

CASE-BASED REASONING IN DESIGN

This page intentionally left blank

Case-Based
Reasoning
in Design

MARY LOU MAHER
University of Sydney, Australia

M. BALA BALACHANDRAN
University of Woliongong, Australia

DONG MEl ZHANG
CSIRO, Sydney Laboratory, Australia

tp ~~~~~~~i?C~~P Press
NEW YORK liND LONDON

First Published 1995 by
Lawrence Erlbaum Associates, Inc.

Published 2014 by Psychology Press
711 Third Avenue, New York, NY 10017

and by Psychology Press
27 Church Road, Hove, East Sussex, BN3 2FA

Psychology Press is an imprint o f the Taylor & Francis Group,
an informa business

Copyright © 1995 by Lawrence Erlbaum Associates, Inc.

All rights reserved. No part of this book may be reprinted or
reproduced or utilised in any form or by any electronic, mechanical,
or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage or
retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks
or registered trademarks, and are used only for identification and
explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Maher, Mary Lou.
Case-based reasoning in design / Mary Lou Maher, M. Bala

Balachandran, Dong Mei Zhang,
p. cm.

Includes bibliographical references and index.
1. Computer-aided design. 2. Engineering design—Case stud­

ies. I. Balachandran, M. (Muthaukumar), 1953-. II. Zhang,
Dong Mei. III. Title.
TA174.M335 1995
620’ .0042’0285—dc20 95-17344

CIP

ISBN 13: 978-0-805-81831-4 (hbk)
ISBN 13: 978-0-805-81832-1 (pbk)

Publisher’s Note
The publisher has gone to great lengths to ensure the quality of this
reprint but points out that some imperfections in the original may
be apparent.

Contents

Preface ix
About the Authors xiii

1 Overview of Case-Based Reasoning 1
Case-Based Reasoning as a Computational Model 3
Case Memory 6
Recalling Cases 9
Adapting Cases 11
Applications of CBR 12
A Simple CBR Program 17
Summary 20
Glossary of Terms 20
Suggested Reading 20

2 Case-Based Design as a Process Model
Design Process Models 24
Case-Based Design Process Model 32
Hybrid Case-Based Design Systems 36
Applications of CBR to Design 38
Summary 46
Glossary of Terms 46
Suggested Reading 47

3 Representing Design Cases 49
Content of a Design Case 50
Representation of a Design Case 57
Design Case Memory Organization 64
Role of Design Models in Design Case Memory 70

000

vi CONTENTS

Presentation of Design Case Memory 79
Summary 82
Glossary of Terms 83
Suggested Reading 84

4 Recalling Design Cases 85
Indexing Design Cases 86
Retrieving Design Cases 94
Design Case Selection 102
Summary 105
Glossary of Terms 106
Suggested Reading 106

5 Adapting Design Cases 109
Methods of Case Adaptation 110
Generalized Design Case Adaptation 111
A Specific Application of Design Case Adaptation 118
Adaptation as a Constraint Satisfaction Problem 125
Creative Design as Non-Routine Adaptation 131
Summary 139
Glossary of Terms 139
Suggested Reading 139

6 CASECAD: A Multimedia Case-Based
Reasoning System for Design 141
The CASECAD System 142
Case Memory Organization 148
Retrieving Design Cases 158
Implications of the CASECAD System 161
Summary 162
Glossary of Terms 163
Suggested Reading 163

7 CADSYN: A Hybrid Approach
to Case-Based Design 165
The CADSYN System 165
Design Context 168

CONTENTS

Design Case Memory in CADSYN 172
Generalized Knowledge Base 177
Reasoning Processors 182
System Control 193
Summary 195
Glossary of Terms 195
Suggested Reading 196

Appendix A: Lisp Programs of CASECAD
Appendix B: A Sample Case From CASECAD
References 233
Author Index 239
Subject Index 241

000
000

000

This page intentionally left blank

Preface

Computer support for design has gone through many generations and
philosophical perspectives. In the early days, it was thought that computer-based
design support should take the form of a sophisticated calculator that could
handle complex analytical problems and make fewer errors than people.
Similarly, there was a strong push toward CAD and computer support for
generating production drawings. As the CAD systems improved and included
more and more functionality, the analysis programs became capable of solving
more and more complex problems with better accuracy. However, the idea of
computer-based design support still eluded us.

