HUMAN FACTORS IN DEFENCE

A Human Factors and Ergonomics Analysis of Mission Planning and Battlespace Management

Neville A. Stanton Daniel P. Jenkins Paul M. Salmon Guy H. Walker Kirsten M. A. Revell Laura A. Rafferty

DIGITISING COMMAND AND CONTROL

Human Factors in Defence

Series Editors:

Professor Don Harris, Cranfield University, UK Professor Neville Stanton, Brunel University, UK Professor Eduardo Salas, University of Central Florida, USA

Human factors is key to enabling today's armed forces to implement their vision to 'produce battle-winning people and equipment that are fit for the challenge of today, ready for the tasks of tomorrow and capable of building for the future' (source: UK MoD). Modern armed forces fulfil a wider variety of roles than ever before. In addition to defending sovereign territory and prosecuting armed conflicts, military personnel are engaged in homeland defence and in undertaking peacekeeping operations and delivering humanitarian aid right across the world. This requires top class personnel, trained to the highest standards in the use of first class equipment. The military has long recognised that good human factors is essential if these aims are to be achieved.

The defence sector is far and away the largest employer of human factors personnel across the globe and is the largest funder of basic and applied research. Much of this research is applicable to a wide audience, not just the military; this series aims to give readers access to some of this high quality work.

Ashgate's *Human Factors in Defence* series comprises of specially commissioned books from internationally recognised experts in the field. They provide in-depth, authoritative accounts of key human factors issues being addressed by the defence industry across the world.

Digitising Command and Control

A Human Factors and Ergonomics Analysis of Mission Planning and Battlespace Management

> NEVILLE A. STANTON University of Southampton, UK

> DANIEL P. JENKINS Sociotechnic Solutions Ltd, UK

PAUL M. SALMON Monash University, Australia

GUY H. WALKER Heriot-Watt University, UK

KIRSTEN M. A. REVELL University of Southampton, UK

k

LAURA A. RAFFERTY University of Southampton, UK

First published 2009 by Ashgate Publishing

Published 2016 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN 711 Third Avenue, New York, NY 10017, USA

Routledge is an imprint of the Taylor & Francis Group, an informa business

Copyright © Neville A. Stanton, Daniel P. Jenkins, Paul M. Salmon, Guy H. Walker, Kirsten M. A. Revell and Laura A. Rafferty 2009

Neville A. Stanton, Daniel P. Jenkins, Paul M. Salmon, Guy H. Walker, Kirsten M. A. Revell and Laura A. Rafferty have asserted their moral right under the Copyright, Designs and Patents Act, 1988, to be identified as the authors of this work.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

British Library Cataloguing in Publication Data

Digitising command and control : a human factors and ergonomics analysis of Mission Planning and Battlespace management. -- (Human factors in defence)
1. Command and control systems--Planning. 2. Human-machine systems--Design.
I. Series II. Stanton, Neville, 1960– 355.3'3041'011-dc22

Library of Congress Cataloging-in-Publication Data

Digitising command and control : a human factors and ergonomics analysis of mission planning and battlespace management / by Neville A. Stanton ... [et al.].

p. cm. -- (Human factors in defence)

Includes bibliographical references and index.

ISBN 978-0-7546-7759-8 (hardcover)

1. Electronics in military engineering. 2. Command and control systems. 3. Digital

communications. 4. Human engineering. 5. Military planning. I. Stanton, Neville, 1960-

UG485.D53 2009 355.3'3041--dc22

2009011260

ISBN: 978-0-7546-7759-8 (hbk) ISBN: 978-1-3155-7724-1 (ebk)

