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Preface

Analysis of repeated measurement data is a recurrent challenge to 
statisticians engaged in biological and biomedical applications. For 
example, data from clinical trials are often longitudinal in nature, 
with repeated measures of response taken over time. In pharma­
cokinetic studies, serial measurements of drug concentrations are 
taken from each participant. By definition, growth studies involve 
repeated measurements over time. In other applications, measure­
ments on experimental units may be repeated across some other 
dimension, e.g. spatially rather than temporally.

Methods for linear modeling of repeated measurement data are 
well developed and well documented in the statistical literature; re­
cent accounts include those by Crowder and Hand (1990), Lindsey 
(1993), and Diggle, Liang and Zeger (1994). In many biological ap­
plications, such as pharmacokinetic analysis and studies of growth 
and decay, however, nonlinear modeling is required for meaning­
ful analysis. For this type of modeling, statistical approaches are 
less well understood, and discussion of appropriate methodology is 
scattered across a wide literature. Recent years have seen more at­
tention to nonlinear repeated measurement data in the statistical 
literature; however, the economy of style imposed by many journals 
means that the material is sometimes presented in a manner that 
does not make it readily accessible to practicing statisticians. The 
result is that, although nonlinear modeling of repeated measure­
ment data represents an area of some practical importance, it is 
one that still appears to engender a good deal of confusion among 
data analysts.

Our purpose in writing this monograph is to provide a clear de­
lineation of currently available modeling approaches and inferential 
methods for nonlinear repeated measures. The goal is to make the 
material accessible to a wide audience. The book is targeted mainly 
to practicing biostatisticians in industry and academia, and to
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graduate students in statistics or biostatistics. We have attempted 
to keep the exposition at an intermediate level, however, so that the 
majority of the material should also be accessible to pharmacoki- 
neticists and to researchers in the clinical and biological sciences.

The model framework that forms the basis for the inferential 
methods discussed in the book is that of the hierarchical nonlinear 
model for continuous response data. This may be viewed as an ex­
tension of standard nonlinear modeling techniques to accommodate 
multiple levels of variability (within and among individuals). Alter­
natively, it may be regarded as a generalization of the hierarchical 
linear model framework to include models that are nonlinear in pa­
rameters of interest. Hierarchical nonlinear modeling may thus be 
expected to inherit the computational difficulties intrinsic to both 
nonlinear regression and to hierarchical linear models. We have cer­
tainly found this to be true in practice; computational issues can 
be formidable at times, so that inference within this framework is 
not an enterprise to be undertaken lightly. We have included sev­
eral case studies in later chapters; these represent ‘real-life* data 
sets. We have tried to report analyses in sufficient detail to give the 
reader a realistic sense, not only of the potential scope and util­
ity of the methods discussed, but also of the potential difficulties. 
Because computational aspects play a key role in the implemen­
tation of all the techniques described in this book, we have tried 
to include some discussion of available software in each of the rel­
evant chapters. Most of the data sets considered in this book will 
be available on Statlib, together with code to implement model fits 
discussed in the text using various software packages.

Several friends and colleagues helped us while writing this book. 
We are grateful to Sharon Baughman, Doug Bates, Eric Chi, Art 
DeVault, Jim Prane, Tim Grégoire, Karen Higgins, Debbi Kot- 
lovker, Cynthia Ladd, Nishit Modi, James Reimann, Alan Schu- 
mitzky, Anastasios Tsiatis, Jon Wakefield, and Fong Wang-Clow 
for comments on earlier drafts of the manuscript. Thanks go to 
researchers at Genentech, Inc., and elsewhere for permission to use 
their data in the book. Special thanks are due to Alan Hopkins and 
to Genentech for granting the second author a leave of absence to 
complete the manuscript and for encouragement throughout the 
writing process. Moral support was provided by Peter Compton, 
Carol Deasy, Ellen Gilkerson, Debbi Kotlovker, James Reimann, 
and Georgia Thompson. Finally, words cannot adequately express 
our debt of gratitude to Butch Tsiatis, without whose keen sta­
tistical insight, ongoing moral and culinary support, and unfailing
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good humor this manuscript would never have been completed.
This book was typeset using lATgX; figures were created using 

Spins.

Boston and San Francisco Marie Davidian
March 1995 David M. Giltinan
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CHAPTER 1

Introduction

Data consisting of repeated measurements taken on each of a num­
ber of individuals arise commonly in biological and biomedical ap­
plications. For example, in longitudinal clinical studies, measure­
ments are taken on each of a number of subjects over time. Sim­
ilarly, participants in pharmacokinetic experiments undergo serial 
blood sampling following administration of a test agent. Pharma­
codynamic studies may involve repeated measurement of physio­
logical effect in the same subject in response to differing doses of a 
drug. By definition, studies of growth and decay involve repeated 
measurements taken on sample units, which could be human or 
animal subjects, plants, or cultures.