In the late 1970s and early 1980s, there was a new approach introduced for
computer-based design support: the artificial intelligence (AI) approach. Both
logic and rule-based systems looked promising because they could address the
aspect of design reasoning that was hard to do with numbers. Several expert
systems were developed across a broad range of applications, some of which
touched on the area of design. Still, these expert systems for design seemed to
fall short of their promises. They needed more rules to cover more situations,
they didn’t learn as people did, and they were good at inferring new facts from
known facts but not at synthesizing new designs. There are many reasons why
the expert system approach has had limited success in providing computer-based
support for design, but the point is that the research community is still looking
for that elusive “computer-based design support.” Professional designers are only
interested if the system gets it right and saves them money.

One of the recent developments in problem solving paradigms in AI is the
idea of case-based reasoning. In case-based reasoning, some aspect of a new
problem provides a reminder of a previous experience and that experience can be
the basis for a new solution. This approach shows great potential for computer-
based design support. It combines the best of AI and expert systems, using
symbolic reasoning and experience, and does not appear to have some of the
pitfalls, such as the use of deduction to generate solutions, the difficulty in
updating to reflect new experience, and so on. However, the use of case-based
reasoning in design is in its early days, and there is some confusion about what
role this new paradigm can play and how such systems are implemented.

Let’s look at what case-based reasoning in design means. Assume you are a
structural engineer on a design project for a new hotel that has water views on
both sides of its main axis. You may recall a similar project that your firm

ix

X PREFACE

worked on a few years ago because it was also a hotel with a narrow floor plan.
In order to reuse some of the ideas in the previous design you need to find the
drawings or the reports filed after the building was completed. Or, you may
contact the design engineer for the project, if he is still employed by the firm.
Ultimately, in order to benefit from the previous experience of yours or of the
firm that employs you, first, someone needs to remember a relevant previous
project and, second, someone needs to be able to locate the information related to
the relevant project.

This use of case-based reasoning, that is, to support designers when
generating a new design solution, is concerned with the recall and the reuse of
relevant design experience. In general, case-based reasoning can take on many
faces to provide different answers to various problem solving needs. For
example, case-based reasoning has been used to help generate explanations or to
present experience in such a way that it teaches a lesson. In this book, the focus
is on the use of case-based reasoning to support a designer in recalling a relevant
design and in the reuse of that design to help generate a solution to a new design
problem. In this sense the focus is oriented toward the design process view of
case-based reasoning. This is a fairly strong bias and must be recognized as such.
Case-based reasoning can be much more broadly defined and has been applied to
demonstrate other perspectives on this problem solving paradigm.

This book has been written for academics and professionals who would like
to use case-based reasoning to support designers and are looking for a
specification of the process of case-based reasoning in design and alternatives for
representation and implementation. The book should appeal to researchers who
are considering:

• The unresolved issues of design research.
• Applications of case-based reasoning to complex problems.
• Representations of design knowledge and design experience.
• Process models of design.

From the professional perspective, this book should appeal to people
involved in the development and/or use of computers during the design process.
Such professionals will find the book provides a set of alternatives for the
representation of design cases and examples of their implementation, a broad
coverage of the issues in implementing a case-based reasoning system for design,
and the advantages and disadvantages of different implementation decisions.

The book is organized into two major parts. The first part includes Chapters
1 through 5 and gives an introduction to the issues and alternatives in using
case-based reasoning in design. Chapter 1 is an overview of case-based reasoning.
This chapter introduces the authors' bias on the definition of case-based reasoning
and introduces the terminology that will help the reader understand the rest of the
book. Chapter 2 focuses on design, design processes, and the applications of
case-based reasoning to support the recall and reuse of previous designs. Chapter
3 presents the considerations and alternatives for representing design cases.

