

so that variances add in the case of independent random variables. We also note the formula

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
$$

which holds if X, Y are independent. If $X_{1}, X_{2}, \ldots, X_{n}$ are independent identically distributed (abbreviated to i.i.d.) random variables with $E\left(X_{1}\right)=\mu$, $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, then

$$
\mathrm{E}\left(\sum_{i=1}^{n} X_{i}\right)=\mu n ; \quad \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=n \sigma^{2} .
$$

If X is a random variable and $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are i.i.d. with the distribution of X, then the collection $\left\{X_{k}\right\}$ is called a random sample of size n for X. Random samples play a key role in computer simulation (Chapter 5) and of course are fundamental in statistics.

1.4 LAW OF TOTAL PROBABILITY

Let Ω be a sample space for a random experiment and let $\left\{A_{i}, i=1,2, \ldots\right\}$ be a collection of nonempty subsets of Ω such that
(i) $A_{i} A_{j}=\varnothing, \quad i \neq j$;
(ii) $\cup_{i} A_{i}=\Omega$.
(Here \varnothing is the null set, the impossible event, being the complement of Ω.) Condition (i) says that the A_{i} represent mutually exclusive events. Condition (ii) states that when an experiment is performed, at least one of the A_{i} must be observed. Under these conditions the sets or events $\left\{A_{i}, i=1,2, \ldots\right\}$ are said to form a partition or decomposition of the sample space.

8 Basic probability theory

The law or theorem of total probability states that for any event (set) B,

$$
\operatorname{Pr}\{B\}=\sum_{i} \operatorname{Pr}\left\{B \mid A_{i}\right\} \operatorname{Pr}\left\{A_{i}\right\}
$$

A similar relation holds for expectations. By definition the expectation of X conditioned on the event A_{i} is

$$
E\left(X \mid A_{i}\right)=\sum_{k} x_{k} \operatorname{Pr}\left\{X=x_{k} \mid A_{i}\right\},
$$

where $\left\{x_{k}\right\}$ is the set of possible values of X. Thus

$$
\begin{aligned}
E(X) & =\sum_{k} x_{k} \operatorname{Pr}\left\{X=x_{k}\right\} \\
& =\sum_{k} x_{k} \sum_{i} \operatorname{Pr}\left\{X=x_{k} \mid A_{i}\right\} \operatorname{Pr}\left\{A_{i}\right\} \\
& =\sum_{i} \operatorname{Pr}\left\{A_{i}\right\} \sum_{k} x_{k} \operatorname{Pr}\left\{X=x_{k} \mid A_{i}\right\} .
\end{aligned}
$$

Thus

$$
E(X)=\sum_{i} E\left(X \mid A_{i}\right) \operatorname{Pr}\left\{A_{i}\right\}
$$

which we call the law of total probability applied to expectations.
We note also the fundamental relation for any two events A, B in the same sample space:

$$
\operatorname{Pr}\{A \cup B\}=\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}-\operatorname{Pr}\{A B\}
$$

where $A \cup B$ is the union of A and B, consisting of those points which are in A or in B or in both A and B.

1.5 CHANGE OF VARIABLES

Let X be a continuous random variable with distribution function F_{X} and density f_{X}. Let

$$
y=g(x)
$$

be a strictly increasing function of x (see Fig. 1.1) with inverse function

$$
x=h(y) .
$$

Then

$$
Y=g(X)
$$

is a random variable which we let have distribution function F_{Y} and density \int_{Y}.

Figure $1.1 g(x)$ is a strictly increasing function of x.
It is easy to see that $X \leqslant x$ implies $Y \leqslant g(x)$. Hence we arrive at

$$
\operatorname{Pr}\{X \leqslant x\}=\operatorname{Pr}\{Y \leqslant g(x)\}
$$

By the definition of distribution functions this can be written

$$
\begin{equation*}
F_{X}(x)=F_{Y}(g(x)) . \tag{1.5}
\end{equation*}
$$

Therefore

$$
F_{Y}(y)=F_{X}(h(y))
$$

On differentiating with respect to y we obtain, assuming that h is differentiable,

$$
\frac{\mathrm{d} F_{Y}}{\mathrm{~d} y}=\left.\frac{\mathrm{d} F_{X}(x)}{\mathrm{d} x}\right|_{h(y)} \frac{\mathrm{d} h}{\mathrm{~d} y}
$$

or in terms of densities

$$
\begin{equation*}
f_{Y}(y)=f_{X}(h(y)) \frac{\mathrm{d} h}{\mathrm{~d} y} \tag{1.6}
\end{equation*}
$$

If y is a strictly decreasing function of x we obtain

$$
\operatorname{Pr}\{X \leqslant x\}=\operatorname{Pr}\{Y \geqslant g(x)\} .
$$

Working through the steps between (1.5) and (1.6) in this case gives

$$
\begin{equation*}
f_{Y}(y)=f_{X}(h(y))\left(-\frac{\mathrm{d} h}{\mathrm{~d} y}\right) \tag{1.7}
\end{equation*}
$$

Both formulas (1.6) and (1.7) are covered by the single formula

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{\mathrm{d} h}{\mathrm{~d} y}\right|
$$

where | | denotes absolute value. Cases where g is neither strictly increasing nor strictly decreasing require special consideration.

