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Preface

Since their inception in 1986, the goal of the MECAMAT International Seminars has been to 
promote a multidisciplinary approach in the Mechanics of Materials and to bring together scientists 
from the academic world and industry in order to address specific topics in this field from both a 
fundamental and an applied perspective. The previous seminars were held in France on the 
following themes: Local Approach of Fracture (Moret-sur-Loing, 1986), High Temperature Fracture 
and Mechanisms (Dourdan, 1987), Inelastic Behaviour of Solids, Models and Utilization (Besan- 
9on, 1988), Mechanics and Mechanisms of Damage in Composites and Multimaterials (Saint- 
Etienne, 1989).

The present seminar, which is the fifth in the series, has been jointly organized by MECAMAT 
(The French Group for the Mechanics of Materials) and LPMTM (Laboratoire des proprietes 
mecaniques et thermodynamiques des materiaux -  CNRS, Universite Paris Nord, Villetaneuse). It 
took place at Fontainebleau (France) from 7 to 9 August 1991 and covered topics involving the 
theory of large plastic deformations of metallic materials and its applications to metal forming.

In so far as large deformations are concerned, the following subjects have been addressed:
-  Single crystals and crystalline aggregates. Micro-macro transition: hardening and flow rules 

for single crystals; modelling the plastic behaviour of multicrystals and crystalline aggregates; 
plastic spin.

-  Plastic heterogeneities and localization: microstructural organization at large strains; shear 
banding; strain localization.

-  Constitutive modelling and model identification: phenomenological and micromechanical 
models taking into account microstructure, texture and damage evolution; mechanical analysis of 
homogeneous and inhomogeneous tests; application to structural materials.

-  Modelling and simulation o f metal forming: modelling and simulation of cold and hot forming; 
experimental validation of the results.

The proceedings offer a genuine view on the synergism achieved by combining microstructural 
characterization and understanding, mechanical modelling and experiments, numerical analysis and 
computation.

The editors are grateful to all members of the International Scientific Committee for their help in 
reviewing and improving the manuscripts. They are particularly indebted to their colleagues
B. Bacroix, M. Gasperini and E Gilormini for their significant contribution to the editing of these 
proceedings.

The Editors
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Elasto-viscoplasticity: Constitutive m odeling and deformation processing

L.Anand
Massachusetts Institute of Technology, Cambridge, Mass., USA

ABSTRACT: Recent progress in isotropic and anisotropic elasto-viscoplastic constitutive models for 
poly crystalline metals is reviewed, and the application of these constitutive models to some simple 
forming operations is described.

1 INTRODUCTION

The object of this paper is to briefly review some 
recent progress in constitutive modeling for 
deformation processing. The work reported here 
has been performed in collaboration with my 
(former and current) students Stuart Brown, 
Allen Lush, Gustavo Weber, Curt Bronkhorst, 
Antonios Zavaliangos, and Surya Kalidindi, as 
part of their doctoral dissertations. The 
publications on which this brief review is based 
are listed in the section on references. In writing 
this paper I will quote freely from the papers 
referenced, and keep references to the related 
work of others in the literature at a minimal level; 
an extensive bibliography may be found in the 
references cited.
The simplest, and most commonly used 
phenomenological theory for infinitesimal 
elastic-plastic deformations of polycrystalline 
metals at absolute temperatures less than 
approximately one-third the melting temperature 
of a material in degrees absolute, is the classical, 
rate-independent, flow theory with isotropic 
hardening. This classical model has been 
generalized to a finite-deformation, 
frame-indifferent form by Hill (e.g. 1967). For a 
recent review of this generalization see Hughes 
(1984). Some major limitations of this widely 
used finite-deformation constitutive model are:

tensor into elastic and plastic parts, in 
which the elastic stretching is related to the 
Jaumann derivative of the stress. In the 
abscence of plastic flow, this leads to a 
hypoelastic relation for the stress. Although 
the hypoelastic form of the constitutive 
equation for stress is a good approximation 
for metals under situations where elastic 
strains remain small, as has long been 
recognized, in the absence of plastic flow 
hypoelastic equations for stress lead to 
dissipation in closed cycles of deformation.

2. The notion of rate-independence of plastic 
response is only a convenient approximation 
at low homologous temperatures. Even at 
low temperatures, plastic flow due to 
dislocation motion is inherently
rate-dependent.

3. Although the “finite deformation” 
constitutive model is formulated within a 
rigorous kinematical framework, it is in 
essence an extension of the classical small 
strain “isotropic hardening” plasticity 
model, and is accordingly expected to be 
useful for describing the deformation 
behavior of initially isotropic materials up 
to deformation levels where significant 
anisotropy of the metal has not developed.

1. The constitutive model is based on an 
additive decomposition of the stretching

3

In what follows we review our recent work on 
constitutive equations for polycrystalline metallic 
materials which overcome these shortcomings.
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Fig. 1 Correlation of the constitutive model with isothermal
constant true strain rate and strain rate jump experiments

We will consider elastic-plastic constitutive 
models with hyperelastic relations for the stress. 
The plastic part of our constitutive models will 
be based on the following physical ideas:

• Plastic deformation due to dislocation mo-
tion is inherently rate-dependent.

• The instantaneous response of a material is 
determined by its current state. The cur-
rent state (which is produced by the entire 
past history of deformation undergone by

the material) may be assumed to be repre-
sentable by a small number of macroscopic 
internal variables, and their evolution to 
be representable by rate equations.

In particular we shall consider two constitu-
tive models:

1. A simple isotropic model for deformations 
at high homologous temperatures. This 
model neglects the inherently anisotropic 
nature of metals, and employs (just as in

4



Fig.2 Predicted and actual stress response for (a) double jump 
experiments and (b) strain rate decrement experiment

the classical rate-indepen dent, isotropic hard 
ening theory) a single scalar internal vari-
able to model an “isotropic” deformation 
resistance offered by the material. This 
constitutive model is expected to be valid 
only for initially isotropic materials sub-
jected to deformation levels where signifi-
cant texturing has not developed.

2. A simple anisotropic poly crystal model for 
deformations at low homologous tempera-
tures. This model accounts for the poly-
crystalline nature of metals and accounts 
for the dominant mechanism of inelastic 
deformation by crystallographic slip at these 
temperatures. The internal variables in 
this model are the orientations of the slip 
systems, and the slip system deformation 
resistances.

These elasto-viscoplastic constitutive models 
for (1) the isotropic idealization of inherently 
anisotropic poly crystalline materials, and 
(2) anisotropic response, represent significant im-
provements over constitutive models currently 
used to simulate forming operations.

We use the following notation: F, deforma-
tion gradient; L, velocity gradient; D, stretch-
ing; W , spin; T , Cauchy stress; 0, absolute tem-
perature.

2 ISOTROPIC MODEL

The simplest, and most commonly used phe-
nomenological model for infinitesimal elastic-plastic 
deformations is the classical J2 flow theory with 
isotropic hardening. The set of constitutive equa-
tions for isotropic elastic-viscoplastic solids con-
sidered here (excerpted from papers by Anand, 
1979, 1982, 1985, 1986) is essentially a general-
ization of this widely used theory to model fi-
nite elastic and plastic deformations, and rate- 
dependence of plastic flow. This set of constitu-
tive equations consists of:

• The constitutive equation for stress:

T* =  £ [ E * ] - n  (0 -6o),  (1)

E* =  lnU", T* =  R*t  {(detU*)T} R% (2)

C = 2pX  + (/c — (2/3)^) 1(8)1, n = 3 / c a l ,
(3)

where E* is the logarithmic elastic strain, T* is 
the stress measure which is elastic work conju-
gate to this strain measure, C is the fourth or-
der isotropic elasticity tensor, with p = p($) and 
/c = k{9) elastic shear and bulk moduli, respec-
tively, a = a(0) is the coefficient of thermal ex-
pansion, X  the fourth order symmetric identity 
tensor, 1 is the second order identity tensor, and 
0O is a reference temperature. Also, U* and R* 
are the elastic right stretch and elastic rotation 
tensors, respectively, in the polar decomposition

5



Fig.3 Schematic of the plane-strain forging process converting a billet from 
a circular to a cruciform cross-section

of an elastic deformation gradient F*. The elas-
tic deformation gradient is defined in terms of 
the total deformation gradient F and a plastic 
deformation gradient F p, with d e tF p = 1, by

F* =  F F p“\  det F* > 0. (4)

The plastic deformation gradient is in turn 
given by the flow rule prescribed below.

• The evolution equation for F p — the “flow 
rule”:

F p =  Lp F p, (5)

with

D” =  sym L” =  DP(T*, 9, s) =  ^3 /2  t” N, (6) 

and
W p =  skwLp =  0 , (7)

where N = ^3 /2  (T m,/a) is the direction of plas-
tic stretching, T*; is the deviator of T*, 
a = ^(3/2)T*/ • T*' is the equivalent tensile stress, 
and

t  = f{& ,e,s) (8)

is an equivalent tensile plastic strain rate.
The variable s is an internal state variable 

which is taken to have the dimensions of stress, 
and is called the deformation resistance. It evolves 
according to its evolution equation given below.

• Evolution equation for the deformation re-
sistance s :

s — htf — r, h =  A(d,0, s), r =  r(0, s), (9)

where h is a hardening and dynamic recovery 
function, and r is a static recovery function.

For the plastic part of these constitutive equa-
tions we note that there is a departure from the 
classical theories — no yield conditions and at-
tendant loading/unloading criteria are assumed. 
The model belongs to the so-called class of ‘uni-
fied constitutive equations’ in which ‘plasticity’ 
and ‘creep’ are unified, in that they are described 
by the same set of flow and evolutionary equa-
tions. The overall mathematical structure of this 
rate dependent plasticity model is simple be-
cause the plastic flow rule is a smooth function, 
although the particular form of the constitutive 
function for W may be mathematically very stiff 
in certain regions of plastic flow, requiring spe-
cial care in formulating numerical algorithms.