PREFACE xi

Chapter 4 deals with recalling previous design cases, Chapter 5 with adapting
design cases. These chapters provide a general discussion of case-based reasoning
in design with examples along the way.

The second part of the book is about specific implementations of case-based
reasoning in design. Rather than survey all such implementations to date, we
have decided to present in detail two applications we have implemented. We
present all the things we found hard to determine given the current literature on
case-based design. We found many descriptions of how to represent design case
memory, but found very little on how to translate this to a computer program.
Hopefully, in these two chapters there are enough examples of implementations
that the reader could confidently implement his or her own system. In a way,
these two chapters are cases in themselves that could provide the basis for a new
case-based design system. Chapter 6 presents CASECAD, focusing on the
representation of design cases using a variety of representation paradigms and the
strategies for recalling a similar case. Appendix A includes the actual Lisp code
for CASECAD and Appendix B presents an entire design case as represented in
CASECAD. Chapter 7 presents CADSYN, focusing on the contents of case
memory to support design case adaptation and the implementation of a constraint
satisfaction approach to adapting design cases.

In summary, the purpose of the book is to present the issues in taking a
paradigm from AI, specifically case-based reasoning, showing how it is relevant
in supporting designers in generating new designs, and presenting some of the
implementation issues and their resolution. The book does not present an
exhaustive account of how case-based reasoning can be used in design, that
would take too long and be too hard. The book, therefore, focuses on something
that can be done well, showing how case-based reasoning can help a designer
recall a relevant previous design and reuse the design in a new design situation.
Acknowledgments. This book was written after several years of successful
collaboration among the authors. The collaboration occurred at the Key Centre of
Design Computing, University of Sydney. Firstly, we would like to thank the
many people, including researchers, students, and staff at the Key Centre that
provided useful comments and assistance in the development of the case-based
reasoning projects. We acknowledge the support from the Australian Research
Council and the Australian Postgraduate Research Awards Program. We thank
Rita Villamayor for her assistance in collecting case data, and especially, the
engineers at Acer Wargon Chapman for giving us their time and information.
Special thanks to Alex Wargon for introducing us to his colleagues and
persuading them to participate in this project. We thank our reviewers, including
Ashok Goel and Gerhard Schmitt, for providing comments that improved the
quality of the book. Finally, we thank Fay Sudweeks for producing the final
copy of the book who, through her skill and patience, makes all our efforts look
better.

This page intentionally left blank

About the Authors

Mary Lou Maher is Co-Director of the Key Centre of Design Computing and
Associate Professor in the Department of Architectural and Design Science at the
University of Sydney. She joined the University of Sydney in 1990 after 5 years
on the Faculty of the Department of Civil Engineering at Carnegie Mellon
University and working with the Engineering Design Research Centre. She
teaches and does research in computer-aided design and knowledge-based systems.
She is a Fellow of the Australian Institution of Engineers, and a member of the
American Society of Civil Engineers’ Expert Systems and Artificial Intelligence
Committee, the American Association of Artificial Intelligence, and the IEEE
Computer Society. She is the editor or co-author of six books on knowledge-
based systems and over eighty papers.

M. Bala Balachandran is a Lecturer in computer science at the University of
Wollongong in Australia. He received a B.S. in engineering from the University
of Sri Lanka and a Graduate Diploma and a Ph.D. in design computing from the
University of Sydney in 1984 and 1989, respectively. Previously, he spent five
years as a research associate in the Key Centre of Design Computing at the
University of Sydney. His research interests include hybrid expert system, case-
based reasoning, fuzzy logic, and Al-based design. He has authored or co-authored
two books and more than twenty papers on knowledge-based systems and
computer-aided design. He is a member of the Institution of Engineers, Australia,
the Australian Computer Society, and the IEEE Computer Society. He currently
teaches primarily in the area of artificial intelligence and expert systems.