1.6 TWO-DIMENSIONAL RANDOM VARIABLES

Let X, Y be random variables defined on the same sample space. Then their joint distribution function is

$$
F_{X Y}(x, y)=\operatorname{Pr}\{X \leqslant x, Y \leqslant y\} .
$$

The mixed partial derivative of $F_{X Y}$, if it exists, is the joint density of X and Y :

$$
f_{X Y}(x, y)=\frac{\partial^{2} F_{X Y}}{\partial x \partial y} .
$$

As a rough guide we have, for small enough $\Delta x, \Delta y$,

$$
\int_{X Y}(x, y) \Delta x \Delta y=\operatorname{Pr}\{X \in(x, x+\Delta x], Y \in(y, y+\Delta y]\} .
$$

If X, Y are independent then their joint distribution function and joint density function factor into those of the individual random variables:

$$
\begin{aligned}
F_{X Y}(x, y) & =F_{X}(x) F_{Y}(y), \\
f_{X Y}(x, y) & =f_{X}(x) f_{Y}(y) .
\end{aligned}
$$

In particular, if X, Y are independent standard normal random variables, $f_{X Y}(x, y)=\left(\frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-x^{2}}{2}\right\}\right)\left(-\frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-y^{2}}{2}\right\}\right), \quad-\infty<x, y<\infty$,
which can be written

$$
\begin{equation*}
\int_{X \gamma}(x, y)=\frac{1}{2 \pi} \exp \left\{-\frac{1}{2}\left(x^{2}+y^{2}\right)\right\} \tag{1.8}
\end{equation*}
$$

In fact if the joint density X, Y is as given by (1.8) we may conclude that X, Y are independent standard normal random variables.

Change of variables

Let U, V be random variables with joint density $\int_{U V}(u, v)$. Suppose that the one-one mappings

$$
\begin{aligned}
X & =G_{1}(U, V) \\
Y & =G_{2}(U, V)
\end{aligned}
$$

transform U, V to the pair of random variables X, Y. Let the inverse transformations be

$$
\begin{aligned}
& U=H_{1}(X, Y) \\
& V=H_{2}(X, Y) .
\end{aligned}
$$

Then the joint density of X, Y is given by

$$
f_{X Y}(x, y)=f_{U V}\left(H_{1}(x, y), H_{2}(x, y)\right) J J(x, y)
$$

where $J(x, y)$ is the Jacobian of the inverse transformation given by

$$
J(x, y)=\left|\begin{array}{cc}
\frac{\partial H_{1}}{\partial x} & \frac{\partial H_{1}}{\partial y} \\
\frac{\partial H_{2}}{\partial x} & \frac{\partial H_{2}}{\partial y}
\end{array}\right|
$$

and $|J|$ is its absolute value. A proof of this result is given in Blake (1979).

1.7 HYPOTHESIS TESTING - THE χ^{2} GOODNESS OF FIT TEST

In testing the validity of a stochastic (also called random, probabilistic) model it is often necessary to perform statistical tests on data. The basic idea is to consider a random variable which can be observed when the random experiment of interest is performed. Such a random variable is called a test statistic. If under a given hypothesis values of a test statistic occur (when the experiment is performed) which are considered unlikely, one is inclined to reject that hypothesis.

χ^{2} random variables

Apart from a test for independence developed in Section 5.6, the only statistical test which is used in this book is called the χ^{2} goodness of fit test. We first define χ^{2} random variables and then see how these are useful in testing hypotheses about probability distributions.

Definition $\quad X_{n}$ is a χ^{2}-random variable with \boldsymbol{n} degrees of freedom if its density is

$$
\begin{equation*}
f_{n}(x)=\frac{1}{2^{n / 2} \Gamma(n / 2)} x^{n / 2-1} e^{-x / 2}, \quad x>0 ; \quad n=1,2, \ldots \tag{1.9}
\end{equation*}
$$

The mean and variance of such a random variable are given by

$$
\begin{aligned}
E\left(X_{n}\right) & =n \\
\operatorname{Var}\left(X_{n}\right) & =2 n .
\end{aligned}
$$

Also, it may be shown that the density (1.9) is that of a sum of squares of n independent standard normal random variables $Z_{i}, i=1, \ldots, n$:

$$
X_{n}=\sum_{i=1}^{n} Z_{i}^{2}
$$

The χ^{2} statistic

Suppose that when a random experiment is performed, observations may fall into any of n distinct categories. Assuming the truth of a particular hypothesis, H_{0}, let the probability be p_{i} that any observation falls in category i. If there are N observations altogether, the expected number, under H_{0}, that fall in category i is $N p_{i}$. We may compare this with the number, N_{i}, of observations that actually do fall in category $i\left(N_{i}\right.$ is random, N is not). To obtain an overall view of how well the observed data fits the model $\left(H_{0}\right)$ we compute the sum of the n squares of the deviations of the N_{i} from the $N p_{i}$, each term in the sum being divided by the expected number $N p_{i}$. Thus the goodness of fit test statistic is the random variable

$$
D_{n}=\sum_{i=1}^{n} \frac{\left(N_{i}-N p_{i}\right)^{2}}{N p_{i}}
$$

When N is large the random variable D_{n} has approximately the same probability distribution as X, a χ^{2}-random variable whose number of degrees of freedom is determined as described below. We therefore put