To complete this rate-dependent constitutive 
model for a particular material the material prop- 
erties/functions that need to be specified are the 
elastic shear and and bulk moduli, // and /c, re-
spectively, the flow function for the equivalent 
tensile plastic strain rate in (8), and the evolu-
tion function for the deformation resistance in 

(9)-Based on their hot compression experiments 
on an iron-2% silicon alloy and a commercially 
pure aluminum (performed in the homologous 
temperature range 0.6 to 0.9 and the strain rate 
range 10“3 to 10° sec-1), Brown, Kim and Anand 
(1989) have proposed the following specific con-
stitutive functions for if  and s:

'f  = A e x p ( ~ § e )  [sinhK ) f /m’ (10)

6



Die stroke = 5.00mm Die stroke = 5.38mm

Fig.4 Finite element meshes at several stages of deformation 
The model has been remeshed when necessary

sign ( i  - - ^ ) }  (11)

The list of material parameters in these consti-
tutive equations are: A, (J,m ,£, h0,a ,s, and n. 
Also R  is the universal gas constant. In their 
paper Brown et. al detail a systematic proce-
dure used to determine these material param-
eters from appropriate experimental data. For

1100-0 they find A = 1.91 xlO7 sec"1, Q = 175.3 
kJ/mole, m  =  0.23, £ = 7.0, h0 =  1115.6 MPa, 
a = 1.3, s = 18.9 MPa, and n = 0.07. In their 
paper they also list values of s0 and the elastic 
moduli as a function of temperature.

Fig. 1 shows that for this material the con-
stitutive model reasonably well duplicates the 
physical data upon which the model is based and 
from which the material parameters of the model 
have been determined. This figure presents rep-
resentative simulations of isothermal, constant 
true strain rate and strain rate jump experiments,

7



together with the original experimental data. The 
correlation between the model and the experi-
mental data is very good.

Amongst the various experiments performed 
by Brown, Kim and Anand (1989) to test the 
predictive capability of the constitutive model 
are experiments in which the strain rate is sud-
denly increased twice, and other experiments in 
which there is a sudden decrease in the strain 
rate. Fig. 2a shows the results from experi-
ments where the strain rate is rapidly increased 
twice. The model reproduces the double jump 
test data very well, duplicating both the instan-
taneous, constant structure strain rate depen-
dence, and the subsequent strain hardening. Fig. 
2b. shows experimental results and the corre-
sponding numerical simulation of a strain rate 
decrement test. This test shows the predictive 
capability of the model to handle strain soften-
ing. The steady state stress reached after the 
strain rate decrement corresponds to the steady 
state value for a monotonic test at the final strain 
rate and temperature, and this is well predicted 
by the constitutive model.

The constitutive model accounts for the phys-
ical phenomena of strain rate and temperature 
sensitivity, strain rate history effects, strain hard-
ening and the restoration process of dynamic re-
covery. As compared to the currently used con-
stitutive models which take the equivalent plas-
tic strain rate to be a simple power-law or a hy-
perbolic sine function of the equivalent stress, 
together with a temperature dependence of an 
Arrhenius form, and which do not account for 
any internal structural evolution, the constitu-
tive model presented above is a major improve-
ment.

Weber and Anand (1990) have formulated a 
stable time integration procedure for the isother-
mal version of this constitutive model. The time- 
integration procedure has been implemented in 
the finite element program ABAQUS (1990) by 
writing a “user material” subroutine. Using this 
computer code representative hot, isothermal, 
forging problems have been solved. As an exam-
ple we present a plane strain forging which has 
also been considered by Lush, Weber and Anand 
(1989). The constitutive model used by Lush et 
al. is similar in all respects to the one consid-
ered here, except that for the elasticity they use 
a hypoelastic formulation, instead of the hyper-
elastic formulation used here.

A miniature, hot, isothermal, closed die forg-
ing test has been performed on aluminum 1100- 
O for the purpose of comparing the predictions 
of constitutive equations and computational pro-
cedures against experimental results from an ac-
tual forging operation. The plane-strain forging 
process converts the cross section of a cylindri-
cal aluminum billet from a circular to a cruci-
form shape, as shown in Figure 3. Proper siz-
ing of the billet ensures that the dies would be 
filled, and that a small amount of flash would 
be produced. An oil-based graphite lubricant 
had been applied to the die and billet surfaces 
to minimize the effects of friction. The tem-
perature of the billet and dies was maintained 
at 400° C. Isothermal conditions were approxi-
mated by loading at a slow rate of 0.1 mm/sec. 
This forging example exhibits many important 
features such as: (1) nonhomogeneous deforma-
tion, (2) variable regions of contact between bil-
let and dies, (3) time-varying deformation rates 
at material points, and (4) rapid rise of total die

8



I.D. VALUE
1 39.0
2 41.2
3 43.5
4  45.8
5 49.1
6  50.4
7 52.7
8 55.0

(a)

I.D. VALUE 
1 0.000
2 0.285
3 0.571
4 0.855
5 1.140
6 1.425
7 1.710
8 2.000

(b)

Fig. 6 Contours of internal variable s and equivalent plastic strain after 5.38 nun die 
stroke in the plane-strain forging example.

force when the dies became filled.
In the finite element analysis it was assumed 

that there were two planes of symmetry in the 
specimen and dies1. Accordingly, only one quad-
rant of the specimen was modeled, and contact 
in the finite element calculations was modeled as 
frictionless.

Figure 4 shows the finite element mesh af-
ter several stages of deformation. A remeshing 
scheme was used to rectify any deterioration of 
mesh quality in this large deformation problem. 
Until around 4 mm of stroke, the material flow 
is seen to be predominantly horizontal. When 
the die becomes filled in this direction, the flow 
pattern changes and the load is seen to rise in 
Figure 5. Horizontal die filling occurred at a 
slightly smaller die stroke in the experiment than 
in the finite element calculation, but this can 
be attributed to slight imperfections in the die 
shape and asymmetry in the flow, which were 
not modeled. Frictional effects associated with 
breakdown of the lubricant layer as a result of 
large sliding motions may also have contributed 
to the discrepancy between the calculated and

measured die force versus stroke curves. Con-
tours of internal variable s after 5.38 mm die 
stroke are shown in Figure 6(a). Contours of 
equivalent plastic tensile strain after 5.38 mm 
die stroke are shown in Figure 6(b).

The major new features of this work on isotropic 
elasto-viscoplasticity and the associated compu-
tational procedures are that:

1. The constitutive equations for the plastic 
part of the model are a natural, more phys-
ical generalization of the classical J2 , rate- 
independent flow theory. Indeed, special 
forms of the viscoplastic constitutive func-
tions have been shown by Brown, Kim and 
Anand (1989) to be in good agreement with 
experiments for large deformations at high 
temperatures.

2. In the absence of plastic flow the constitu-
1This was not quite representative o f the actual exper-

im ents since there was som e asym m etry in the dies used 
in the physical forging experim ents. This causes som e of 
the discrepancy between the experim ental die force ver-
sus die stroke results and the corresponding numerical 
sim ulations observed in Fig. 5

9



Experimental

Fig. 7. Experimental measurement of the initial texture for annealed copper and its 
numerical representation using one hundred grains. The pole figures shown are the 
equal-area projections of the specified crystallographic planes.

Fig. 8. Experimentally measured axial stress versus logarithmic axial strain response in 
simple compression and its representation by a Taylor-type anisotropic plasticity 
model.

10



7.9 mm\ \

26.4 mm

(a) (b)

Fig. 9. (a) Schematic of a plane strain block forging experiment, (b) Coarse mesh used 
for finite element simulation.

tive equations reduce to a hyperelastic re-
lation which has also been previously shown 
by Anand (1979,1986) to be in good agree-
ment with experiments for moderately large 
elastic deformations.

3. The time integration procedure of Weber 
and Anand (1990) is a generalization of 
the classical radial-return algorithm. It is 
implicit, robustly stable, and “numerically 
objective”.

These features of this work make it well suited 
for large scale computations for simulation of 
hot-working processes. The obvious limitation 
of this constitutive model is that it does not ac-
count for the evolving anisotropy associated with 
large plastic deformations. To rectify this situ-
ation we consider next an anisotropic polycrys-
talline plasticity model.

3 ANISOTROPIC MODEL.

In polycrystalline metals the major cause of 
anisotropic plastic response is crystallographic

texture resulting from the reorientation of the 
crystal lattices of grains during deformation. There 
have been considerable recent advances in the 
understanding of anisotropy due to crystallographic 
texturing. Asaro and Needleman (1985) have de-
veloped an elastic-plastic, rate-dependent poly-
crystalline model for low homologous tempera-
tures in which plastic deformation within the 
individual crystals is taken to be by crystallo-
graphic slip alone. To predict the global re-
sponse of the polycrystal, the transition from the 
micro-response of the individual grains to the 
macro-response of the polycrystalline aggregate, 
Asaro and Needleman follow the pioneering work 
of Taylor (1938) and assume that all grains have 
equal volume, and that the deformation gradient 
within each grain has a uniform value through-
out the aggregate. In this approximate model, 
compatibility is satisfied and equilibrium holds 
in each grain, but equilibrium is usually violated 
between grains. This simple averaging proce-
dure gives that the macroscopic average Cauchy 
stress in the polycrystal is simply the number 
average of the Cauchy stress in each crystal. In 
this model, the deformation producing mecha-
nisms of twinning, diffusion and grain boundary

11



Fig. 10. Experimental and predicted load-displacement curves for the block forging ex-
periment.

sliding are not considered, and other sources of 
anisotropy due to the morphological effects of 
grain shape, size and arrangement are not taken 
into account.

In what follows, we give a brief description 
of a slightly modified form of the generalized 
Taylor-type polycrystal constitutive model of Asaro 
and Needleman (1985). We confine our atten-
tion to infitesimal elastic strains, low homolo-
gous temperatures and isothermal conditions.

The stress response at each macroscopic con-
tinuum material point is taken to be given by the 
volume averaged response of the multitude of mi-
croscopic single crystalline grains comprising the 
material point. The essential assumptions in the 
Taylor-type polycrystal model are that all grains 
have equal volume, and that the local deforma-
tion gradient in each grain is homogeneous and 
identical to the macroscopic deformation gra-
dient F at the continuum material point level. 
Then, with denoting the Cauchy stress in 
the kth crystal, these assumptions lead to:

t W > (i3)iy k=i

where T  is the volume averaged stress, and N  is 
the total number of grains comprising the mate-
rial point.