Contents

List Ack Glos	of Figures of Tables nowledgements ssary ut the Authors face	vii xi xiii xv xvii xvii xxi
1	Overview of the Book	1
2	Human Factors in System Design	7
	Human Factors	7
	Human Factors Methods	9
3	Mission Planning and Battlespace Management	15
	The Planning Process at Battle Group	15
	Summary of Observed Vignette and Comparison of Media Used	23
4	Constraint Analysis	29
	Method	30
	Results	34
	Conclusions	37
5	Hierarchical Task Analysis	39
	Introduction to Hierarchical Task Analysis	39
	Digital Mission Planning and Battle Management Seven Questions Analysis	40
	Human Error Analysis	54
	Conclusions	55
6	Distributed Situation Awareness	63
	Digital MP/BM and Distributed Situation Awareness	63
	Distributed Situation Awareness	64
	Methodology	69 70
	Results	70
	Battle Execution Analysis	74
	Discussion Conclusions	82 95
7	Social Network Analysis	97
'	Aim of the Chapter	97
	Introduction	97
	Part 1: Developing the NATO SAS-050 Model	100
	Part 2: Analysing Live NEC Using the NATO Approach Space	103
	Results: Content of Communications	107

	Results: Structure of Communications Summary	113 121
8	SCADA Analysis EEMUA 201 SCADA System Analysis	123 123
	Summary	135
9	Usability Questionnaire	139
	Context	139
	Method	139
	Results	140
	Conclusion	155
10	Environmental Survey	159
	Brief Introduction	159
	Best Practice Reference Point	159
	Data Collection	159
	Ambient Temperature	160
	Acoustics	166
	Air Quality	170
	Lighting	171
	Vibration	175
	Interior Design and Aesthetics	176
	Summary	177
11	Summary, Conclusions and Recommendations	181
	Summary of Findings	181
	Recommended Improvements for Digital MP/BM	184
	Principles for Future Systems Design	186
	Designing Digital MP/BM for Human Use	188
	Conclusions for Human Factors in Mission Planning	191
Refe	rences	195
Inde.	x	203
Auth	or Index	209

List of Figures

Figure 2.1	Illustration showing Human Factors effort is better placed in early stages of the	ne
-	design process	10
Figure 2.2	Application of Human Factors methods by phase of the design process	11
Figure 3.1	Battle Group Headquarters	16
Figure 3.2	Planning timeline on a flipchart	17
Figure 3.3	Threat integration on map and overlay	18
Figure 3.4	Mission Analysis on a whiteboard	19
Figure 3.5	Effects Schematic drawn on a flipchart and laid on the map	19
Figure 3.6	COAs developed on a flipchart	20
Figure 3.7	DSO on map and overlay	21
Figure 3.8	DSOM on a flipchart	22
Figure 3.9	Coordination of force elements on map and overlay via a wargame	22
Figure 3.10	Coordination Measures captured on a whiteboard	23
Figure 3.11	Fire control lines on map and overlay also recorded in staff officer's	
	notebook	24
Figure 3.12	Relationships between the cells in Battle Group Headquarters during mission	
	planning	26
Figure 4.1	Abstraction Hierarchy for the command process	31
Figure 4.2	Subjective opinion of the digital system in work domain terms	33
Figure 4.3	Concordance of positive ratings between levels	35
Figure 4.4	Concordance of negative ratings between levels	36
Figure 5.1	Hierarchical Task Analysis procedure	40
Figure 5.2	Combat Estimate Seven Questions task model	41
Figure 5.3	Question One HTA extract (1)	44
Figure 5.4	Question One HTA extract (2)	45
Figure 5.5	Question One HTA extract (3)	46
Figure 5.6	Question Two Mission Analysis HTA	48
Figure 5.7	Question Three HTA	49
Figure 5.8	Questions Four–Seven HTA	51
Figure 5.9	DSO construction HTA	52
Figure 5.10	Synchronisation matrix construction HTA	53
Figure 5.11	SHERPA EEM taxonomy	56
Figure 5.12	SHERPA flowchart	57
Figure 5.13	Advantages and disadvantages of each planning process	61
Figure 6.1	Propositional network example	67
Figure 6.2	Bde/BG HQ layout showing component cells	70
Figure 6.3(a)	Question 1 SA requirements	72
Figure 6.3(b)	Question 2 SA requirements	73
Figure 6.4	Combat Estimate task model	74
Figure 6.5	Question one propositional network	75
Figure 6.6	Question two propositional network	76
Figure 6.7	Question three propositional network	77
Figure 6.8	Question four propositional network	78