Modeling data of this kind usually involves characterization of 
the relationship between the measured response, y, and the re­
peated measurement factor, or covariate, x. In many applications, 
the proposed systematic relationship between y and x  is nonlinear 
in unknown parameters of interest. In some cases, the relevant non­
linear model may be derived on physical or mechanistic grounds. 
In other contexts, a nonlinear relationship may be used simply to 
provide an empirical description of the data.

The presence of repeated observations on an individual requires 
particular care in characterizing the random variation in the data. 
It is important to recognize two sources of variability explicitly: 
random variation among measurements within a given individual 
and random variation among* individuals. Inferential procedures ac­
commodate these different variance components within the frame­
work of an appropriate hierarchical statistical model. When the 
postulated relationship between y and x  is linear in the unknown 
parameters, the relevant framework is that of the classical linear 
mixed effects model. An alternative is provided by Bayesian infer­
ential methods for a suitable hierarchical linear model. There is an 
extensive literature on hierarchical linear models; Searle, Casella,



and McCulloch (1992) provide a comprehensive overview.
Methods for repeated measurement data where the relation­

ship between y and x  is nonlinear in the unknown parameters 
are less well developed. Treatment of existing techniques is scat­
tered through a wide literature. The purpose of this monograph is 
to provide a unified presentation of methods and issues for nonlin­
ear repeated measurement data. We begin by considering several 
examples to motivate our subsequent development.

2 INTRODUCTION

1.1 M otivating exam ples

I J . l  Pharmacokinetics of cefamándole

Figure 1.1 shows data from a pilot study to investigate the phar­
macokinetics of cefamandole, a cephalosporin antibiotic (Aziz et 
o/., 1978). In this experiment, a dose of 15 mg/kg body weight 
of cefamandole was administered by ten-minute intravenous infu­
sion to six healthy male volunteers. Blood samples were collected 
from each subject at each of 14 time points post-dose. Drug con­
centrations in plasma were determined for each sample by high- 
performance liquid chromatography (HPLC), The resulting plasma 
concentration-time profiles for each subject are plotted in the fig­
ure.

In characterizing the pharmacokinetics of a drug, it is common 
to represent the body as a system of compartments and to assume 
that the rates of transfer between compartments follow first-order 
or linear kinetics. Solution of the resulting dififerential equations 
shows that the relationship between drug concentration and time 
may be described by a sum of exponential terms. For instance, the 
biexponential equation

C{t) = 01 exp{-02t) + 03exp{-04t), /?i,... ,/?4 > 0, (1.1)

where C{t) is drug plasma concentration and t is time post-dose, 
follows from the assumption of a two-compartment model to de­
scribe kinetics following intravenous injection (Gibaldi and Perrier, 
1982).

The data in Figure 1.1 exhibit similarly shaped profiles for each 
subject, with possibly different parameter values for different sub­
jects. Variation within each subject about the model in equation
(1.1) arises mainly due to the HPLC assay. It is commonly rec­
ognized that intra-subject variation of this kind tends to increase 
with plasma concentration level (Beal and Sheiner, 1988).



MOTIVATING EXAMPLES

Time (minutes)

Figure 1.1. Plasma concentration-time profiles for six subjects, cefaman­
dole data.

In pilot volunteer studies like this one, primary objectives are 
to establish an appropriate kinetic model, to obtain preliminary 
information on values of the model parameters, and to assess the 
nature of intra-subject variation. Typically, results from the analy­
sis of a pilot study are used as a basis for subsequent investigation 
of kinetics in a larger, more heterogeneous patient population.

1.1.2 Population pharmacokinetics of quinidine

Data from a clinical study of the pharmacokinetics of the anti- 
arrhythmic agent quinidine reported by Verme et al. (1992) consist 
of quinidine concentration (mg/L) measurements for 136 hospital­
ized patients (135 men, 1 woman) treated for either atrial fibrilla­
tion or ventricular arrhythmias with oral quinidine therapy. A total 
of 361 quinidine concentration measurements ranging from one to 
11 observations per patient were obtained by enzyme immunoassay 
during the course of routine clinical treatment.

Measurements were taken within a range of 0.08 hours to 70.5



Table 1.1. Partial data for two subjects  ̂ pharmacokinetic study 
of quinidine. Units for measurements are given in the text

INTRODUCTION

time cone. dose ss^ age wt. creat^ glyco.^

0.0 166
Subject 2 
-  58 85 > 50 82

6.0 - 166 - 58 85 > 50 82
12.0 - 166 - 58 85 > 5 0 82
18.0 -> 166 - 58 85 > 50 82
25.0 1.2 - - 58 85 > 50 82

height =  69, race =  Latin, nonsmoker, 
ethanol abuse, moderate congestive heart failure