The constitutive equation for the stress in 
each grain is taken as

T* = £ [E •], (14)

with E* = (1/2) {F*t  F* -  l}  and 
T* =  F *-1 {(detF*)T} F*-T denoting work con- 
jugate elastic strain and stress measures2, re-
spectively, and C is a fourth order elasticity ten-
sor. Also, T  is the symmetric Cauchy stress ten-
sor in the grain, and F* is a local elastic defor-
mation gradient defined in terms of the local de-
formation gradient F  (equal to the macroscopic 
deformation gradient by virtue of the Taylor as-
sumption) and a local plastic deformation gradi-
ent Fp, with det F p = 1 (plastic incompressibil- 
ity), by F* =  F F P_1, detF* > 0.

The plastic deformation gradient is in turn 
given by the flow rule

2 For infinitesim al elastic strains the choice o f work 
conjugate strain and stress pairs is not significant.
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FP =  Lp Fp,

with

^  =  E 7 " S?. S ^ = m o<

(15) A qA qA qA
qA A qA qA

q — <
qA qA A qA
qA qA qA A

(16)

and

7° =  7 =  T* • S“ (17)

Here, m “ and n “ are time-independent orthonor-
mal unit vectors which define the slip direction 
and slip plane normal of the slip system a  in a 
fixed reference configuration. The quantity 7“ 
is the plastic shearing rate on the slip system a, 
and is taken to be given in terms of a resolved 
shear stress r a and a slip system deformation 
resistance sa.

The slip resistance sa is taken to evolve as

(22)

where q is the ratio of the latent hardening rate 
to the self hardening rate, and A  is a 3 x 3 matrix 
fully populated by ones. In equation 22, systems 
{1,2,3} are coplanar, as are systems {4,5,6}, 
{7,8,9}, and {10,11,12}. Thus the ratio of the 
latent hardening rate to the self hardening rate 
for coplanar slip systems is unity.

Finally, motivated by the work of Brown, 
Kim and Anand (1989), we adopt the following 
specific form for the single slip hardening rate in 
equation 21:

hW - n r (23)

i a =  £  >*a0 \ Y \ , (18)

where haf3 is the rate of strain hardening on slip 
system a  due to a shearing on the slip system /?.

For fee metals the elastic anisotropy of the 
fee single crystals is not strong, and the elasticity 
tensor C may be approximated by

C = 2p T  + (k  -  (2/3)p) 1® 1 ,  (19)

where p and k, are the elastic shear and bulk 
moduli, respectively. The specific constitutive 
functions for the plastic shearing rate j a on a 
slip system and the hardening matrix hal3 are 
taken as:

7a = 7o
l / m

sign(r°), (20)

where j 0 and m  are material parameters repre-
senting a reference shearing rate and the rate 
sensitivity of slip, and

haf3 =  qa@ hS^ (no sum on /3) , (21)

where is a single slip hardening rate and 
qaP is a matrix describing the latent hardening 
behavior of a crystallite. Following Asaro and 
Needleman (1985), for the twelve {111} < 110 > 
type slip systems for fee crystals, we take qa(3 to 
be given by

where h0, a, and s3 are slip system hardening 
parameters which are taken to be identical for 
all slip systems. In this saturation form of the 
single slip hardening rate, we take the saturation 
value ss to be a constant. This saturation value 
should in general be an increasing function of 
the strain rate; this would account for a rate 
sensitivity of the rate of strain hardening (see 
Section 2), but at low homologous temperatures 
this is a second order effect.

In a recent paper (Kalidindi, Bronkhorst and 
Anand, 1991), we have developed a new implicit 
time-integration procedure for this generalized 
Taylor-type polycrystal constitutive model. We 
have implemented the polycrystal constitutive 
model, together with our time-integration pro-
cedure, in the finite element program ABAQUS 
(1990). Our constitutive model and computa-
tional procedures can be used in finite element 
calculations where an integration point repre-
sents a material point in a polycrystalline sam-
ple and the constitutive response at the inte-
gration point is given through the Taylor-type 
polycrystal model. Using these mathematical 
tools, we have demonstrated the predictive ca-
pabilities of the Taylor-type constitutive model 
and our computational procedures for bulk de-
formation processing by comparing predictions 
of the overall load-displacement response and the 
evolution of crystallographic texture against cor-
responding experimental results from a simple, 
non-homogeneous, plane-strain forging experiment.

The forging experiment was performed on
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Deformed Mesh

Fig. 11. (a) {111} and {110} (equal-area projection) experimental pole figures from the 
deformed specimen and the corresponding simulation at the point indicated in the 
deformed mesh.
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Fig. 11. (b) {111} and {110} (equal-area projection) experimental pole figures from the 
deformed specimen and the corresponding simulation at the point indicated in the 
deformed mesh.
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annealed3 OFHC copper. This material was as- vectorization and parallelization of the compu-
sumed to have an “isotropic” initial texture, and tational procedures reported in Kalidindi et a/., 
this texture for simulating the inhomogeneous and which also take into account new computer 
forging experiment was represented by 100 crys- architectures, are necessary to expand the scope 
tals at each integration point whose orientations of polycrystalline plasticity calculations for pre-
are given by Molinari, Canova and Ahzi (1987). dicting the evolution of crystallographic texture 
Fig. 7 shows a comparison of the { 111} and to realistic deformation processing operations. 
{110} (equal-area projection) pole figures4 corre- Meanwhile, the isotropic plasticity model reviewed 
sponding to the assumed initial set of crystal ori- in this paper offers substantial improvements over 
entations and actual texture measurements from currently used plasticity models used to simu-
an annealed specimen. late, analyse and design forming operations.

The values of the material parameters used 
in the calculations by Kalidindi, Bronkhorst and 
Anand (1991) are5 p = 46.5 GPa, k  = 124 GPa, ACKNOWLEDGEMENT
7o =  0.001 s - \  m = 0.012, q = 1.4, h0 = 180 MPa, 
a =  2.25, and s8 =  148 MPa, together with an The support of the Solid Mechanics Program 
initial value of the slip system deformation re- of the U.S. Office of Naval Research under grant 
sistance of s0 =  16 MPa. The correspondence (ONR No. 0014-89-J-3040) and the Materials 
between the stress-strain results from a simu- Processing and Manufacturing Program of the 
lation of a simple compression experiment us- U.S. National Science Foundation (DDM-8914161) 
ing these material parameters in the Taylor-type is gratefully acknowledged.
polycrystal model, and the experimental data 
(from which the material parameters were de-
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M odelling o f the induced anisotropy in inelastic bodies

Angel LBaltov
Institute of Mechanics and Biomechanics, Sofia, Bulgaria

ABSTRACT: Processes of oriented plastic deformation and damage which induce an anisotropy of 
the inelastic properties are analysed in the paper. The model parameters are determined by 
performing a combination of one-dimensional experiments and by employing a microimitation 
approach (a combination between the experimental technique of speckle interferometry and FEM).

1 INTRODUCTION and vector measures of damage and by the 
definition of appropriate limit surfaces in the 

We take into account metal forming processes stress space where these measures take place. 
with large plastic deformations. The orientation The basic difficulty during modelling of the 
of the external loading due to metal forming studied phenomena is the restricted number of 
leads to the orientation of the plastic experimental results. A difficult experimental 
deformations as well. This causes the problem is to separate the effects of plastic 
development of material plastic anisotropic strain and damage on the induced anisotropy of 
hardening. This problem has been studied for the material inelastic properties. A confirmed 
many years and a number of papers throw light approach to estimate this effect is the so-called 
upon the experimental study and the microimitation approach (Litewska et al. 1984). 
mathematical modelling of the phenomena (see According to it, an infinitesimal neighbourhood 
for example Baltov 1990, Szczepinski et al. of a body point is imitated by a finite region of 
1971, etc.). Recently, systematic studies have the same material, where there are artificially 
been performed to clarify the effect of induced created defects (cracks, voids, etc.), controlled 
plastic anisotropy on the formation of plastic by the experimentalist. This approach is applied 
localization bands, on the initiation and in the present paper in order to develop a 
development of damage and macrofracture, etc. method for the description of the induced 
(Duszek-Perzyna 1988, Baltov et al. 1989, etc.). anisotropy. The method combines speckle 
The damage (i.e. initiation and growth o f : interferometry experiments and FEM 
(1) bands of localization of plastic microstrains calculations.
in crystal grains; (2) shear and spallation We propose a new model, describing more 
microcracks within grains and intergranular completely the induced anisotropy due to the 
zones; (3) microvoids, etc.) is generally oriented oriented plastic deformation and damage. The 
in accordance with the external loading. This necessity to describe the effects of induced 
orientation causes the anisotropy of the inelastic anisotropy is related to the development of 
properties. The joint effect of the oriented systems for automated design of technological 
plastic deformation and damage is an object of processes where models, simulating real 
study of many papers (Cordebois and Sidoroff processes, are essentially used. The account of 
1982, Lemaitre and Chaboche 1985, Murakami his anisotropy is very important for multistage 
1983, Dacheva 1989, etc.). The problem is metal forming processes.
treated by an appropriate introduction of tensor
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anisotropy because of their oriented character. 
On the macroscopic level, the material displays 
different behaviours in tension and compression 
(the microcracks close under compression, etc.). 