Dong Mei Zhang is a Knowledge Engineer in the CSIRO Division of
Information Technology, Sydney Laboratory. She obtained B.S. and M.S.
degrees in Computer Science from the Northeast University of Technology in
China in 1985 and 1988, respectively. She worked as a software engineer in the
China Academy of Building Research before commencing her Ph.D. at the
University of Sydney. She completed a Ph.D. at the Key Centre of Design
Computing in 1994 on a hybrid approach to case-based reasoning in design. Her
interests include artificial intelligence in design, database development for design,
and case-based design systems.

000

This page intentionally left blank

1 Overview of
Case-Based Reasoning

Case-based reasoning promises to provide a way to support design by reminding
designers of previous experiences that can help with new situations. As
designers, we learn to design by experiencing design situations. For example,
generating a design for a bridge requires not only an understanding of the analysis
of bridges, but exposure to examples of several bridge designs. We learn to
analyze through the use of formal methods, but creating a new design requires
previous experience, or at least, exposure to another's design experiences. Case­
based reasoning addresses this type of reminding and reuse of experience with
computational models and guidelines for their implementation. In order to
appreciate the role case-based reasoning can play in design, this chapter provides
an overview of case-based reasoning as a computational model. In this chapter,
case-based reasoning is presented simply, maybe even ·simplistically, in order to
introduce the terminology used in the remainder of the book. For a more detailed
presentation and discussion of case-based reasoning, the reader is referred to
Kolodner (1993).

Case-based reasoning is an approach to problem solving that falls under the
more general category of reasoning by analogy. Analogical reasoning is based on
the idea that problems or experiences outside the one we are currently dealing
with may provide some insight or assistance. Through analogy, we may be
reminded of a window design when designing a door to a balcony with a view.
Analogy is a way of recognizing something that has not been encountered before
by associating it with something that has. We often use analogy to explain a
concept or our reason for making decisions. Analogy can help us to search for an
answer to a problem, or to explain how or why we make certain decisions, or to
provide examples for teaching concepts. Even when we are not "problem
solving", analogy plays an important role in understanding the world around us.

Because people are familiar with the use of analogy, it is an idea that can be
studied, applied, and extended for the development of computer support for
human problem solving. Analogy can be used in common situations, where the
previous experience is directly applicable, or in unique or creative situations,
where the previous situation shares something with the new situation, but the
differences are just as interesting as the similarities. By studying the use of
analogy, we can develop formal models of problem solving.

The development of formal models of analogical reasoning has been studied
by researchers in AI. An early model of analogical reasoning for problem solving
is reported in Carbonell (1981). The development of this model has led to new

000

2 CHAPTER 1

approaches to machine learning (Carbonell, 1983), and to the distinction between
derivational analogy and transformational analogy (Carbonell, 1983, 1986).
Derivational analogy learns from the problem solving process performed in the
previous experience; transformational analogy learns from the solution for the
previous experience. The research in analogical reasoning as a means of learning
new concepts from past experience has focused on the learning process and the
representation of the analogy operators (Prieditis, 1988; Russell, 1989; Keane,
1988).

The application of these ideas to engineering design domains has led to the
concept of structure-mapping (Falkenhainer, Forbus, and Gentner, 1990), and to
the application of analogy and mutation for creative design (Zhao, 1991),
providing operational definitions of analogical reasoning. Now we can consider
whether the analogy draws on previous experience in the same domain or
previous experience from another domain, referred to as within-domain or cross­
domain analogy. The representation of previous experience determines how
useful it can be in a new situation. Many of these ideas have been studied as
research projects to further our understanding of how analogy can be modeled and
how to operationalize the various approaches to analogical reasoning.

Seeing analogy from the perspective of memory and reminding has developed
somewhat independently of analogical reasoning and has led to the concept of
memory organization (Schank, 1982) as a guideline for computer representations.
Continuing with the study of memory and its use as a basis for new problem
solving, generating explanations, and identifying the reasons for failure has led to
models for representing experience in computers (Kolodner and Riesbeck, 1986).
This work has been extended, applied, and developed into an entire area of AI-
based problem solving called case-based reasoning (Riesbeck and Schank, 1989;
Kolodner, 1993). Case-based reasoning has continued as a research area within AI
but has also been applied and used in real-world situations.