Figure 6.9	Question five propositional network	78
Figure 6.10	Question six propositional network	79
Figure 6.11	Question seven propositional network	80
Figure 6.12	Ops table layout	81
Figure 6.13	Battle Execution task model	82
Figure 6.14	Harry & Scabbers propositional network	84
Figure 6.15	Voldemort propositional network	85
Figure 6.16	Hagrid propositional network	86
Figure 6.17	Dobby propositional network	87
Figure 6.18	Dumbledore propositional network	88
Figure 6.19	Hedwig propositional network	89
Figure 6.20	Engineer versus intelligence components differing views on enemy and	90
Figura 6 21	ground information elements Inaccurate information elements	90 92
Figure 6.21 Figure 6.22	Untimely information elements	92 93
	•	
Figure 6.23	Lack of trust in information elements	94
Figure 7.1	Illustration of archetypal networks. Associated with each is empirical	99
Eigura 7.2	evidence concerning its performance on simple and complex tasks	
Figure 7.2	Pie chart showing the 'type' of data communications being transmitted	108 109
Figure 7.3	Pie chart showing the type of data communications received	
Figure 7.4	Pie chart showing the content of voice communications transmitted according to Bowers et al.'s (1998) taxonomy	g 111
Figure 7.5	Pie chart showing the type of voice communications received according to Bowers et al.'s (1998) taxonomy	111
Figure 7.6	Illustration of the 34 separate social network analyses plotted into the NATO SAS-050 Approach Space to show how the configuration of digitally	116
Figure 7.7	mediated communications changes over time (grey numbered spots) Periodogram illustrating the presence of periodic changes in network	116
Figure 7.8	density Spectral analysis graph illustrating the presence of periodic changes in	117
E. 70	network diameter	118
Figure 7.9	Illustration of the 34 separate social network analyses plotted into the NATO SAS-050 Approach Space to show how the configuration of voice	
	mediated communications changes over time (grey numbered spots)	119
Figure 7.10	Spectral analysis graph illustrating the presence of periodic changes in network density	120
Figure 7.11	Spectral analysis graph illustrating the presence of periodic changes in high-status nodes	121
Figure 8.1	Diagram showing the main system screen (Local Operational Picture; LOP)	124
Figure 8.2	Diagram showing the obscuration of LOP window by the Operational Plan window	124
Figure 8.3	Diagram showing the LOP window and a planning window	124
Figure 8.4	Diagram showing the ability to resize windows	125
Figure 8.5	Diagram showing overlapping resizable windows and multiple windows	120
1 15010 0.5	displayed on a single screen	127
Figure 8.6	Diagram showing how to navigate to the favourites palette	129
Figure 8.7	Operational record within the Watch Keeper log	129
0	1	