Our macroscopic model is based on 
assumptions, prompted by the analysis of 
experimental evidence. In order to consider 
more directly the experimental process of plastic 
deformation involving large strains, a mixed 
description is proposed (Baltov 1985). We 
introduce the material coordinate system OXj, 
(J = I, II, III) and the space coordinate system 
Oxv (i = 1, 2, 3), as well as the mixed process 
measures: the first Piola-Kirchhoff stress tensor 
Ty and the displacement gradient H j j . A

Fig. 1 Nominal stress - nominal strain curve for relation between the components T2I and H2I for 
pure aluminium thin-walled specimen deformed technically pure aluminium is given in Figure 1. 
in torsion This relation is obtained from experiments on 

torsion of thin-walled tubular specimens, under 
the assumption of a uniform distribution of the 

2 A MODEL DESCRIBING THE INDUCED shear stress over the tube wall (Baltov and 
ANISOTROPY DUE TO PLASTIC DEFOR- Yankov 1989). Up to a stress level x°p), the MATION AND DAMAGE

material deforms elastically, then elasto- 
We consider quasistatic deformation of metallic plastically between X(p) and T(d), while over
bodies with crystal microstructure: crystal grains y°d) the damage process is initiated (see Figures and intergranular zones. Plastic deformation and 

1 and 2). Due to damage, unloading proceeds damage (over a definite level of plastic strain) 
with a changed elastic modulus. This allows to develop during metal forming. They cause 

microstructural changes which induce an define a residual plastic strain H ^ \  a fictitious 
anisotropy of the inelastic properties. During elastic strain H ^  related to the elastic modulus 
plastic deformation, microstrain localization of the undamaged material and a strain due to 
bands occur in the crystal grains, which are damage - H ^}. The damage description by 
oriented in accordance with the external loading means of deformation measures is an approach and the generated slip lines. This causes the often used in literature (Ilyushin 1967, Dragon anisotropy of the plastic properties on a and Mroz 1979, Baltov (1981).macroscopic level. The shear microstresses 
within the bands can reach the material shear The model linearization of the relation T2i -H2I 
strength when the external loading increases, is given in Figure 2. It allows to derive some and consequently shear microcracks can occur. simplified but useful relations. Let The latter have the same orientation as the 

H^f) = H2] -  (H ^} + H ^ ) ;  (i0 is the initial shear localization bands. However, this can change the 
deformation anisotropy on a macroscopic level modulus of the undamaged material; |i (p) is the 
but does not affect its character. For larger tangential modulus of plastic strain; p (d) is the 
external loads, microdefects of other character tangential modulus of damage with plastic 
may develop: (1) microcracks due to shear deformation; p is the elastic modulus of the 
between the grains; (2) microcracks due to damaged material. We obtain the following 
spallation within the grains and in the relations
intergranular zones; (3) microvoids due to grain 
intermixing, separation from inclusions, etd. 
These defects induce also a macroscopic T2I = 2n0H <f = 2n(H <f + Hg>). (1)
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T S = 2 |i0(H g) + 4 ,r)), (2)

(T(d)~T(P)) T °
Ty ^2I - 2  M-(p) . (p)h 2, -

2M-(P) 2p 0

(3)

T * - T 2, = 2 n 0 H<t) (4)

where T2* is a fictitious stress given in Figure 2. 
A lot o f experiments exist, demonstrating 

plastic and dam age induced anisotropy (see e.g. Fig. 2 Proposed linearization o f the stress 
Cordebois and Sidoroff 1982, Litewka et al. strain curve shown in Figure 1.
1984, W u et al. 1990. An exemple is given in 
Figure 4. The figure shows the relation between 
the mean stress P and the volume change V, 
presenting the Bauschinger effect (Wu et al. 
1990). V ®  denotes the residual volume change. 
On the basis o f these and other experimental 

studies, we make the following assumptions.
The process m easures are given in a mixed 

description by introducing two coordinate 
systems; a m aterial rectangular coordinate 
system (OXK, K  = I, II, III) and a spatial 
rectangular coordinate system (Oxv i = 1, 2, 3).

a) For the stress state : the first Piola- 
Kirchhoff stress tensor, i.e. T ^ X j ^ t ) ,  
X M c Q 0, t e  [ t ^ t j ] ,  where Q0 is the region 

Fig. 3. Subsequent yield ellipses (y (p)=0.05) for 
occupied by the body at the initial time t 0, while 

aluminium alloy ( p 0 =26  G Pa, b=0.12, 
tj indicates the time at which the process under 

A = -7x l0 '2 m 4/N2, K=42.1, c=380 MPa, 
consideration ends; the deviator stress is 

co=220 MPa).designated by S ^ ,  and the mean stress by
1 - Initial von M ises yield ellipse

P = ^ 8 jMTjM, 2 - Yield ellipse for Y<d) = 0.20, a=30°

8 jM being a unit tensor o f transition between 3 - Yield ellipse for Y<d) = 0.20, a=50°
4 - Yield ellipse for Y^d) = 0.30, a=30°the two coordinate systems. To obtain a unified 

form for the yield condition, we use the 
following expression: T ^  = + eP5iK, where e 3T
is equal to 1 when the residual volume change is For the stress rate: T ^  = - r ~ - - Q ijTjK, with
taken into account, and equal to 0 in the 
opposite case. For a significant nucleation of 

^ ij -T ^ iK T jK  + SjKTjK).microvoids, TiK is replaced by the equivalent
stress Tk  = S k  + e (V (d))8 iKP, where the 

b )F o r  the strain state: the displacement function e(V (d)) is determined experimentally.
gradient HiK=UiK, where Ui(XM,t) is the dTkFor the stress rate: TiK = with displacement vector and the comma denotes the -“ s Vat differentiation with respect to XK; the material 
strain tensor E kl  is then equal to®ij “  T  (8 ik T)K + 8 jk TiK )■
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the elastic characteristics o f the undamaged 
material, a plastic part and a part due to 

damage H ^ ,  i.e.

H k =H<*> + H[W+H<« (5)

or in terms o f rates

V1K = V ^ f)+ V ^ + V ^ ) (6)

Fig. 4 Hydrostatic stress - strain curve

^ (8 flcH iL +  5 iLH iK + HjKHjL); the rate o f the 

displacement gradient is designated by: ViK”

h k .
c) For the plastic deformation: the plastic 

part o f the displacem ent gradient H ^ ;  the

intensity by y (p) = ^j—H ^  , with

= H & >- ~ 8 jK8 jMH j^ ; its rate V&>.

d) For the damage: the part o f the 
displacement gradient due to microfracture

its intensity y (d) = ^ H ^  * with

& £  = H g  -  j M j M H g i ;  its rate V<?>.

e )  For the microstructural changes, the 
following stress tensors are used:

(1) a microstress tensor due to the plastic 
deformation T ^ }, its deviatoric part S-£} and

Tac5 =SK + ^oSacSjMljM* where e0 is ^ nal to
1 when the oriented nucleation of microvoids is 
considered and equal to 0 in the opposite case.

(2) a microstress tensor due to damage 
Tî ), its deviatoric part with Tî ) =

SiK + ^ eo^iK$jMTjM- W e introduce also an

internal state variable Y ^ = - ~ T ^ ,  linearly

related to Tî ), where b = const, is 
experimentaly obtained.

The model assumptions are:
a) The displacement gradient H iK consists 

o f a fictitious elastic part , corresponding to

b )T h e  rate o f the elastic part V ^f) is 
related to the stress rate i k  through Hooke’s law 
(the elastic deformations are small):

V<f > = (7)

where H ^ l  is the tensor o f elastic resistance for 

undamaged materials.
c )T h e  rate o f the plastic part Vĵ ) is 

expressed by means o f the flow rule, associated 
with the yield condition F  = 0.

V<P> = - A  9F 
K 3T§>

A

0 ,if  F < 0 or F = 0 ,b u tL  ^ 0

> 0 ,i f  F = 0 and L > 0
(8)

where L - - * t
3T, iK

iK

The tensors and Tĵ F) are thermo-

dynamically coupled and is the internal

V$> = A r l L  = - b A  3F
dT$>

where

b =

T ^ - b Y ^ ,

0, i f  Y<d) ^  y°i) or P <0

b, i f  y (d) > Y(d) and P > 0

(9)

( 10)

where P -rb jM T jM
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and are thennodynamically coupled 

and Tî ) is the internal state variable, 
e) The yield condition has the form

F N a c j i , ^ V 0 2 = ° ,  (11)

where

N iKjL = ^  (8iK 8jL + 8jK 8 ^ ) +  A T ^ } l £ \

T —T _T(a)
AiK “  AiK AiK

T^a) = - Tg> (12)

a  = V3 x T = T?p) (1 + KY(P)) 1-^
v(d)

material constants. In the general case, t  and A 
will be nonlinear functions o f the process 
parameters ( y (p), y (d), V(d), 0 )  (Baltov 1990).

f )T h e  equation o f the evolution o f the 
internal state variables Tî ) and Tî ) are 
assumed to be linear

T ^ = c  V ^ a n d t W  = c0V,(Kd) (13)

where c and c0 are material constants, 
characterizing the induced anisotropy.
The following relations follow from our 

assumptions:
a) The relation between the rates of 

displacement gradients for inelastic deformation
is:

V,(Kd) = b Vg>. (14)

In these equations, the parameter A describes 
the anisotropic hardening (Baltov and Sawczuk 
1965) and K is the isotropic hardening 
coefficient. The param eter y* is the limit value 
of the strain intensity due to damage and is 
taken as constant. W hen the strain reaches this 
value, macrofracture begins. It is interesting to 
note that a full tensor in the yield condition has 
been used by Arutunyan and M arkov (1977) for 
the case o f plastic dilatation. If we assume that 
e = e ( V ^ )  and A = 0, and the so-obtained yield 
conditions are similar to those o f Duszek and 
Perzyna (1988). TiK is the tensor o f active

stresses, and Tî ) , that of inelastic stresses 
(Baltov and Boncheva 1982). The yield 
condition describes the anisotropy induced by 
the plastic deformation and damage. When 
damage is only due to shear microcracks along 
localization bands, condition (12) is modified 
into an expression containing _the stress 
deviators i.e., since e = 0, eG = 0, = SiK -

Sac * S-k  = S-k  - Sj£}. In this case, the volume 
change V has not reached the lim it marking the 
start o f microvoid formation V(°d). W e consider 
the material to be rate-in sensitive during the 
analysed quasi-static process. W e assume that 
the process is isothermal (0 = const) and do not 
take into account heat sources due to energy 
dissipation during the inelastic deformation. We 
consider a linear m odel where A, b, K, etc. are

b) The flow rule has the following form: 

V<p) = - A F ^ ,  (15)

where

F<-P) = T“ 7T7 = FiK +9 P A (a)u iK

P = | 8 jM TjM , Z (a) = T£> Tj L,

FiK = -M - = ^ iK jL  ijL = y r o iK + JA  i ( a) 1*. 
o Tjk

= 3 N iKiLTiL = 9P 8 iK + 3 A Z fa )T £ \

(16)

A = 1

H (P)

L
2 a/ 3 a  x°p)

H(p) |oZ(r) /(2 a V 3 T fw) - - 4 5T[ l
-  z r v
b (1+ K y(p)) ^  r , 

X (p ) +  2  Y(d) Y i ( d ) l ’

2(f) = & p) F<F\ L = F i K t iK ,

S(p) = H(ip) F « , Z (d) = < )  F<kp).