0.0 201
Subject 10 

8 73 79 < 50 254
2.2 3.9 - 8 73 79 < 50 254

288.0 - 201 8 73 79 < 50 176
290.0 5.4 - 8 73 79 < 50 176
504.0 - 201 8 73 79 < 50 150
506.0 2.8 - 8 73 79 < 50 150
816.0 - 201 8 73 79 <50 127
816.2 - 201 8 73 79 < 50 127
817.0 3.1 - 8 73 79 < 50 127

1241.0 - 201 8 73 79 < 50 98
1249.0 - 201 8 73 79 < 50 98
7897.0 - 201 8 74 82 > 50 158
7897.8 1.6 - 8 74 82 > 50 158

height =  69, race =  Caucasian, nonsmoker, 
no ethanol abuse or congestive heart failure

 ̂ if numeric, subject has achieved steady state with given dosing in­
terval; if blank, subject has not achieved steady state 

 ̂ creatinine clearance 
 ̂ a 1-acid glycoprotein concentration

hours after dose. Table 1.1 shows partial data records for two pa­
tients selected from the total of 136. Demographic and physio­
logical covariate information was collected for each patient over 
an observation period ranging from 0.13 hours to 8095.0 hours. 
The following variables were available for the majority of patients: 
weight, height, and age, as well as information on race (Latin, 
Caucasian, Black), smoking status (yes, no), ethanol abuse (yes, 
no, previously), and status with respect to congestive heart failure
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(severe, moderate, mild or none). Weight, age, smoking, and car­
diac status were recorded periodically during the study. Creatinine 
clearance (ml/min), a measure of renal function, and ai-acid glyco­
protein concentration (mg/dL), the level of a circulating molecule 
that binds quinidine, were also measured periodically on all pa­
tients, although information on creatinine clearance was recorded 
in a categorical rather than continuous manner. Baseline albumin 
concentration (g/dL) measurements were available for some, but 
not all, patients. Oral quinidine may be administered in two dif­
ferent forms; in this study, it was given as quinidine sulfate to 53 
patients, as quinidine gluconate to 57 patients, and in both forms 
to 26 patients. Doses were adjusted for differences in salt content 
between the two forms hv conversion of both forms to milligrams 
of quinidine base.

One possible characterization of quinidine disposition is to use a 
one-compartment open model with first-order absorption (Verme 
et al.y 1992). Let C{t) be the concentration of quinidine and let 
Ca{t) be the apparent concentration of quinidine in the absorption 
depot at time t. Written in recursive form, the model is:

For the non-steady state at a dosage time t = U

Ca{te) =  Ca{U-^i)exp{-ka{U -  ^^-i)}  +  FDi/V

C{tl) =  C{t t - i )exp{-ke{ t t -U- l ) }+ Ca{tt-l)-ka Ajg

X [e x p {- fc e ( i/  -  -  exp{-ka{tt -  .

( 1.2)

For the steady state at a dosage time, t =

CaiU) =  {FDt/V)ii-BXp{-kaT„})-^

C{tt) =  {FDt/Vh ka
k(i feg

X [(1 -  exp{-A:er„})"^ -  (1 -  exp{-/;aT .,})"‘] .

(1.3)

Between dosage times, ti < t <

C{t) = C{tt) exp{-fce(i -  m  + C a i U ) - ^
Kq, Kg

X |exp{-A:e(i -  U)} -  exp{-ka(t -  ii)} j. (1.4)

In (1.2)-(1.4), ti, i  = 0 ,1, . . . ,  are the times at which doses Di
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are administered, Ca{to) =  FD q/V, C{to) = 0, F  is the fraction of 
dose available, ka is the absorption rate constant, ke =  C lIV  is the 
elimination rate constant. Cl is the clearance, V is the apparent 
volume of distribution, Cl,V^ka > 0, and is the steady-state 
dosing interval.

The data in this example share certain characteristics with the 
cefamandole data: a common nonlinear model form for all subjects, 
values of the pharmacokinetic parameters that may differ from 
subject to subject, and probable heterogeneity of assay variation 
within subject. There are obvious differences as well. In contrast to 
the experimental setting, where essentially complete concentration­
time profiles are collected for each subject, the quinidine data, 
collected in a clinical setting, are sparse, with relatively few ob­
servations per subject. This difference between data collected m a 
controlled experimental setting and routine clinical data is fairly 
typical. Clinical data may be available for a much greater num­
ber of patients, but data on any one individual patient tend to be 
sparse.

A second major difference between the quinidine and cefaman­
dole data sets is the availability of demographic and physiological 
information that may help to explain inter-subject differences in 
the disposition of quinidine. This difference between experimental 
and clinical data is also usually the case. Early Phase I data are 
gathered frequently from a small number of healthy volunteers in 
a carefully controlled setting. Routine clinical data typically come 
from a much more extensive and heterogeneous patient population. 
This allows broader inferences to be drawn, although the task is 
complicated by the relative paucity of information at the individual 
subject level.