Figure 8.8	Diagram displaying a number of icons on top of one another	131
Figure 8.9	Diagram showing the LOP with the e-map turned off	133
Figure 8.10	Diagram displaying the ability to hide all icons except the user's own	133
Figure 8.11	Diagram showing the purple colour coding of certain buttons	134
Figure 9.1	Overall median values for Visual Clarity	141
Figure 9.2	Comparison of median values for Visual Clarity by group	142
Figure 9.3	Overall median values for Consistency	143
Figure 9.4	Comparison of median values for Consistency by group	144
Figure 9.5	Overall median values for Compatibility	144
Figure 9.6	Comparison of median values for Compatibility by group	145
Figure 9.7	Overall values for Informative Feedback	146
Figure 9.8	Comparison of median values for Informative Feedback by group	147
Figure 9.9	Overall median values for Explicitness	148
Figure 9.10	Comparison of median values for Explicitness	148
Figure 9.11	Overall median values for Appropriate Functionality	149
Figure 9.12	Comparison of median values for Appropriate Functionality by group	150
Figure 9.13	Overall median values for Flexibility and Control	151
Figure 9.14	Comparison of median values for Flexibility and Control by group	151
Figure 9.15	Overall values for Error Prevention and Correction	152
Figure 9.16	Comparison of median values for Error Prevention and Correction by	
	group	153
Figure 9.17	Overall values for User Guidance and Support	154
Figure 9.18	Comparison of median values for User Guidance and Support by group	154
Figure 9.19	Overall median values for System Usability Problems	155
Figure 9.20	Comparison of median values for System Usability Problems by group	156
Figure 9.21	Overall median values for categories 1 to 9	156
Figure 9.22	Comparison of median values for categories 1 to 9 by group	157
Figure 10.1	Graph showing how PMV values map on to the predicted percentage of	
	people thermally dissatisfied	162
Figure 10.2	Longitudinal overview of the thermal environment extant in Bde HQ	165
Figure 10.3	Longitudinal overview of the thermal environment extant in BG HQ	165
Figure 10.4	Longitudinal overview of relative humidity extant in Bde HQ	166
Figure 10.5	Longitudinal overview of relative humidity extant in BG HQ	167
Figure 10.6	Noise levels measured in dB(A) at Bde HQ during the CPX	168
Figure 10.7	Noise levels measured in dB(A) at BG HQ during the CPX	169
Figure 10.8	The Cornell Office Environment Survey	172
Figure 10.9	BG and Bde responses to questions about environmental conditions	173
Figure 10.10	BG and Bde responses to questions about physical symptoms	173
Figure 10.11	Bar chart showing the extent of non-compliance with environmental	
	guidelines	178
Figure 11.1	Key enablers to enhance performance	187

List of Tables

Table 3.1	Media used during the planning process	24
Table 3.2	Team work required for each stage of the planning process	25
Table 5.1	Question SHERPA analysis extract	58
Table 5.2	HTA analysis product construction findings summary	59
Table 6.1	Planning key information elements	81
Table 6.2	Battle execution key information elements	83
Table 7.1	Free versus 'Constrained' Digital Communications that are 'Transmitted'	108
Table 7.2	Free versus 'Constrained' data communications that are 'Received'	110
Table 7.3	Standardised beta coefficients show the relative contribution that each voice	
	communications subscale makes towards total communications (for both	
	transmit and receive events)	112
Table 7.4	Data and information carried by digital and voice communications	113
Table 7.5	Data vs Information Received and Transmitted by Brigade Headquarters	113
Table 7.6	Overall characterisation of the network type extant at the digital communicati	ons
	layer compared to a number of social network archetypes	114
Table 7.7	Overall characterisation of the network type extant at the voice communication	ons
	layer compared to hierarchical and peer-to-peer archetypes	118
Table 8.1	Summary of EEMUA survey	136
Table 10.1	Environmental requirements and recommendations from BS EN	
	ISO 11064-6:2005	160
Table 10.2	Comparison of ideal and mean recorded temperature values	161
Table 10.3	Summary table of control room relevant PMV and PPD values	163
Table 10.4	Minimum requirements for work place noise levels	166
Table 10.5	Optimum requirements for control room noise levels	167
Table 10.6	Rapid assessment of spectral character of ambient sound	169
Table 10.7	Objective values for air quality	170
Table 10.8	Results of air-quality walk-through checklist	171
Table 10.9	Maximum and minimum requirements for control room lighting	174
Table 10.10	Office lighting survey	174
Table 10.11	Results table for interior design and aesthetic checklist	177
Table 10.12	Control room aesthetics and surface reflectivity	177