Case-based reasoning is a formalization for the development of a
computational model of problem solving that is based on memory organization
and reminding. Case-based reasoning has been developed as a process model with
specific stages and knowledge resources that reflects the research in analogical
reasoning. The relevance to designers is to apply the research in memory
organization for defining a case memory of previous designs and to apply the
process of analogical reasoning for the reuse of previous design experiences.

This chapter presents a view of case-based reasoning as an operational model
of problem solving that supports a designer in generating a new design concept.
Two extreme views of case-based design are:

1. To provide a resource of previous experience to aid a designer, called a
design aiding system.

2. To provide a computational approach to the design process, called a
design automation system.

OVERVIEW OF CASE-BASED REASONING 3

Because most applications of case-based reasoning tend to fall somewhere
between the two extremes, the focus of the presentation in this book is design
support. In order to understand how case-based reasoning can support design, we
first overview case-based reasoning and its application more generally. Then from
this common base, we can build the concepts and issues related to case-based
design in subsequent chapters.

CASE-BASED REASONING AS A COMPUTATIONAL PROCESS

Case-based reasoning is an approach to problem solving that makes use of a
database, or case base, of previously solved problems when solving a new
problem, where a database is a collection of data stored in the computer, and a
case base implies that the data represent previous problem solving episodes. This
approach is used as a model to guide the development of computer programs that
assist in problem solving by accessing the case base directly. The concerns of
case-based reasoning then become recalling the relevant case or cases and reusing
or adapting the relevant cases.

Case-based reasoning as a computational model of problem solving is
contrasted with the expert systems approach. Both approaches rely on the explicit
symbolic representation of knowledge based on experience to solve a new
problem. Expert systems (Jackson, 1990; Buchanan and Shortliffe, 1984) use
past experience stored in a knowledge base of generalized heuristics to assist in
solving a new problem. The generalized heuristics can be stored as rules of
thumb or as logical inferences. Case-based reasoning uses a representation of
specific episodes of problem solving to learn to solve a new problem. Both case-
based reasoning and expert systems use the experience of past problem solving
when solving a new problem. Case-based reasoning systems store past
experience as individual problem solving episodes, and expert systems store past
experience as generalized rules and/or objects.

For example, the development of a computer program that assists in the
design of a new pedestrian bridge over a busy street could be based on an expert
systems approach or a case-based reasoning approach. An expert systems
approach would encode heuristics about the types of bridges and their appropri­
ateness for the span and width of the crossing, among other relevant information
about bridges. A case-based reasoning approach would have a case base of
previously designed bridges, among which one or more would be selected as the
starting point for the new bridge design. Using the expert system approach, a
new bridge design would be generated by applying the relevant rules to define the
parameters of the new bridge. Using the case-based reasoning approach, a relevant
previous bridge design would be recalled and adapted to the new design situation.

In many ways, a case-based reasoning approach mimics the way a person
may solve a problem by recalling a previously solved similar problem. The
person is reminded of the previously solved problem because it has some
relevance to the new problem. In the bridge design example, the person may

4 CHAPTER 1

recall another pedestrian bridge, or maybe a bridge over the same span. After the
person recalls a previously solved problem, certain aspects of the previous
problem's solution are used in the new context and others are not. In the bridge
design example, a pedestrian bridge with a span of 15 meters may be recalled, but
the new design requires a span of 18 meters. The same design for the
superstructure, such as the steel arch, may be used, but the span and sizes of the
steel members will change.