The major question of interest in the quinidine and similar clini­
cal studies is identification of the demographical and physiological 
factors affecting drug disposition in a broad patient population. A 
thorough understanding of this issue may afford important clinical 
benefit: the dosage regimen for a given patient may be individual­
ized based on relevant physiological and demographic information 
for the patient if a model is available relating drug disposition 
to measured patient covariates. Thus, more accurate titration of 
dosage may be feasible, avoiding possible suboptimal therapeutic 
benefit resulting from underdosing and minimizing potential tox­
icity associated with overdosing. Accurate dosing is of particular 
importance in drugs with a low therapeutic index, where the win­
dow of desirable serum concentrations is relatively narrow. For all



drugs, however, it is clearly beneficial to maximize understanding 
of factors affecting drug disposition.

Given a model which accurately predicts a subject’s pharmacoki­
netic parameters as a function of physiological and demographic 
characteristics, there will still remain a random, or unexplained, 
component of variation among individuals. Quantifying this inter­
subject variation in pharmacokinetic parameters is a secondary ob­
jective in population analysis of data such as those from the quini- 
dine study. Achieving the analysis goals is complicated by several 
issues: (i) the sparsity of information on individual subjects; (ii) the 
generally nonlinear dependence of response on the relevant phar­
macokinetic parameters; and (iii) inter-subject variability. Methods 
that allow valid inference in the face of these difficulties form the 
core of this book.

MOTIVATING EXAMPLES 7

1.1,3 Growth analysis for soybean plants

Figure 1.2 shows data from an experiment to compare growth pat­
terns of two genotypes of soybean: Plant Introduction #416937 
(P), an experimental strain, and Forrest (F), a commercial variety.

In this study, data were collected in each of three consecutive 
years (1988-1990). At the beginning of the growing season in each 
year, 16 plots were planted with seeds, eight plots with each geno­
type. To assess growth, each plot was sampled eight to ten times 
at approximate weekly intervals. At each sampling time, six plants 
were randomly selected from each plot, leaves from these plants 
were weighed, and average leaf weight per plant was calculated 
for the plot. Different plots in different sites were used in different 
years.

Inspection of Figure 1.2 indicates that the usual logistic function

Pi
1 + /?2 exp(psx) '

P up2> 0, /?3<0, (1.5)

provides a reasonable representation of average leaf weight y and 
time X. It is evident from the figure that considerable variation in 
the parameters Pi, p2 and Ps that characterize the growth pattern 
exists among plots for a given genotype. For this kind of growth 
data, it is reasonable to expect serial correlation among measure­
ments within the same plot. In addition, intra-plot variability may 
be expected to increase with the average level of response. Thus, 
these data have several features in common with the previous ex­
amples: (i) a nonlinear dependence of response on parameters of
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Days after planting

Figure 1.2. Average leaf weight-time profiles for 8 plots planted with Plant 
Introduction 1988.

interest; (ii) similarly shaped profiles for each plot; and (iii) het­
erogeneous within-plot variability, which may also include serial 
correlation. As with the cefamandole example, sufficient data are 
available for each plot to allow fitting of model parameters based 
on data from that plot only.

Variation in growth characteristics may depend on several fac­
tors. The primary objective of the experiment was comparison of 
growth characteristics (initial leaf weight, limiting leaf weight, and 
growth rate) for the two genotypes. Weather patterns differed con­
siderably over the three years: 1988 was unusually dry, 1989 was 
wet,, and conditions in 1990 were normal. Comparison of growth 
across weather patterns was also of interest.

1.1.4 Bioassay for relaxin by RIA

Determination of the concentration of a particular protein in an un­
known sample frequently relies on immunoassay or bioassay tech­
niques. Bioassay methods are generally based on a relevant measure
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Figure 1.3. Assay response (cAMP)~concentration data for four runs of 
the relaxin hioassay.

of bioactivity of the protein in question and involve measurement 
of activity at several known (standard) concentrations of the pro­
tein (analyte). The resulting concentration-response curve is used 
to determine the protein concentration in unknown samples by in­
verse regression (calibration).

Figure 1.3 shows concentration-response data obtained for stan­
dard concentrations in four runs of a bioassay for the therapeutic 
protein relaxin (Fei et a/., 1990). For this assay, bioactivity of re­
laxin is measured by increased generation and release of intracellu­
lar adenosine-3', 5'-cyclic monophosphate (cAMP) by normal hu­
man uterine endometrial cells in the presence of relaxin. (cAMP is 
an enzyme that plays a key role in regulating glycogen metabolism 
in the cell.) For each a total of nine runs, triplicate cAMP mea­
surements were determined by radioimmunoassay for each of seven 
known relaxin concentrations. A single measurement at zero stan­
dard was also available for each run; by convention, the response 
at zero concentration has been plotted at two dilutions below the
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lowest standard in Figure 1.3. A standard choice of dose-response 
model in describing this kind of assay data is the four-parameter 
logistic function

' =  /?! + /?2 -  A
l-fexp{i04(loga:-/?3)}’

i9 i,/?2> 0 . (1.6)

The response y in (1.6) is cAMP level (pmoles/ml), and x  rep­
resents the known relaxin concentration (ng/ml). The parameters 
in (1.6) have the following interpretation: and 02 represent re­
sponse at ‘infinite’ and zero concentration, respectively; 0z is the 
logJSCso value, that is, the logarithm of the concentration that 
gives a response midway between 0i and 02\ and 0a is a slope 
parameter governing the steepness of the coace»'tration-response 
curve. It is evident from Figure 1.3 that values of the parameters 
may vary considerably from run to run. It is also clear from the 
plots that within-assay variability depends strongly on response 
level.