Acknowledgements

The HFI DTC is a consortium of defence companies and Universities working in cooperation on a series of defence-related projects. The consortium is led by Aerosystems International and comprises Birmingham University, Brunel University, Cranfield University, Lockheed Martin, MBDA and SEA. The consortium was recently awarded The Ergonomics Society President's Medal for work that has made a significant contribution to original research, the development of methodology, and application of knowledge within the field of ergonomics

Aerosystems International	Birmingham University	Brunel University	Cranfield University
Dr Karen Lane	Professor Chris Baber	Professor Neville Stanton	Professor Don Harris
Dr David Morris	Professor Bob Stone	Dr Guy Walker	Andy Farmilo
Linda Wells	Dr Huw Gibson	Dr Daniel Jenkins	Dr Geoff Hone
Kevin Bessell	Dr Robert Houghton	Dr Paul Salmon	Jacob Mulenga
Nicola Gibb	Richard McMaster	Amardeep Aujla	Ian Whitworth
Robin Morrison	Dr James Cross	Kirsten Revell	Dr John Huddlestone
	Robert Guest	Laura Rafferty	Antoinette Caird-Daley
Lockheed Martin UK	MBDA Missile Systems	Systems Engineering and Assessment (SEA) Ltd	University of Southampton
Mick Fuchs	Dr Carol Mason	Dr Anne Bruseberg	Professor Neville Stanton
Lucy Mitchell	Grant Hudson	Dr Iya Solodilova-Whiteley	Dr Guy Walker
Fred Elsey	Chris Vance	Mel Lowe	Kirsten Ravell
Mark Linsell	Steve Harmer	Ben Dawson	Laura Rafferty
Ben Leonard	David Leahy	Jonathan Smalley	Richard McIlroy
Rebecca Stewart		Dr Georgina Fletcher	Linda Sorenson

Jo Partridge

We are grateful to DSTL who have managed the work of the consortium, in particular (and in alphabetical order) to Geoff Barrett, Bruce Callander, Jen Clemitson, Colin Corbridge, Katherine Cornes, Roland Edwards, Alan Ellis, Helen Forse, Beejal Mistry, Alison Rogers, Jim Squire and Debbie Webb.

This work from the HFI DTC was part-funded by the Human Sciences Domain of the UK Ministry of Defence Scientific Research Programme.

Further information on the work and people that comprise the HFI DTC can be found on www. hfidtc.com.

Glossary

3D	Three dimensional
AH	Abstraction Hierarchy
AoA	Avenue of Approach
BAE	Battlefield Area Evaluation
Bde	Brigade
BG	Battle Group
BS	British Standard
C2	Command and Control
CAST	Command Army Staff Trainer
CCIR	Commander's Critical Information Requirements
CDM	Critical Decision Method
СО	Commanding Officer
CoA	Course of Action
Comms	Communications
CoS	Chief of Staff
COTS	Commercial-off-the-Shelf
СРХ	Command Post Exercise
CRI	Colour Rendering Index
CSSO	Combat Service Support for Operations
CWA	Cognitive Work Analysis
dB	decibels
DP	Decision Point
DSA	Distributed Situation Awareness
DSO	Decision Support Overlay
DSOM	Decision Support Overlay Matrix
EEM	External Error Mode
EEMUA	Engineering Equipment & Materials Users Association
EN	European Standardisation
EXCON	Experimental Control Centre
FRAGO	Fragmentary Order
GUI	Graphical User Interface
HCI	Human Computer Interaction
HEI	Human Error Identification
HF	High Frequency
HFI DTC	Human Factors Integration Defence Technology Centre
HQ	Headquarters
HTA	Hierarchical Task Analysis
Hz	Hertz
IR	Information Requests
ISO	International Standards Organisation
ISTAR	Information, Surveillance, Targeting, Acquisition and
	Reconnaissance
LOP	Local Operational Picture