W e discuss the problem of the model parameters 
identification in the next paragraph.
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3 M ICROIM ITATION APPROACH, IDENTI-
FICATION OF THE M ODEL PARAMETERS

The determination of the m odel parameters can 
be done on the basis o f a combined system of 
experiments. In general these m ust be:

a) One-dimensional experiments of 
tension or torsion o f thin-walled tubular 
specimens. The following parameters are thus 
determined: i f p), T°d), ^  n(p), |i(d), |i, and y*.

b) Experiments characterized by a mean 
stress P and a volume change V and where the 
residual volum e change V (d) is recorded and the 
volume elastic modulus o f the undamaged 
material K^, the start of the microvoid 
nucleation which leads to the occurrence o f a 
residual volume change V(°d), etc. are 
determined.

c) Two-dim ensional experiments for the 
determination o f the parameters A, c, c0, K. 
These can be classical experiments with thin- 
walled tubular specimens, tension o f plates and 
cutting o f specimens at different angle with 
respect to the plate axis, cross-like specimens, 
etc. It is difficult to estimate the degree of 
damage by perform ing these experiments. 
Hence, we recommend the microimitation 
approach (Litewska et al. 1984).
W e apply the microimitation approach to the 

testing o f a flat rectangular specimen (ljx ljx 8 , 
8 «  lj, lj is the initial dimension of the 
specimen and 8 is its thickness) which is tested 
under plane stress. This specimen imitates an 
infinitesimal neighbourhood o f a material point. 
W e shall discuss the special case o f damage due 
to shear cracks. Cracks are formed in the 
specimen under different a  angles with respect 
to the specimen axis, so that a given damage 
degree Y*d) can be attained. However,

where n is the number o f cracks, with length a^, 
m is a number o f lines with cracks and L0( a )  is 
the average length of a line at angle a  in the 
specimen. Along the boundaries o f the flat 
specimen, small displacement increments are 
applied until the prescribed values U \ and U 2  

are obtained.

W e introduce two coordinate systems with 
coinciding axes (OZK, K  = I, II, III) and (Ozj, i 
= 1, 2, 3). W e apply three systems of 
displacements:

n + l
(1) U ^ )  = X  AUk ^ )  ,

5=1

n + l

U2(Zi) = I  ;
5=1

n

(2) U!(Zn ) = X  AU1(£)(Zn ) ,
5=1

n + l
U2(Zn ) = X  AU2(5)(Zn ) ;

5=1

(3) a combination between (1) and (2).

For each displacement increm ent A U ^  and 

AU2(5), (£ = L 2, ...,n + 1) the plane problem

for an elastoplastic body with dam age is solved 
by using the FEM. W e obtain as a result the 
change o f stresses A t ^ ^  and that of the

displacement gradients A h ^ ^ ,  Ah[£j^ in a grid

of points within a region o f the body. The 
formulation o f the problem shows that the 
elastic and plastic characteristics are the same at 
"micro" and "macro" levels. The constitutive 
relations on the "micro" level are:

a) Yield condition:

F* -  “  HiKjL % %  - t *2 = 0, (17)

where
SflC = S iK~ S ^ ) , 

siK = t iK” ^ 5 iK8jLtjL,

n iKjL = \  (SiK SjL +  SjL 6iK ) +  A 0 s ®  s f ,  (1 8 )  

T* =  T(P) (1 + KoYoP)) -
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AtiK(5> “  A ScjL ATjL (5)’

b) Flow rule: (i, j  = 1 ,2 , K, L  = I, II, £ = 1 , n+1)  (22)

where

Ah(P L  = - AX ,

AX
= 0, i f  F * < 0  or F* = 0, L * £ 0  

>0, i f F * = 0  a n d L * > 0

L* = A t ^ ) ,  F ^  = — niKjLSjL (19)

c) Evolution equation:

A îK(l;) = Co^&iK(5)

The undamaged specimen undergoes a 
system of displacements (1) along its 
boundaries. The displacements are calculated at 
points o f a grid introduced on the specimen. 
Speckle interferom etry is applied for this 
displacement system and displacements are 
measured at the grid points. The results from the 
calculations and measurements are compared 
and parameters A 0 , K 0 , c0 are determined by 
using Kalman's method o f nonlinear filter 
(Courage et al. 1990).
The macroscopic measures are determined on 

the basis o f their relation to the microscopic 
ones:

ATJL(S) = < AtjL($) >

^iKCS) = < ^iKCS) >

where the averaging < > is perform ed along the 
plane region boundaries. The final values are 
obtained by a summation

n + l n+1

TjK = X ATjK($)* H*  = Z ATjK(5)-
5=1 5=1

Let A-jgL be the localization matrix. It is 

determined for each step o f loading from the 
definition:

The 15 components o f the matrix A°KjL are

determined from 15 algebraic equations 
obtained from equation (22), the latter being 
applied to the three systems o f loading. On such 
a basis the plastic part o f the displacements 
gradient is determined:

AH& = i l A* j L Ah& dS’

(i, j = 1, 2 : K, L  = I, II; £ = 1, ..n+1) (23)

where S is the region occupied by the specimen 
in the plane OZj Z j j .

The part o f the dam age displacement 
gradient is equal to AH-£|^ and the

damage stress tensor A T ^  = c 0Ah [ £ ^ .  A

system of boundary displacements U\(Zi) = 0, 
U ^ Z j j ) = 0 is applied to the specimen and 
unloading is performed. The residual inelastic 
measures H ^ ,  H $ \  I ^ ), T&P are then 
calculated. W e apply to the same specimen a 
system o f boundary displacements (1) for 
different ratios U1/U 2 until attaining the 
intensity o f the current plastic strain 
y(p) « 0 .1  %. Yield points in the plane (Tn , T2I) 
are thus determined. The points are 
approximated by an ellipse, originating from the 
yield condition

F = R I j i  +  M l 2 i +  2 N Tn T21  - a 2 = 0, (24) 

where:

R =  1 + |  A f a f f ,

M  = 3 | \  + 2 A f a f f  j  ,

N = f  A l f f ^ f .

Thus the constants A, K, c and c0 are 
determined by using the Least Square Method.
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W e consider an example with an aluminium isotropically plastic deformable bodies. Proc. 
alloy. Ellipses in (Tu . t 2I) for a different 6th Congr. Theor. Appl. M eek  1:15-20. Sofia : 
damage degree and angles are given in Figure 3. BAS Publ. House (Russian).
The figure illustrates the damage effect on the Baltov A., N. Bontcheva & R. Yankov 1989. 
induced anisotropy, presented by the change of Influence of damage and preliminary plastic 
the yield surface in the stress space. deformation on crack propagation. Future 

Trends on Strength o f Metals: 369-378. 
Volume in honour of Professor P.S. Theocaris. 

4 CONCLUSIONS Athens.
Baltov A. 1990. New trends in the theory of 

The analysis m ade shows the applicability o f the anisotropic hardening bodies. Inelastic Solids 
model, created to describe the induced and Structures, A. Sawczuk Memorial 
anisotropy o f the material inelastic properties Volume: 1-12. Ed. M. Kleiber and J.A. 
during coupled processes o f plastic deformation Koning. Swansea U.K.: Pineridge Press.
and damage. This m odel is successfully applied Cordebois J. & F. Sidoroff 1982. Endom- 
to determine the anisotropy developed after the magement anisotrope en 61asticit6 et plasticity, 
first stage o f a two-stage forging o f rectangular J. M eek Theor. Appl.: 45-60.
metal blocks. It seems reasonable to develop a Courage W .M.G., P.J. Schreurs & J.D. Janssen, 
nonlinear version of the model in our future 1990. Estimation o f mechanical parameter 
analysis. values o f composites with the use o f FE and 

The analysis presented here has been system identification techniques. Composites 
partially perform ed during the author's stay in and Structures. 34: 231-237.
LMS, Ecole Polytechnique, Palaiseau, France, Dacheva M. 1989. Ph. D. Thesis, Inst, of 
in 1990. The author is mostly grateful to the Mechanics, Moskva.
LMS Directorate for the excellent research Dragon A. & Z. Mroz 1979. A continuum model 
conditions which he has been provided with. for plastic-brittle behaviour o f rock and 

concrete. Int. J. Engng. Sci. 17: 547-558.
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Glide softening in alloys: A  simulation

G .C anova & L. P  Kubin
CNRS-ONERA (OM), UMR104 CNRS, Chdtillon, France 
Y.Brechet
UPCM-ENSEEG, St. Martin d’Hires, France

ABSTRACT: The m echanism s by which precipitate shearing or the destruction o f short range 
order lead to glide softening and strain localization in alloys are recalled. These phenom ena have 
been sim ulated using a 3 D (dislocation discretized dynam ics) technique which has been recently 
developed. Liiders-like deform ation is obtained in easy glide while the successive nucleation of 
deformation bands occurs in duplex glide.