These data share several features with the previous examples: (i) 
nonlinear dependence of y on regression parameters; (ii) similarly 
shaped concentration-response profiles for each run, with possibly 
different parameter values from run to run; and (iii) within-run 
variability that increases with the level of the response.

What inferential questions are of interest for assay data of this 
kind? The primary focus is typically on calibration, or inverse re­
gression; that is, estimation of the concentration of analyte in an 
unknown sample based on the observed response for that sample. 
Ancillary questions pertain to assay precision and performance. 
For example, with what precision are unknown samples calibrated? 
How may one form accurate confidence intervals about estimated 
concentrations? What is the ‘acceptable range’ of the assay, where 
calibrated estimates are sufficiently precise? What is the lowest 
limit of reliable assay measurement? Can one exploit the similar­
ity among assay runs to improve calibration? These issues will be 
discussed in detail in Chapter 10. For now, we remark that the in­
ferential challenge is the same as that in the previous examples, to 
address the questions of interest within a framework that correctly 
accommodates both the inter- and intra-assay variation.

1.2 Model specification

In the examples of the previous section, several common features 
of the data may be identified:
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(i) Repeated response measurements taken on a number of dif­
ferent individuals (subjects, plots, or assay runs).

(ii) Nonlinear dependence of the response y on a, set of unknown 
parameters, for each individual.

(iii) Response profiles that are similarly shaped'across individuals, 
but that may have different values of the parameter vector ¡3 
for different individuals.

(iv) A pattern of within-individual variability that is not neces­
sarily homogeneous. Possible deviations from constant vari­
ation, or homoscedasticity, include a dependence of the vari­
ability on mean response, serial correlation among measure­
ments within an individual, or both.

(v) Inter-individual variability between regression parameters that 
may be considered to be random, to be systematically re­
lated to individual-specific characteristics, or a combination 
of both.

To incorporate these features in an inferential setting, a useful 
strategy is to build a hierarcbical, or staged, model. Pull details are 
presented in Chapter 4; here, we sketch an outline of the approach, 
using a two-stage model.

The first stage specifies the mean and covariance structure for 
a given individual. For the ith of m individuals, assume that the 
{rii X 1) response vector y », satisfies

E(yi|/3i) = /i(/30 =
1 0i) 

f  {^inn 0i) .
CoY{yi\(3i) = fli. (1.7)

In (1.7), the function /  characterizes the systematic dependence of 
the response on the repeated measurement conditions for the ith 
individual, summsurized in the covariate vectors « i i , . . . , Xim. The 
regression function /  depends in a nonlinear fashion on a regression 
parameter /3i specific to the ith individual and has the same basic 
functional form for all individuals; different individual response 
patterns are accommodated through the possibility of different /3i 
values for different individuals as well as through the individual- 
specific covariate vectors Xij, The matrix is a covariance matrix 
summarizing the pattern of random variability associated with the 
data for the ith individual. Along with an assumption about the 
distribution of y,*, the first stage model (1.7) thus describes both
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systematic and random features of the data at the intra-individual 
level.

Inter-individual variation is characterized in a second stage, con­
sisting of a model for variation in the regression parameters jS». 
This variation can be modeled using a distributional assumption 
for the j3i at various levels of complexity. For instance, one might 
specify a parametric ‘regression’ model for the A , e.g.,

/3i = A ifl + bi. ( 1.8)

In (1.8), fix is assumed to depend linearly and systematically on a 
vector of parameters j9 and on individual-specific information, such 
as physiological and demographic characteristics in the quinidine 
study or genotype and weather condition ir the soybean growth 
study, summarized in a design matrix A{, The ‘error’ corre­
sponds to the random component of inter-individual variation, 
which might be taken to have mean zero and covariance matrix D. 
One could add the further restriction that the distribution of the 
fii belongs to a particular parametric family, for example, the mul­
tivariate normal distribution. In the example, this would amount 
to the assumption that

We shall refer to the case where the variation in the inter-individueil 
random peirameters is specified by a parametric model like (1.8) 
and the random component is assumed to belong to a particular 
distributional family eis the fully pareunetric model specification. 
At the other end of the spectrum, one might make no assumptions 
at all about the form or distribution of the ¡3i. We refer to this as 
the nonparametric model specification. An intermediate possibility 
is to specify a parametric model for the /3i as in (1.8), but to avoid 
the assumption of a particular distributional family for the random 
component. We refer to this kind of model specification as being 
semiparametric. Finally, the kind of two-stage model that we con­
sider may be arrived at naturally from a Bayesian perspective. In 
the Bayesian view, individual-specific regression parameters fii are 
considered to arise from a distribution whose mean and covariance 
are drawn from an appropriate prior distribution.