The two major considerations in case-based reasoning are:

1. Identifying a relevant previous experience.
2. Determining what changes and what stays the same.

Identifying a relevant previous experience can be considered as searching the case
base for a match with some predefined features or attributes of the new problem.
For example, the pedestrian bridge design problem may use a search for other
pedestrian bridges of a specified length. Determining what changes and what
stays the same can be considered as adapting some of the attributes of the
retrieved case to fit the new problem. For example, adapting a pedestrian bridge
in case memory with a length of 15 meters for a new bridge with a length of 18
meters requires changing the length and other related attributes.

Modeling these two parts of case-based reasoning as a computational model
is illustrated in Figure 1.1. The two major considerations are referred to as recall
and adapt, where during recall the case base is searched for a relevant previous
experience, and during adapt the decisions of which aspects to change and which
to retain are made. Using this model for problem solving, the system can learn
from its own experience, as well as the experience of the people who supply the
cases. Each new solution can be added to the case base, making it available in a
new problem solving session.

Looking more closely at the model of case-based reasoning illustrated in
Figure 1.1, the two processes, recall and adapt, can be defined in more detail. The
recall process can be decomposed into indexing, retrieval, and selection. Indexing
is concerned with the identification of the attributes that a previous problem
should have in order to be relevant to the new problem. Retrieval is a process of
identifying which cases that have all or a subset of those attributes should be
retrieved for further consideration. Finally, selection is a process of evaluating
the retrieved cases so they may be ranked. The “best” case is then selected for
adaptation.

The adapt process includes a recognition of the differences between the
selected case and the new problem and decisions regarding what aspects of the
case are. changed to fit the new problem. This process can be decomposed into
modify and evaluate. Modifying a selected case is a process of changing parts of
the case description. Evaluating the modified case is a process of checking the
new case description for feasibility. The elaborated case-based reasoning process
is illustrated in Figure 1.2.

OVERVIEW OF CASE-BASED REASONING 5

New problem ,
Recall - Case

Base

+ -,
Adapt - New solution

Figure 1.1. A simple model of case-based reasoning.

New problem ,
Recall I I Index

Case

I Retrieve I - Base ..
I I Select , ~

Adapt

I Modify I . New solution ..
I Evaluate I

Figure 1.2. An elaborated model of case-based reasoning.

Implementing a case-based reasoning approach as a computer program
follows the models already described, where each component of the model is an
algorithm or database. The overall algorithm for case-based reasoning (CBR) can
be summarized as:

6 CHAPTER 1

begin
get new problem specifications;
identify indexing attributes;

retrieve a set of cases that match attributes;
select one case;
repeat

modify case;
evaluate solution;

until solution is satisfactory;
end

There are several approaches to implementing this algorithm. For example,
to get new problem specifications, the program may simply ask the user to type
in a set of specifications and use the specifications directly as the indexing
attributes, or it may reason about the user’s unstructured specification to identify
key attributes for searching case memory. Another example of the different ways
CBR can be implemented is to select one case that has the largest number of
attributes with the same values as the new problem or the case that has the
highest ranking in a weighted count of matching attributes. Alternatively, recall
could be less structured, as the user navigates through a case base without
providing the new problem specifications or selecting one case to consider
further.

The use of a CBR approach requires the definition of a representation of the
case base, or case memory organization. This representation defines how the
reasoning can be implemented. The content and organization of cases determines
their reuse in a new situation. A very simple example of this is in the bridge
design problem: If the case base does not include the attribute for the length of
the bridge, then the new problem cannot be matched against this attribute.
However, for adaptation purposes, if case memory does not include knowledge
about how a change in length affects the size of the bridge components, then the
change in length to match the new problem cannot be evaluated.

CASE MEMORY
Case memory, or the case base, includes a representation of a set of previously
solved problems. This representation provides the basis for their use by the CBR
system and by the person using the CBR system. The importance of determining
what is in case memory and how this is represented cannot be overemphasized.
The computational process of CBR assumes an adequate and useful case base.
The development of case memory is an ill-defined process that can be as difficult
as the knowledge acquisition stage in developing an expert system. In fact, the
case base is the equivalent of a knowledge base for CBR.