MoD	Ministry of Defence
MP/BM	Mission Planning and Battlespace Management system
MWL	Mental Work Load
NAI	Named Area of Interest
NATO	North Atlantic Treaty Organisation
NEC	Networked Enabled Capability or Network Centric Warfare
OCOKA	Observation, Cover and Concealment, Obstacles, Key Terrain
	and Avenues of Approach
OODA	Orientate, Observe, Decide and Act
Op Order	Operational Order
OpsO	Operations Officer
OSPR	Own Situation Position Report
PMV	Predicted Mean Vote
PPD	Predicted Percentage Dissatisfied
RFI	Request For Information
SA	Situation Awareness
SCADA	System Control and Data Acquisition
SHERPA	Systematic Human Error Reduction and Prediction Approach
SME	Subject Matter Expert
SNA	Social Network Analysis
SOI	Standard Operating Instruction
SOP	Standard Operating Procedures
SUDT	Staff User Data Terminal
TAI	Target Area of Interest
UDT	User Data Terminal
UHF	Ultra High Frequency
UK	United Kingdom of Great Britain
USA	United States of America
VDT	Visual Display Terminal
VHF	Very High Frequency
VUDT	Vehicle User Data Terminal
WDA	Work Domain Analysis
WESTT	Workload, Error, Situation awareness, Time and Teamwork method
WO	Warning Order

About the Authors

Professor Neville A. Stanton, Ph.D., F.B.Ps.S., F.Ers.S., M.I.E.T.

HFI DTC, Transportation Research Group, School of Civil Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. n.stanton@soton.ac.uk

Professor Stanton holds a Chair in Human Factors in the School of Civil Engineering and the Environment at the University of Southampton. He has published over 140 peer-reviewed journal papers and 14 books on Human Factors and Ergonomics. In 1998 he was awarded the Institution of Electrical Engineers Divisional Premium Award for a co-authored paper on Engineering Psychology and System Safety. The Ergonomics Society awarded him the Otto Edholm medal in 2001 and The President's Medal in 2008 for his contribution to basic and applied ergonomics research. In 2007 The Royal Aeronautical Society awarded him the Hodgson Medal and Bronze Award with colleagues for their work on flight deck safety. Professor Stanton is an editor of the journal *Ergonomics* and on the editorial boards of *Theoretical Issues in Ergonomics Science* and the *International Journal of Human Computer Interaction*. Professor Stanton is a Fellow and Chartered Occupational Psychologist registered with The British Psychological Society, and a Fellow of The Ergonomics Society. He has a B.Sc. (Hons) in Occupational Psychology from the University of Hull, a M.Phil. in Applied Psychology and a Ph.D. in Human Factors from Aston University in Birmingham.

Dr Daniel P. Jenkins

Sociotechnic Solutions Ltd, St Albans, Herts, AL1 2LW, UK.

Dr Jenkins graduated in 2004 from Brunel University with an M.Eng. (Hons) in Mechanical Engineering and Design receiving the 'University Prize' for top student in the department. With over 2 years experience as a design engineer in the automotive industry, Dr Jenkins has worked in a number of roles throughout the world. This wide range of placements has developed experience encompassing design, engineering, project management and commercial awareness. He returned to Brunel in 2005 to become a Research Fellow in the Ergonomics Research Group, working primarily on the HFI DTC project. Studying part-time, he gained his Ph.D. in Human Factors and Interaction Design in 2008. Both academically and within industry he has always had a strong focus on customer-orientated design; design for inclusion; and human factors.

Dr Paul M. Salmon

Human Factors Group, Monash University Accident Research Centre, Building 70, Clayton Campus, Monash University, Victoria 3800, Australia.