Each of the four kinds of model specifications for the random pa­
rameters -  parametric, nonparametric, semiparametric, or Bayesian 
-  leads to different inferential approaches. One other factor is a 
major determinant of the inferential technique to be applied: the 
relative amount of information that is available per individual. We
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have seen in the context of pharmacokinetics that two quite dis­
tinct scenarios are possible: (i) sparse information on each of a 
large number of individuals and (ii) rich information on each of 
a small number of individuals. Intermediate scenarios are also a 
possibility, of course. Not surprisingly, the sampling design plays 
a role in determining what analysis methods may be employed; 
certain methods that can be used when sampling on an individual 
basis is relatively dense are not applicable to the sparse data case.

We shall use the term ‘individual’ throughout this book to refer 
to the experimental unit over which repeated measurements are 
available. In the repeated measurement literature, use of the term 
‘subject’ is common in this context. Other terms include ‘block’ 
and ‘stratum;’ the term ‘duster’ has also been proposed (Lindstrom 
and Bates, 1990). We avoid the latter term due to its more common 
usage elsewhere in the statistical literature, and use ‘individual’ in 
preference to ‘subject’ because of its greater generality.

1.3 O utline of th is book

The goal of this book is to provide a unified presentation of model­
ing strategies and inferential procedures for the types of continuous 
repeated measurement data exemplified by the data sets described 
in section 1.1. This kind of data has recently received considerable 
attention, but discussion of inferential methods is scattered across 
a wide variety of sources, both in the statistical and subject-matter 
literature. We present methods suitable for continuous data of this 
type; techniques for binary or discrete data are not discussed. By 
providing a clear delineation of models and methods, we hope to 
make the relevant techniques more accessible both to statisticians 
and investigators faced with the challenge of analyzing nonlinear 
repeated measurement data.

For the most part, we have tried to keep exposition at an interme­
diate level, with emphasis throughout on applications. Familiarity 
with regression analysis at the level of a text such as Draper and 
Smith (1981) and with statistical inference at a first-year graduate 
level should provide adequate background for most of the material 
in this book. Chapters 7 and 8 are at a somewhat higher mathe­
matical level than the remainder of the book, but can be omitted 
without significant loss of continuity.

Hierarchical nonlinear modeling provides the central framework 
for everything else in this book. A review of nonlinear regression 
methods is given in Chapter 2, which, in the context of repeated
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measurement data, is relevant to data from a single individual only. 
Many of the techniques applicable to hierarchical nonlinear mod­
els are direct extensions of methods for individual data. Chapter 3 
provides a comprehensive review of hierarchical linear models; a 
good understanding of this material is helpful in making the tran­
sition to the nonlinear case. Chapter 4 is central to the rest of the 
book; here, we lay out the various approaches to hierarchical non­
linear modeling in some detail. As mentioned above, these may be 
categorized as (i) fully parametric, (ii) semi- and nonparametric, 
and (hi) Bayesian. Each of these perspectives leads to different in­
ferential strategies, discussed in Chapters 5-8. In Chapters 5 and 
6, inferential procedures for the fully parametric (normal theory) 
hierarchical nonlinear model are presented. Chapter 5 discusses 
twchstage methods, which are applicable only in the case where 
sufficient data are available for each individual to allow estima­
tion of individual-specific regression parameters based on data for 
that individual only. Methods presented in Chapter 6 are based on 
some type of linearization of the model and may also be applied 
to the ‘sparse data’ case. Chapter 7 is devoted to semiparamet- 
ric and nonparametric inference. Bayesian methods are described 
in Chapter 8. Each of Chapters 9 and 10 treats a particular area 
of application in detail. Chapter 9 discusses population pharma­
cokinetic and pharmacodynamic modeling. The analysis of assay 
data, with particular reference to immunoassays and bioassays, is 
covered in Chapter 10. Case studies in the areas of crop science, 
forestry, and seismology, illustrating the general applicability of the 
methods, are presented in Chapter 11. The book concludes with a 
discussion of open issues and general comments (Chapter 12).

Schematically, the organization of the material may be repre­
sented as follows:

Introduction 
Background material 
Model specification 
Inferential methods 
Applications and case studies 
Conclusion

It is inevitable that different readers will approach this book 
with different backgrounds and prior exposure to this material. 
Depending on background and the primary focus of the reader’s 
interest, different reading strategies are possible. For instance, a 
researcher in pharmacokinetics, whose primary interest is in pop­
ulation pharmacokinetic and pharmacodynamic modeling, might

Chapter 1 
Chapters 2 and 3 
Chapter 4 
Chapters 5-8 
Chapters 9-11 
Chapter 12
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choose to include the following sections on a first reading: Chap­
ter 1, Chapter 2, Chapter 3 (excluding sections 3.2.3,3.3.3,3.4, and 
3.6), sections 4.1, 4.2, and 4.3.1, Chapters 5 and 6, and Chapter 9. 
This would provide comprehensive coverage of the fully parametric 
approach to population modeling. Other approaches, such as the 
nonparametric or Bayesian paradigms in Chapters 7 and 8, could 
be covered on subsequent readings.