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{n} \frac{\left(n_{i}-N p_{i}\right)^{2}}{N p_{i}} \tag{1.10}
\end{equation*}
$$

where n_{i} is the observed value of N_{i}, and call (1.10) the value of the χ^{2}-statistic.
If there is close agreement between the observed values $\left(n_{i}\right)$ and those predicted under $H_{0}\left(N p_{i}\right)$, then the values of $\left(N_{i}-N p_{i}\right)^{2}$ and hence D_{n} will be small. Large observed values of the χ^{2}-statistic therefore make us inclined to think that H_{0} is false.

Critical values of X_{n}, denoted by $\chi_{n . \alpha}^{2}$, are defined as follows:

$$
\operatorname{Pr}\left\{X_{n}>\chi_{n, \alpha}^{2}\right\}=\alpha
$$

If the value of χ^{2} obtained in an experiment is less than the critical value, it is argued that the differences between the values of N_{i} and $N p_{i}$ are not large enough to warrant rejecting H_{0}. On the other hand, if χ^{2} exceeds the critical value, H_{0} is considered unlikely and is rejected. Often we put $\alpha=.05$, which
means that 5% of the time, values of χ^{2} greater than the critical value occur even when H_{0} is true. That is, there is a 5% chance that we will (incorrectly) reject H_{0} when it is true.

In applying the above χ^{2} goodness of fit test, the number of degrees of freedom is given by the number n, of "cells", minus the number of linear relations between the N_{i}. (There is at least one, $\sum N_{i}=N$.) The number of degrees of freedom is reduced further by one for each estimated parameter needed to describe the distribution under H_{0}.

It is recommended that the expected numbers of observations in each category should not be less than 5 , but this requirement can often be relaxed. A table of critical values of χ^{2} is given in the Appendix, p. 219.

For a detailed account of hypothesis testing and introductory statistics generally, see for example Walpole and Myers (1985), Hogg and Craig (1978) and Mendenhall, Scheaffer and Wackerly (1981). For full accounts of basic probability theory see also Chung (1979) and Feller (1968). Two recent books on applications of probability at an undergraduate level are those of Ross (1985) and Taylor and Karlin (1984).

1.8 NOTATION

Litile o

A quantity which depends on Δx but vanishes more quickly than Δx as $\Delta x \rightarrow 0$ is said to be 'little o of Δx ', written o (Δx). Thus for example $(\Delta x)^{2}$ is o (Δx) because $(\Delta x)^{2}$ vanishes more quickly than Δx. In general, if

$$
\lim _{\Delta x \rightarrow 0} \frac{g(\Delta x)}{\Delta x}=0
$$

we write

$$
g(\Delta x)=o(\Delta x)
$$

The little o notation is very useful to abbreviate expressions in which terms will not contribute after a limiting operation is taken. To illustrate, consider the Taylor expansion of $e^{\Delta x}$:

$$
\begin{aligned}
e^{\Delta x} & =1+\Delta x+\frac{(\Delta x)^{2}}{2!}+\frac{(\Delta x)^{3}}{3!}+\cdots \\
& =1+\Delta x+\mathrm{o}(\Delta x)
\end{aligned}
$$

We then have

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x} e^{x}\right|_{x=0}=\lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x}-1}{\Delta x}
$$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \frac{1+\Delta x+o(\Delta x)-1}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}+\frac{o(\Delta x)}{\Delta x} \\
& =1 .
\end{aligned}
$$

Equal by definition
As seen already, when we write, for example,

$$
q \doteq(1-p)
$$

we are defining the symbol q to be equal to $1-p$. This is not to be confused with approximately equal to, which is indicated by \simeq.

Unit step function
The unit (or Heaviside) step function located at x_{0} is

$$
H\left(x-x_{0}\right)= \begin{cases}0, & x<x_{0}, \\ 1, & x \geqslant x_{0} .\end{cases}
$$

Thus $H\left(x-x_{0}\right)$ has a jump of +1 at x_{0} and it is right-continuous.

i.i.d.

As seen already, the letters i.i.d. stand for independent and identically distributed.

Probability

Usually the probability of an event A is written

$$
\operatorname{Pr}\{A\}
$$

but occasionally we just write

$$
P\{A\} .
$$

REFERENCES

Blake, I.F. (1979). An Introduction to Applied Probability. Wiley, New York.
Chung, K.L. (1979). Elementary Probability Theory. Springer-Verlag, New York.
Feller, W. (1968). An Introduction to Probability Theory and its Applications. Wiley, New York.
Hogg, R.V. and Craig, A.T. (1978). Introduction to Mathematical Statistics. Macmillan, New York.
Mendenhall, W., Scheaffer, R.L. and Wackerly, D.D. (1981). Mathematical Statistics with Applications. Duxbury, Boston.