Dr Salmon is a Senior Research Fellow in the Human Factors Group at Monash University and holds a B.Sc. in Sports Science and an M.Sc. in Applied Ergonomics (both from the University of Sunderland). He has over 6 years experience in applied human factors research in a number of domains, including the military, civil and general aviation, rail and road transport and has previously worked on a variety of research projects in these areas. This has led to him gaining expertise in a broad range of areas, including human error, situation awareness and the application of Human Factors Methods, including human error identification, situation awareness measurement, teamwork assessment, task analysis and cognitive task analysis methods. Dr Salmon's current research interests include the areas of situation awareness in command and control, human error and the application of human factors methods in sport. He has authored and co-authored various scientific journal articles, conference articles, book chapters and books and was recently awarded the Royal Aeronautical Society Hodgson Prize for a co-authored paper in the society's *Aeronautical* journal.

Dr Guy H. Walker

School of the Built Environment, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Dr Walker read for a B.Sc. Honours degree in Psychology at Southampton University specialising in engineering psychology, statistics and psychophysics. During his undergraduate studies he also undertook work in auditory perception laboratories at Essex University and the Applied Psychology Unit at Cambridge University. After graduating in 1999 he moved to Brunel University, gaining a Ph.D. in Human Factors in 2002. His research focused on driver performance, situational awareness and the role of feedback in vehicles. Since this time he has worked for a human factors consultancy on a project funded by the Rail Safety and Standards Board, examining driver behaviour in relation to warning systems and alarms fitted in train cabs.

Kirsten M. A. Revell

HFI DTC, Transportation Research Group, School of Civil Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

Ms Revell graduated from Exeter University in 1995 with a B.Sc. (Hons) in Psychology, where her dissertation focused on the use of affordances in product design. After graduating, she spent 6 years working for Microsoft Ltd., implementing and managing the Microsoft Services Academy which prepared graduates for technical and consulting roles across Europe, the Middle East and Africa. In 2005 she undertook a second degree in Industrial Design at Brunel University. As part of her degree, she spent 10 months on industrial placement with the Ergonomics Research Group. During this time, she partook in a major field trial for the HFI DTC, assisting in data collection and analysis. She intends to bring together her psychology and design disciplines by pursuing a Human Factors approach to design, with a particular interest in affordances.

Laura A. Rafferty

HFI DTC, Transportation Research Group, School of Civil Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

Ms Rafferty completed her undergraduate studies in 2007 graduating with a B.Sc. in Psychology (Hons) from Brunel University. In the course of this degree she completed two industrial placements, the second of which was working as a Research Assistant in the Ergonomics Research Group. During this 7-month period she helped to design, run and analyse a number of empirical studies being run for the HFI DTC. Within this time Ms Rafferty also completed her dissertation exploring

the qualitative and quantitative differences between novices and experts within military command and control. She is currently in her second year of Ph.D. studies, focusing on team work and decision making associated with combat identification.

Preface

This book aims to show how Human Factors and Ergonomics can be used to support system analysis and development. As part of the research work of the Human Factors Integration Defence Technology Centre (HFI DTC), we are often asked to comment on the development of new technologies. For some time now we have looked in-depth at Command and Control activities and functions. The reader is guided to our other books on Modelling Command and Control, Cognitive Work Analysis, Distributed Situation Awareness and Socio-Technical Systems (all published under the *Human Factors in Defence* series) for a fuller appreciation of our work. The research reported in this book brought all of these areas together to look in-depth at a proposal for a new digitised system that would support Command and Control at Brigade Headquarters and below. For us it was a good opportunity to apply the methods we had been developing to a system that was in development. The pages within this book show you how we went about this task and what we found.

It is often the cry of Human Factors and Ergonomics that we are not asked for our involvement in system development early enough. In the past we have written books on Human Factors Methods (published by Ashgate and others), which explain how to apply the methods to system design and evaluation. Here we were given the opportunity, although we also feel that involvement when the system was being tested was too late, as we would have preferred to have been involved in system concept, design and development. Nevertheless, it is pleasing to have been involved in the testing phase, so that any shortcomings could be addressed in subsequent design.