Similarly, the above sequence might provide a useful first ap­
proach to statisticians unfamiliar with this material. For these 
readers, it would also be useful to include Chapters 10 and 11 to 
achieve a better understanding of the scope of the methods. Read­
ers with interests in applications in biometry not directly related to 
pharmacokinetics or pharmr^codynamics might cover the following 
chapters: Chapters 1-3 (excluding sections 3.2.3 and 3.3.3), Chap­
ters 4-6, and Chapter 11, possibly including Chapter 10, depending 
on interest.

Computational aspects play an important role in the practical 
implementation of all of the techniques described in this book. 
For this reason, we have generally included a section in each of 
the relevant chapters that discusses software implementation. Some 
appreciation of potential computational diflBculties is necessary if 
the methods discussed in this book are to be implemented sensibly.
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CHAPTER 2

Nonlinear regression models for 
individual data

2.1 Introduction

Individual repeated measurement data often exhibit a relationship 
between response and measurement factors that is best character­
ized by a model nonlinear in its parameters. In some settings, an 
appropriate nonlinear model may be derived on the basis of theo­
retical considerations. In other situations, a nonlinear relationship 
may be employed to provide an empirical description of the data. In 
this chapter, as a prelude to discussion of the hierarchical nonlinear 
model for data from several individuals, we review techniques for 
nonlinear modeling and inference for data from a single individual 
only.

To fix ideas, consider the data in Table 2.1, taken from a study 
reported by Kwan et al (1976) of the pharmacokinetics of in- 
domethacin following bolus intravenous injection of the same dose 
in six human volunteers. For each subject, plasma concentrations 
of indomethacin were measured at 11 time points ranging from 
15 minutes to 8 hours post-injection. In this chapter, we focus 
on the data for the fifth subject only for purposes of illustration; 
the concentration-time profile for this individual is shown in Fig­
ure 2.1. The usual approach to derivation of a suitable model for 
pharmacokinetic data of this kind is predicated upon the assump­
tion of a compartment model for the human body, as described 
in section 1.1.1. This approach suggests that, except for random 
intra-individual variation, the biexponential function

2/ = exp{-02x) +133 exp(-/?4a;), . . . ,  A  > 0,

is a reasonable representation of plasma concentration y as a. func­
tion of time X.
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Table 2.1. Plasma concentrations (fig/ml) following intravenous 
injection of indomethacin for six human subjects.

time (hrs)

0.25
0.50
0.75
1.00
1.25
2.00
3.00
4.00
5.00
6.00 
8.00

Subject 
3 4

1.50
0.94
0.78
0.48
0.37
0.19
0.12
0.11
0.08
0.07
0.05

2.03
1.63
0.71
0.70
0.64
0.36
0.32
0.20
0.25
0.12
0.08

2.72̂
1.49
1.16
0.80
0.80
0.39
0.22
0.12
0.11
0.08
0.08

1.85
1.39
1.02
0.89
0.59
0.40
0.16
0.11
Ü.10
0.07
0.07

6

2.05
1.04
0.81
0.39
0.30
0.23
0.13
0.11
0.08
0.10
0.06

2.31
1.44
1.03
0.84
0.64
0.42
0.24
0.17
O.io
0.10
0.09

 ̂ outlier; not included in later analyses

Individual data that follow a nonlinear model often exhibit re­
sponse variation that changes systematically with the level of the 
response. Heterogeneous variation occurs in nearly all fields of ap­
plication, including those that are the focus of this book. For ex­
ample, assay data typically exhibit intra-run variance that is an 
increasing function of the response level. Variation in pharmacoki­
netic data and data from growth studies is also widely acknowl­
edged to be related systematically to mean response.

Another complication for repeated measurement data may arise 
from the tendency for observations on a given individual to be re­
lated. When measurement is repeated over time, serial correlation 
may be evident; in other contexts, correlation patterns may be due 
to factors such as adjacent positioning of samples on an assay mi­
crotiter plate, similarity in genetic composition of litter-mates, or 
spatial orientation of field samples.