1: INTRODUCTION of individual dislocations, whose properties are 
incorporated as input quantities, and that o f the 

It is w idely recognized that the connection single crystal whose m echanical properties are 
betw een the m icroscopic and m acroscopic obtained at the output. A detailed account of 
aspects o f crysta l p la stic ity  involves the the simulation method, of its basic rules and of 
understanding of collective dislocation effects their physical justifications is given by Kubin 
and of the intrinsic length scales associated and coworkers (1991). For this reason, only a 
with dislocation patterning. In the absence of brief summ ary is given below. The additional 
convincing theore tical approaches to these rules developed in order to adapt the method to 
p rob lem s, sim ulation  m ethods have been the problem  of glide softening are presented in 
developed in the past few years. An application Section 3.
is p resen ted  here to the case  o f p lastic  The notion of critical annihilation distance is 
instabilities occurring through glide softening at the basis o f the three dimensional simulation. 
phenomena in alloys. It is illustrated by fig. 1 in the case o f fee 

Two im portan t causes o f m icrostructural crystals. A t low and m oderate tem peratures,
softening, the shearing  o f sm all coheren t i.e., in the absence o f clim b, edge dislocations 
precipitates and the destruction o f short range cannot leave their glide planes. Thus, two edge 
order are presented in Section 2. In both of dislocations o f opposite sign gliding in two 
these cases, plastic instabilities occur through a paralle l slip  planes tend to form  a stable 
feed-back process between the reduction o f d ipo lar configuration  desp ite  the ir m utual 
g lide res is tan ce  p roduced  by d is loca tion  attraction. If, however, the distance between 
shearing and the increase of slip activity in the the two slip planes is sm aller than a critical 
softened regions. As a result, deform ation by value ye , the interaction stresses may approach 
glide becom es nonuniform  and these spatial the th e o re tic a l lim it o f  the c r is ta l. A 
instabilitites may lead to a reduction o f strain m e c h a n ic a l c o l la p s e  o f  th e  d ip o la r  
hardening, sometimes to plastic instabilities on configuration occurs and the two dislocations 
the deform ation curves. The results of a three mutually annihilate.
dim ensional sim ulation o f these effects in a y~, the critical annihilation distance for edge 
m odel copper-base alloy  are reported  and dislocations, is in practice the closest approach 
discussed in Section 3. distance of two parallel dislocations, whatever 

The three dim ensional simulation used in the their character. T his quan tity  serves as a 
present work bridges the gap between the scale natu ra l e lem en ta ry  leng th  scale  fo r the
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Fig. 1 The critical annihilation distance for
edge dislocations, ye , in the fee lattice.

d iscretization o f space in the sim ulation. In 
addition, its existence justifies the fact that 
there is an upper lim it to the density  o f 
dislocations which can be stored in a deformed 
crystal. Essm ann and M ughrabi (1979) have 
m easured a value y e = 1.5-1.6 nm in copper 
single crystals fatigued in the low am plitude 
saturation plateau.

D islocation configurations are decom posed 
into sets o f subsegm ents o f edge or screw 
charac ters w hich  are p laced  on a th ree 
dim ensional fee lattice. The lattice parameter, 
is such that the {111} interplanar spacing is 
consisten t w ith  the value o f the c ritica l 
annihilation distance. The three dim ensional 
space is tiled  w ith such elem entary  cells, 
building up a crystal o f size (10 |xm)^. From  
this starting point, the following properties are 
im plem ented quite naturally: the slip geometry, 
the long range elastic interactions between the 
various dislocation segm ents, the line tension 
of dislocations, the local effective stresses and 
dislocation free-flight velocities. D islocation 
m ultiplication and direct annihilation as well as 
the form ation of stable dipolar and m ultipolar 
structures occur, then, spontaneously within 
the simulation.

A dditional rules are introduced to deal with 
d islocation intersections and cross-slip . The 
form ation o f sessile reaction products at the 
in te rsec tio n  o f  a ttrac tiv e , non cop lanar, 
segments is the m ajor mechanism  contributing 
to strain hardening. Cross-slip processes play a 
doub le  ro le : they  a llow  m ob ile  screw  
dislocations gliding in parallel slip planes to 
mutually annihilate. They also contribute to the 
relaxation of high local internal stresses and to 
the by-passing o f localized obstacles by screw 
dislocations. Since cross-slip  is a therm ally 
activated phenom enon, a specification of the 
cross-slip  param eters defines the sim ulated

tem perature . In ad ition , these  param eters 
incorporate all the necessary inform ation about 
the core structure i.e. they indirectly account 
for the value o f the stacking fault energy of the 
material.

During one tim e step of the sim ulation each 
segm ents is m oved once. The velocity of a 
dislocation segment moving between two forest 
obstacles in a perfect lattice is only limited by 
electron and phonon drag. W ith  a typical 
m ean-free path of 1 |im  and a typical average 
free-flight velocity o f 10 m s-1, the tim e per 
step  is o f  the o rder o f 10 "7 s. W ithin 
reasonable com puting tim es it is possible to 
perform  about 104 steps, yielding a strain of 
about one percent. Thus, the range of strain 
rates presently accessible to the sim ulation is 
around 10 s ”1. A total strain rate is imposed to 
the sim ulated crystal. The elastic properties of 
the ficticious testing system plus the specimen 
are characterized by an equivalent modulus 
(M =  10 4 MPa).

2: GLIDE SOFTENING IN ALLOYS

2.1 Glide Softening by precipitate shearing or 
destruction of short-range order

F rom  a phenom enolog ica l po in t o f view, 
plastic instab ilities can be classified into three 
m ain types according to the quantity which 
induces a decrease in the load carrying capacity 
of the specimen (Estrin and Kubin, 1991). This 
quan tity  can be the  the rm ally  ac tiva ted  
c o m p o n e n t  o f  th e  f lo w  s t r e s s  
(therm om echanical effec t), the strain  rate  
hardening coefficient (i.e. strain rate softening) 
or the strain  hardening  coeffic ien t (strain  
softening). S train softening effects are very 
diverse (Luft, 1991). W e consider here two 
types of glide softening mechanisms which are 
often encountered in A1 or Cu based alloys, 
viz. the destruction of short range order (SRO) 
or o f short-range segregation, and the shearing 
o f sm all (typ ically  5 to 20 nm ) coherent 
precipitates. G lide softening occurs through a 
feed-back process: the shearing o f a slip plane 
by gliding dislocations reduces the local glide 
resistance by decreasing either the average 
precipitate radius or the degree of SRO in the 
solid solution. This induces slip localization as 
slip activity preferentially concentrates in slip 
zones where the glide resistance has partially
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been destroyed, and further softens them. 2.2. Softening by precipitate shearing
In w hat follow s, the com ponent o f the flow 

stress which can be destroyed by slip will be A softening rule is derived in the case of small, 
referred  to, in a broad sense, as an alloy sp h e rica l, co h e ren t p rec ip ita te s . S im ilar 
friction ( if) . Once the alloy friction is reduced arguments may apply to the destruction of SRO 
to zero  or to its m inim um  value, strain  but, as discussed below, the situation is much 
hardening takes over in the cleared channels. more complicated in this last case.
D eform ation further proceeds until the local The critical stress for overcom ing shearable 
glide resistance becom es equal to that o f the precipitates was derived by several authors (see 
virgin portions o f the crystal. New slip zones Brechet and Louchet, 1990):
are then initiated and this can occur by two 
mechanisms: the nucleation of fresh slip zones Tc = 't0(R03/2Ab1/2), (1)
in other parts of the crystal or the expansion of 
the initial band in a Liiders-like manner. This w here R 0 is the  average rad iu s o f the 
last m echanism s is preferentially observed in intersection of the slip planes by precipitates, X 
crystals oriented for easy glide. In that case, is the average precipitate spacing in the slip 
the strain hardening rate is small, which allows plane and b is the m odulus of the Burgers 
for large strain concentrations vector. T he constan t stress x0 essentially 

W hereas p rec ip ita te  shearing  has been depends on the line tension o f the dislocations 
recognized very early to be an effective strain and on the energy of the planar fault (antiphase 
softening m echanism , it took tim e to realize boundary) created by the shearing of a long 
that the occurrence o f p lanar slip  in solid range ordered precipitate . In m any classical 
solutions is often due to the destruction of SRO expressions, use is m ade in eq. (1) o f the 
and that it depends only weakly on the value of vo lum e frac tion  o f the  p rec ip ita tes , f  = 
the stacking fault energy. This was established (RJX)3. In w hat follow s and to avoid any 
in particu lar through a careful study o f the confusion, the quantity R 0 refers to the initial 
development of slip markings in single crystals radius of the precipitates or to dim ensionlike 
of copper-base alloys (Neuhauser, 1983; see co effic ien ts  w hich  are conserved  during 
also O lfe and N euhauser, 1988; G erold and s tra in in g , i.e ., the av erag e  p rec ip ita te  
K am thaler, 1989). dim ension perpendicu lar to the active slip 

The problem s w hich a sim ulation  m ight plane, or an average dim ension involved in the 
attem pt to solve are as follows: i) - what are definition of the volum e fraction. On the other 
the critical conditions defining the transition hand, the length involved in eq. (1) is no 
betw een L iiders-like  p ropagation  and the longer R 0 under strain but an average radius, 
uncorrelated nucleation o f slip bands ? ii) - R, related to the sheared cross-section.
W hat are the length scales involved, i.e., the We now exam ine the relation between the 
band w idths and velocities and, in particular, local shear and the average precipitate radius 
w hat is the orig in  o f the observed  fine in the slip plane, R. The {111} interplanar 
structure o f slip (Neuhauser, 1983) ? iii) - spacing of the lattice underlying the simulation 
W hat is the dislocation mechanism responsible (ye = 1 .6  nm) is in general sm aller than the 
fo r band p ro p ag a tio n  ? C lassica lly , the  diam eter o f the precipitates (2 R 0 «  10 to 40 
propagation  o f L iiders bands is thought to nm). Then, when n dislocations gliding in the 
occur e ith e r by cross-slip  or through the same “plane” o f the sim ulation have sheared 
activation of slip by long range stresses emitted the precipitate, the local shear is 8y = nb/ye 
at the m oving front (Kocks, 1981). A nother (cf. figu re  2). To determ ine the effective 
p o ss ib le  m ech an ism  is  th e  co o p e ra tiv e  equivalent radius associated w ith the hatched 
operation of two slip systems. ilV) - W hat are area o f fig. 2 b, w e follow  a sim plified  
the consequences regarding the m echanical derivation  given by B rechet and L ouchet
properties and the occurrence o f m acroscopic (1990). The reduction in area is approximately 
softening or o f p lastic instabilities ? In w hat equal to -2nbR = -2yeR8y, so that we can 
follows, we discuss a first attem pt to simulate write:
g lide  so ften ing  p ro cesses . A system atic  
investigation w here all the relevant physical 
parameters are varied is under way. 2 tcR 8R = - 2yeR8y, (2)
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and

8R = -(l/7c)ye8y. (3)

By integration, we obtain:

R = R 0(1 -Y /Yo), (4)

w here y0 = 7cR0/ye is the critical strain at 
which the effective radius vanishes. The result 
is approxim ate (indeed, Yo = 2R o/ye)’ but the 
definition o f the equivalent radius necessarily 
involves some arbitraryness.