As with all projects of this nature, we have gone to great pains to disguise the system under test for reasons of commercial confidentiality. This means that we are not allowed to disclose the name of the products nor any screen shots of the equipment. We have redrawn all the pictures and removed any reference to the company involved. It is a pity that such steps are required and we wish organisations could be more open about the testing of their products. Any short-term pain would turn into longer-term gain for the products, the users and the organisations involved.

As the contents of this book show, we started our analysis by understanding how mission planning and battlespace management works with traditional materials. The research team not only observed people conducting the tasks but also undertook the training in those tasks themselves. There is much insight to be gained through participant-observation, more than mere observation allows. It also enhanced the understanding of our subsequent observations, because we had performed the tasks for ourselves.

People may approach this book with many different requirements, goals and agenda. For those who want an overview of Human Factors Methods, we recommend chapter two. For those who want to understand mission planning processes, we recommend chapter three. If you are interested in any particular method, read the overview in chapter two, then chapter four for Cognitive Work Analysis, chapter five for Hierarchical Task Analysis, chapter seven for Social Network Analysis, chapter eight for SCADA Analysis, chapter nine for Usability Analysis and chapter ten for Environmental Analysis. For those interested in collaboration and communication in military headquarters, we recommend chapters three, six and seven. Finally, for those interested in our recommendations for future design of digital Command and Control we recommend chapter eleven. We have tried to write each chapter as stand-alone, but accept that people may want to dip in and out of chapters to suit their particular needs. We also feel that this book serves as a perfectly compatible accompaniment to any of our other books on Human Factors Methods, Modelling

Command and Control, Cognitive Work Analysis, Distributed Situation Awareness and Socio-Technical Systems. This book brings all of the topics presented in the previous books together to focus on the analysis of a mission planning and battlespace management system.

Chapter 1 Overview of the Book

This book presents a Human Factors and Ergonomics evaluation of a digital Mission Planning and Battlespace Management (MP/BM) system. Emphasis was given to the activities occurring within Brigade (Bde) and Battle Group (BG) level headquarters (HQ), and the Human Factors team from the HFI DTC distributed their time evenly between these two locations. The insights contained in this volume arise from a wide-ranging and multi-faceted approach, comprising:

- observation of people using the traditional analogue MP/BM processes in the course of their work to understand how analogue MP/BM is used in practice;
- constraint analysis (Cognitive Work Analysis, CWA) of the digital MP/BM system to understand if digital MP/BM is better or worse than the conventional paper-based approach;
- analysis of the tasks and goal structure required by the digital MP/BM, to understand the ease with which the activities can be performed and identify the likely design-induced errors;
- analysis of Distributed Situation Analysis (DSA), to understand the extent to which digital MP/BM supports collaborative working;
- analysis of the social networks that the digital system allows to form spontaneously (to understand the way in which people choose to communicate via voice and data);
- assessment against EEMUA 201 (Engineering Equipment & Materials Users Association) to understand if digital MP/BM meets with best Human Factors practice in control system interface design;
- assessment against a Usability Questionnaire, to gauge user reactions about the ease or difficulty of using the digital MP/BM system); and
- an environmental survey, to understand the extent to which the Bde and BG environment within which people are working meets with British Standard BS/EN/ISO 11064 Environmental Requirements for Control Centres.

A brief summary of the chapters of the book are presented next, with the detailed description of methods, approach, findings and recommendations within the main body of the book.

Chapter two presents an overview of the Human Factors and Ergonomics discipline and the methods associated with it. The discipline is introduced with a few examples of how it has contributed to improved display and control design. This is consistent with the overall aim of improving the well-being of workers, as well as their work, and the general goal of improved system performance. Two examples in particular resonate with the purpose of this book, both taken from aviation over 60 years ago but still with relevance today. Safety of systems is of major importance in Human Factors and safety critical environments have much to gain from its application. Human Factors and Ergonomics offers unique insights into the way in which people work, through the understanding of the interactions between humans, technology, tools, activities, products and their constraints. This understanding is assisted through the application of Human Factors and Ergonomics methods, which are also introduced. Some of these are pursued through