Because of the frequency with which these features arise in prac­
tice, the overview of nonlinear regression modeling and inference 
given in this chapter includes detailed discussion of generalizations 
of the classical ordinary least squares approach to allow for hetero­
geneous response variance, often called heteroscedasticity, and for 
correlation. In section 2.2, the nonlinear regression model frame­
work is introduced, and we discuss inference, including methods for
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Figure 2.1. Plasma concentration-time profile, indomethacin data, sub­
ject 5. Fits of model (2.4S) are superimposed; see section 2.5. The solid 
line is the OLS fit (0 =  0), the dotted line is ĥe GLS fit with 0 =  1, and 
the dashed line is the GLS fit with 0 estimated by PL (0 =  0.S2).

handling heterogeneity of variance and correlation, in section 2.3. 
Notes on computational methods are given in section 2.4, and two 
examples are considered in section 2.5. In section 2.6, we comment 
on related approaches. Section 2.7 contains a brief discussion, and 
the chapter concludes with bibliographic notes in section 2.8.

2.2 Model specification

The classical nonlinear regression model described in this section 
is a direct extension of the linear case. We begin our discussion of 
this model in section 2.2.1 with a statement of the basic statistical 
model and notation. In section 2.2.2, we set out the classical as­
sumptions and describe how they may be violated in practice. We 
describe a number of generalizations in section 2.2.3 to account for 
departures from the assumptions. For simplicity, the index i for 
individual is suppressed throughout this chapter.
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2,2,1 Basic nonlinear regression model

The basic model for a response variable y has two main compo­
nents: the nonlinear function characterizing mean response and a 
specification for intra-individual response variance. Let denote 
the response taken at the jth  covariate value Xj^ j  =
The Xj are most often viewed as fixed quantities, and, in the 
case where they are random, the model and assumptions below 
are understood to be conditional on their values. In the repeated 
measurement context, the response vector y  =  [j/i,. . .  ,2/n]̂  sum­
marizes the information available for a single individual taken at 
values X  =  , . . . ,  x^^Y of the repeated measurement factor(s).

The model for the j th  observation is usually written as

(2.1)

In (2.1), the regression function /  depends on (px 1), the vector of 
regression parameters, in a nonlinear fashion. For the indomethacin 
data,

f ix ,  0) =  01 exp{-02x) +  03 exp i-0 ix), (2.2)
with =  [)9i , . . . , / 34]'. The random errors ej reflect uncertainty 
in the measured response. For repeated measurement data, the 
vector 6 = [e i,...,en ]' thus summarizes the uncertainty for all 
observations on a given individual.

Vj = +

2,2,2 Classical assumptions

The classical nonlinear regression framework specifies that data 
arise according to (2.1) together with the following assumptions:

(i)
(ii)
(iii)

The errors ej have mean zero. 
The errors Cj are uncorrelated.

andThe errors ej have common variance cr̂ , Var(ej) =  
are identically distributed for all Xj ,

(iv) The errors Cj are normally distributed.
The first assumption ensures that the model /  for mean response 

is correctly specified. This assumption is rarely called into question, 
as it is usually the case that the form of the covariate-response 
relationship is fairly well understood, especially for nonlinear re­
lationships, where the model may result directly from theoretical 
considerations.

The remaining three assumptions are fairly restrictive and may 
not hold in some applications. Assumption (iv) is a reflection of
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the emphasis of much of statistical methodology on the historical 
Gaussian paradigm and forms the basis for the standard approach 
to inference. In applications for which nonlinear models are appro­
priate, however, this assumption may be particularly unrealistic. 
For instance, for given Xj, the distribution of biological data may 
be heavily skewed or subject to a higher intensity of outlying ob­
servations them would be expected under normality.

If the assumption of normality (iv) does hold, along with that 
of uncorrelated errors (ii), then the errors are independently dis­
tributed. Thus, the assumption of independence is usually made 
directly, and under the full set of assumptions, the yj are indepen­
dently normdly distributed with

E(yj) = Var(ÿj) = o (2.3)

For repeated measurement data, however, even the less stringent 
specification of uncorrelated errors may be unrealistic; for example, 
measurements taken over time on a given individual may be serially 
related.

Assumption (iii), that of constant intra-individual response vari­
ance, is violated frequently in practice. For example, growth data 
often exhibit constant coeflScient of variation rather than constant 
variance; that is, variance proportional to the square of the mean 
response. In this case, a more appropriate assumption than (2.3) 
would be

E(yj) =  f { x j , ß ) ,  Var(yj) =  cr ^{ f { x j , ß ) y (2.4)

where the scale parameter a is the coefficient of variation. A general 
discussion of extensions of the classical model to accommodate 
heterogeneity of variance is given in the next section.

2,2,S Generalizations of the classical framework

The classical nonlinear regression framework may be generalized 
to accommodate departures from the assumptions in a variety of 
ways. The following exposition is by no means exhaustive. We 
adopt the perspective taken in Chapters 2 and 3 of Carroll and 
Ruppert (1988) and Chapter 6 of Seber and Wild (1989); specifi­
cally, that of modeling systematic response variance and correlation 
patterns explicitly. We focus on this strategy because the hierarchi­
cal nonlinear model discussed in the remainder of the book adapts 
readily to account for these features. Other approaches are noted 
in section 2.7.