Com bining eq. (1), where R0 is replaced by 
R, and eq.(4), we eventually obtain

5tc  = - (3/2) T c o ^ l / 3  (5y/Yo), (5)

w here xco is the initial value of the critical 
stress. This expression  rela tes local shear 
increm ents to critical stress decrem ents. The 
m ic ro s tru c tu re  is ch a ra c te riz e d  by tw o 
mesoscopic quantities, yQ and xco. The value of 
xco is typically in the range 10 to 100 MPa, 
while Y0 is sim ply the ratio o f the precipitate 
diameter to y e , e.g. yQ «  6 for 2R0 = 10 nm.

2.3. Softening by destruction of short-range 
order

In sh o rt-ran g e  o rd ered  a llo y s , shearing  
involves the form ation of a diffuse antiphase 
boundary w hose configurational energy, W, 
can  be e s tim a te d  by  ex a m in in g  the 
m odifications o f atom  pair configurations 
below and above the slip plane (Pitsch, 1974; 
B uchner and P itsch , 1985). T his energy 
decreases with dislocation shearing, leading to 
a decreasing friction stress Xf = W/b. However, 
no general expression sim ilar to eq. (5) can be 
derived in this case, as the configurational 
energies and their dependence on shearing 
depend much on the crystallographic structure 
o f the alloy . F u rthe r, there can be local 
rearrangem ents o f SRO through short-range 
diffusion and the friction stemming from  SRO 
is not necessarily totally destroyed, even in the 
absence of diffusion.

In binary A l-Li alloys containing 2.5 wt.% 
Li, B rechet (1987) estim ates the m axim um  
hardening due to SRO to about 6 M Pa, while in 
Cu-12.6 at.% Zn, O lfe and N euhauser (1988) 
derive a value of about 10 MPa. The softening 
process is qu ite  generally  thought to be

com pleted after the successive glide of a few 
dislocations, i.e., Yo ~ 6b/ye «  1 for n = 6 
dislocations.

Fig. 3 shows how deformation can spread out 
at atomic scale, leading to fine slip in a short- 
range ordered alloy, when several systems are 
sim ultaneously active. These cooperative slip 
processes are not presently introduced in the 
simulation but they deserve further discussion.

From  this discussion we see that a precise 
description of the softening rules is not easy, 
even eq. (5) being approxim ate. In practice, 
the two im portant m icrostructural parameters 
are the initial strength and the critical strain. 
The detailed shape o f the softening function 
probably does not m atter much, provided it 
decreases monotonously.

3. NUM ERICAL EXPERIM ENTS

3.1. Conditions of the numerical experiments

Since the main objective o f the present work is

(a)

Fig. 2. A coherent precip itate (initial radius 
Rq ) sheared by n d isloca tions o f B urgers 
vector b, gliding in the same “slip plane” of the 
simulation, (a) - Side view, (b) - Top view.
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to exam ine the spatial correlation o f slip lines and Tp is the in trinsic  fric tion  stress (the 
along a direction parallel to the specimen axis, P eierls stress) o f the m ateria l. The to tal 
som e averaging procedure can be used to number of slip planes is imax *  5800 for each 
describe the distribution of the alloy friction in slip system. In copper, as in all fee metals, the 
the slip planes. The alloy friction is, in w hat Peierls stress is very small and its value is Tp * 
follows, assumed to be uniform  in each {111} 3.10‘5(i *1.64 M Pa (|X is the shear modulus). 
slip plane. Its value can, o f course, vary along A rather sm all value o f y0 was selected in 
a d irection  para lle l to the < 1 1 1> norm al. order to obtain significant instabilities within a 
Therefore, individual events, like the shearing reasonable com puting time: yQ = 0.2. Finally, 
of a precipitate by a moving dislocation are not the initial value of the alloy friction was set to 
exp lic ite ly  in troduced . D oing th is w ould, Tf0 = 6 Tp « 10 MPa. The shape of the averaged 
anyw ays, req u ire  a com puting  effic iency  softening function, a decreasing exponential 
beyond reach in the p resen t sta te o f the form, is somehow different from  that derived 
simulation. in eq. (5) but, as already m entioned, this is not 

A convenient shape of the softening function critical.
has been defined, which contains both a critical F o r the  experim en ts repo rted  here, two 
strain and an alloy friction stress. For each slip orientations were selected, [T23] and [112], in 
plane o f index i, counted along the < 1 1 1> order to achieve conditions o f easy glide and 
normal, we have d up lex  g lide , re sp e c tiv e ly . T h e  in i t ia l  

configuration (see Kubin and coworkers, 1991 
STf,i = - (*f,i - y  Sy/Yo. (6) for a discussion) is a random  distribution of 

dislocation sources in total density p0 = 1011 
where 5Xf j and 8yj are respectively the local m ”̂  and of length ( p j /2 ) " ^  = 4.6 |im . For the 
alloy  fric tion  decrem en t and shear strain  [123] orientation, all the segm ents have the 
increm ent during one step o f the sim ulation. same Burgers vector, [T01]. W hen they have a 
T fi is the current value of the alloy friction screw character, the initial sources have two 

possible slip planes, (111) and ( lT l)  but they 
are in itially  dissociated in one o f them. To 
account for this, the glide system and the cross-
slip system are selected at random  with equal 
probabilities. F or the [T12] orientation, the 
initial density of sources is equally distributed 
into the two equivalent slip systems. The rule 
defined above for the selection of the preferred 
slip plane of the screw segments also applies in 
this case.

T he o ther inpu t param eters  have been 
(a) discussed in the Introduction. In particular, the 

simulated tem perature is 300 K and the elastic 
constants as well as the cross-slip parameters 
are those o f pure copper. This m eans, in 
practice, that cross-slip is difficult as long as 
the local internal stress opposing dislocation 
glide is smaller than 28 MPa, the critical stress 
for the onset o f stage III on the deform ation 
curve. Finally, the im posed total strain rate is 
50 s"1 and the simulations were stopped when a 
total strain of about 5* 10’3 was reached.

(b)

Fig. 2 The reduction  o f SRO by m oving 3.2 Results
d is lo ca tio n s is rep resen ted  by hatch ing . 
Successive activity in planes (1) and (2) and Figure 3 shows [T01] views o f the [123] crystal 
their mutual shearing favours the dispersion of for increasing values o f the average (total) 
SRO-destruction. strain. The active screw segments and the slip
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Fig. 3 [TOl] v iew s o f the [123] crystal 
deform ing in easy glide for increasing values 
of the total strain, a: e = 10"3;b :  e = 2.35 *1(T3; 
c: e = 3.3 TO"3; d: e = 4 .3T 0"3

planes are perpendicular to the view plane and 
the  ed g e  seg m en ts  are  p a ra lle l to  it, 
m aterializing  the active slip  lam ellae. Slip 
localizes in one slip band which expands with 
increasing total strain. The fine structure of 
th is band  is c lea rly  due to the in itia l 
distribution o f the active sources, as w ill be 
seen m ore clearly below (cf. fig. 5). On figs. 
3-c-d, the occurrence of edge segments oblique 
to the “slip traces” indicate that cross-slip and 
double cross-slip events have taken place.

Figure 4 shows the behaviour o f the [112] 
sim ulated crystal w hich deform s in duplex 
glide. The view ing direction  is paralle l to 
[101], the direction com m on to the two active 
slip planes, ( T i l )  and (111). In this case, a 
d ifferent type o f nonuniform ity is obtained: 
se v e ra l tr a n s ie n t  lo c a l iz a t io n s  o c c u r  
successively on both o f the active system s. 
This behaviour is associated  w ith a strong

in te rac tio n  o f the tw o slip  system s, in 
particu lar w ith the form ation  o f attractive 
junctions, as can be checked by looking at the 
same configurations from  other points of view.

In each slip lamella, the Liiders strain can be 
defined as the strain at which the total glide 
resistance becom es iden tical to that o f the 
undeform ed m aterial. This quantity is easily 
rationalized, at least qualitatively, in term s of 
the co m p e titio n  be tw een  so ften in g  and 
hardening. In duplex glide, the Liiders strain is 
necessarily smaller than in single glide, so that 
internal stresses in the active lam ellae are not 
sufficient to induce propagation, either directly 
or through cross-slip mechanisms.

According to eq. (6), the local value o f the 
alloy friction is a m easure of the local shear. 
The alloy friction profiles of fig. 5 provide a 
sim ple w ay for exam ining the evolution  of 
strain localization in the [123] crystal. In these
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diagram s, the alloy friction i f  j is plotted as a 
function of the position of the slip plane i along 
the < 111> diagonal of the simulated crystal, 
for several values o f the total strain. From  the 
few sources w hich start operating  at small 
strains (fig. 5-1), a small group develops in a 
cooperative manner (fig. 5-2) and concentrates 
all the slip activity. On fig. 5-2, the minimum 
value of the friction stress is close to 2 MPa 
and on fig. 5-3, the alloy friction is completely 
destroyed in several slip lam ellae, the alloy 
friction having reached its m inim um  value of 
1.64 M Pa. In these regions the local strains 
are, therefore, larger than the characteristic 
value y0 = 0.2. A com parison of figs. 5-2, 5-3 
and 5-4 shows that two processes occur in 
parallel, the expansion of the band by the 
nucleation of new , adjacent, slip lam ellae and 
the progress of deformation inside the band.

At the largest strain (fig. 5-5) the slip band 
consists o f a ra th e r regu lar alternance of 
deformed and undeformed regions. In terms of 
the hierarchy o f surface slip-steps defined by 
N euhauser (1983, cf. fig. 2), we have here a 
slip band subdivided into clusters o f slip lines. 
The band w idth is 1.6 pm  and the fine 
structure has a characteristic wavelength one 
order o f m agnitude sm aller, o f the order of 
150 nm. This last length  scale is usually  
thought to be determined by a critical distance 
asso c ia ted  w ith  the c ro ss-s lip  o f screw  
dislocations (Nabarro, 1986). This is certainly 
the case here because the average distance 
between the initial sources is o f the order of 
the micrometer. Therefore, only double cross-
slip events could produce the fresh sources 
needed for the form ation of the fine structure. 
Further, the critical annihilation distance for 
screw dislocations is y „ = 50-60 nm in copper 
at room  tem perature (Essm ann and M ughrabi, 
1979). This should lead, through annihilation 
mechanisms, to a pattern of wavelength 2y s * 
100-120 nm , co n sis ten t w ith the p resen t 
numerical result.

The w idth o f the regions w here the alloy 
friction has totally been destroyed provides a 
m easure o f the band width w. This quantity is 
plotted on fig. 6 as a function o f time. The 
thickness of the band increases linearly with 
time defining a  constant propagation velocity 
vb = 2.2 cm/s. According to Neuhauser (1983), 
two types of Liiders band slip are observed in 
single crystals - those with the Liiders band 
front parallel to the prim ary slip plane (“G-

Fig. 4 [101] view  of the [112] sim ulated
crystal deform ing in duplex glide, a: initial 
configuration, b: e = 10" . c: e = 5.6 10 . 
Notice the occurrence of several slip bands.

bands”), like the one obtained here - those with 
the Liiders band front norm al to the prim ary 
slip p lane or “ K -bands” . F or G -bands in 
neutron irradiated  crystals, there is a linear 
relationship  betw een the applied elongation 
rate, e, and the band velocity v^: v^/e * 20,
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Fig. 5 A lloy friction profiles for the [T23] 
crystal deforming in single glide. The position 
of the slip planes, X, is reduced to the total 
length of the simulated crystal along the <111> 
diagonal: X Q = 1(W3 p,m = 17.32 |xm. In the 
slip bands, the alloy friction decreases from  its 
in itia l value o f 10 M Pa to 1.64 M Pa, the 
intrinsic friction stress. The strain increases 
from  5-1 to 5-5 and its value is given on the 
deform ation  curve o f fig . 7 -a. N otice the 
expansion  o f the reg ion  w here the alloy 
fric tion  has been destroyed  and the fine 
structure of slip inside the band in fig. 5-5.
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(Neuhauser, 1988). In the present numerical the softening of the m icrostructure, the initial 
experim ent, the elongation  rate  is e = eal, value of the friction stress and the 
where L  = 50 s " 1 is the applied strain rate and characteristic strain associated with its decay. 
1 = ( l 4 /9 ) ^ 2*10"^ m is the length  o f the These two factors should influence the tim e 
sim ulated crystal along the <123> direction. scale o f the yield drop, the band velocity, as 
Hence v^/e «  35, a value com parable to that well as the shape of the deform ation curves. 
experim entally obtained in neutron irradiated O th e r m a te r ia l p a ra m e te rs  a re  th o se  
crystals. in c o rp o ra ted  in  the  th ree  d im en sio n a l 

Figure 7 shows the stress-strain curves of the sim ulation. O f principal in terest here is the 
two sim ulated crystals. In both cases an early value of the cross-slip probability. The initial 
hardening stage is follow ed by m acroscopic dislocation density and the orientation o f the 
strain softening. As expected, the am plitude of stress axis decisively influence the transition 
the in itial hardening stage is larger for the between successive nucleations and propagation 
[112] crystal. Given the time scale (8 t = 8e/e « by con tro lling  the local strain  hardening  
0.1 m s), the portions w ith negative strain p ro p ertie s . E x te rn a lly  app lied  cond itions 
hardening correspond to a rather abrupt yield involve the values o f three quantities. - The 
drop. This behaviour is possibly due to the temperature, which also governs the cross-slip 
rather sm all value o f the characteristic strain probability. - The hardness of the sim ulated 
involved in eq. (6). deform ation setting. - The total strain rate  or 

The shapes o f these two deform ation curves elongation rate.
suggest that a steady state regim e w ith a It is im portant to notice that the quantity 
constant stress is about to be reached at the w hich scales the band velocity  is not the 
largest strain value. A stress plateau should applied strain rate but the elongation rate. As 
correspond, at least in easy glide, to a band of was shown by N euhauser (1983), there is a 
active slip planes o f constant width propagating sim ple relationship between the Liiders strain 
with a constant velocity. The shape o f the eb or, equivalently, the extend o f stage I, and 
deform ation curve o f fig. 7 -a can, then, be the ratio v^/e:
interpreted  as follow s. The band front has 
reached its steady state velocity (cf. fig. 6) vb/ e = l / e b (7)
while the strain rate profile behind the front is 
not yet in steady state. The ratio o f the elongation rate to the band 

The num bers on fig. 7-a refer to the alloy velocity, as determined through the simulation, 
friction profiles o f fig. 5. In particular, it is has a correct order of magnitude with a Liiders 
seen tha t the p ro file  o f fig . 5-2, w hich strain o f the order o f a few percent. This value 
corresponds approxim atively to the beginning is, o f course, an average over the band whose 
of band propagation  (t = t Q on fig. 6) is deform ation is nonuniform . Indeed it has been 
obtained at the peak stress o f the deform ation shown above that the local strains can be 
curve. sign ificantly  larger than eb. In the results 

presented here, a steady state characterized by 
a deformation stage I has not been reached and 

4. DISCUSSION - CONCLUDING REMARKS the proportionality law of eq. (7) remains to 
be checked for various values o f the applied 

T h is  n u m e ric a l s tu d y  i l lu s tr a te s  th e  elongation  rate . H ow ever, the reasonable 
p o te n tia lit ie s  o f the  th ree  d im en sio n a l num erical agreem ent obtained so far seems to 
simulation for understanding strain localization indicate that the essence o f the propagation 
phenom ena and band propagation effects in mechanism has been captured in the simulation. 
alloys. In the p resen t stage, no defin ite  Other factors, like the specimen geom etry, the 
co n c lu s io n  can  be d raw n  fro m  th ese  influence of the bending m om ents due to the 
prelim inary  experim en ts and a system atic local shears in a specim en constrained at its 
analysis o f the dislocation configurations and ex trem ities, the local reduction  in cross- 
of the influence of the param eters involved is sectional area and the associated triaxiality of 
being undertaken. stress, m ay also in fluence the propagation  

The list of the main physical parameters is as velocity (Neuhauser, 1983). Since these effects 
follows: two parameters are needed to describe are not included in the sim ulation, they are
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1992). In such models, it is assum ed that the 
d is lo c a tio n  m e ch a n ism  re sp o n s ib le  fo r  
propagation has a d iffusive character. This 
ream ins to be dem onstrated in the case of the 
L iiders-like behaviour o f single crystals. The 
transition between successive nucleations and 
propagation seems to involve local peaks of the 
internal stress rather than its average value. 
W hether or not this can be rationalized  in 
terms of a diffusion-like mechanism remains to 
be in v estig a ted . T hus, a m ore tho rough  
e x a m in a tio n  o f  th e  lo c a l d is lo c a tio n  
m icrostructures and of the distribution of the 
internal stresses w ithin the slip bands is worth 

Fig. 6 [123] orientation. Tim e dependence of being attem pted. It could shed some light into 
the band w idth  w, reduced  to the < 1 1 1> the p rob lem  o f the va lid ity  o f reaction- 
interplanar spacing in the simulation. Tim e is diffusion forms.
reckoned from  the m om ent tQ where the alloy O ther in teresting  p roperties o f the strain  
friction first reaches its m inim um  value in one localizations are their evolution in tim e at a 
slip plane. fixed position, the shape of their strain rate 

profiles and the value o f the Liiders strains. 
The local strain hardening is made up of two 

probably not at the origin of the propagative additive contributions: the alloy softening, as 
behaviour and they should rather appear as given by eq. (5) or (6) and the dislocation 
correcting terms. strain hardening term , i.e., self-hardening in 

The Liiders strain being essentially a material easy glide, forest hardening in m ultiple glide. 
property, propagation necessarily  involves a A third contribution, presently not included in 
dislocation m echanism , as already stressed by the sim ulation, stems from  the local rotations 
several authors (cf. K ocks, 1981). Further associated with the local shears. Depending on 
investigation of the output of the sim ulation at the in itia l o rien ta tion  o f the crysta l, this 
m esoscale is needed to trace back the events com ponent may induce hardening or softening. 
leading to the activation o f slip at the front of For instance, in the case of the [T23] crystal the 
the m oving band. A lthough cross-slip  and Schm id factor is in itia lly  m axim um  and it 
double cross-slip events are easily detected, one decreases with increasing strain which induces 
canno t ru le  out a p rio ri the ex istence of a geom etric hardening. This influence of this 
dislocation pile-ups in the active regions and contribution on band properties, especially on 
the related occurrence of long range stresses the L iiders strain  can be investigated  as 
which may activate new dislocation sources. follows. In the present stage of the simulation, 
Thus, if  cross-slip  can be identified as the the lattice rotations are homogeneous inside the 
mechanism leading to the form ation of the fine crystal, their value being defined through the 
slip structure, there is as yet no certainty that it average strains on each slip system. This can, 
is responsib le  fo r band propagation . Two however, be im proved  ra th e r  ea s ily  by 
sim ple checks can be attem pted to investigate in se rtin g  local ro ta tio n s  p e r slip  p lane, 
how slip activity spreads out: i) set the cross- following a local rule analogous to that of eq.
slip probability to zero and look at whether or (6). Then, the local shear increm ent would 
not propagation still occurs, ii) Produce an determ ine the am ount of both geom etrical and 
in tial configuration  con tain ing  d isloca tion  alloying effects. The nonuniform ity  o f the 
sources in a thin slice of the material and check rotations inside the crystal may, in addition, 
if  slip activ ity  is able to p ropagate in the induce e lastic  com patib ility  stresses and, 
initially dislocation-free regions. possibly, plastic relaxations. For the m om ent it 

The occurrence o f band propagation w ith a seems difficult to include these effects in the 
constant velocity  leads to the possib ility  o f simulation.
phenom eno log ica l m odelling  in term s o f A t the m acroscopic scale, several problem s 
reaction-diffusion forms. This has already been can be examined: the conditions of occurrence 
done for Liiders bands in polycrystals (Hahner, o f strain softening, o f yield points and of
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