This section provides a brief overview of the issues and alternatives in
developing case memory. These issues and others are considered in more detail in
subsequent chapters, with special consideration to design. Developing a case
memory includes a definition of:

OVERVIEW OF CASE-BASED REASONING 7

• The content of each case.
• The representation of the contents of each case.
• The organization of the set of cases in case memory.

The content of each case is basically a description of the previously solved
problem. The difficulty in translating this into a representation of case memory
in the computer lies in the identification of relevant information to include in the
description. The problem solving episode to be recorded in case memory may
have well-defined problem specification and solution attributes or a well-defined
process by which it was solved. Formalizing this aspect of CBR requires an
analysis of the problems for which the CBR system will be used, as illustrated
in Figure 1.3.

CBR

Figure 1.3. Analyzing the contents of case memory.

In order for there to be some commonality between the specifications to the
new problem and the individual cases in case memory, a description of a case
should include a representation of the initial specifications. In order for the cases
to be useful in solving the new problem, a description of a case should include a
representation of the solution. This is the most simplistic analysis needed for
defining the content of case memory. In addition to the basic specifications +
solution descriptions, case memory will also need to include knowledge for
identifying a similar situation when the new problem specification is
incomplete. This could take the form of indexing features and priorities. Case
memory may also include a description of intermediate stages in the development
of the solution, and possibly assumptions and justifications associated with
decisions in the previous problem.

The representation of the contents of each case defines how the information
about a case is organized, as a set of attribute-value pairs, as part-subpart

The content of each case. CASE-BASED
CASE-BASED

CASE-BASED CASE-BASED

CASE-BASED CASE-BASED

CASE-BASED

CASE-BASED

CASE-BASED

8 CHAPTER 1

relationships, or as a network of attributes. These three alternatives are illustrated
in Figure 1.4. Representing a case as attribute-value pairs represents the relevant
decisions in the previous case and the specific values associated with each
decision. Representing a case as a hierarchy of part-subpart relationships
facilitates representation and reasoning about large and/or complex cases. The
hierarchical representation includes more content than the attribute-value pairs
representation because it includes relationship knowledge. The network-based
representation of cases can build on the hierarchical representation with multiple
attribute-value pairs at each node and allow additional types of relationships to be
represented, or it can be similar to a semantic network, where the nodes in the
network represent a single feature of the case.

Case A

attribute1: val1
attribute2: val2
attribute3: val3

subcase A1
attr3: val3
attr4: val4

subcaseA4
attr9: val9
attr10: val1 0

(a) Attribute-value pairs (b) Part.subpart relationships

(attrS: valS)

(e) Network of attributes

Figure 1.4. Organization of a case in case memory.

The representation of a case is usually generalized for all cases in case
memory, so that all cases are described by the same set of attributes or part­
subpart relationships, or all cases are described as networks of attributes. In this

CASE-BASED

CASE-BASED
CASE-BASED

CASE-BASED

CASE-BASED
CASE-BASED

CASE-BASED

CASE-BASED
CASE-BASED

CASE-BASED

CASE-BASED CASE-BASED

CASE-BASED

CASE-BASED

OVERVIEW OF CASE-BASED REASONING 9

way, the organization of cases in case memory provides a template or model for
defining the content of a case and for adding new cases to an existing case
memory. This stage in the development of a CBR system results in a clearer
definition of the contents of case memory and the representation schemes relevant
to a CBR solution to a class of problems.

The organization of the set of cases in case memory provides mechanisms for
locating one case or a part of a case in case memory. The cases may be clustered
or accessed by common attributes. Organizing cases in a structured way allows
the CBR system to quickly and accurately search for similar cases. As case
memory becomes very large, the need for an organizational structure becomes
more important. The simplest way to organize case memory is to store the name
of each case in a list with a pointer to the content of the case. As case memory
gets larger, the use of an indexing tree, where each node in the tree is an
attribute-value pair of one or more cases, reduces the space that needs to be
searched. These two approaches to organizing case memory are illustrated in
Figure 1.5. In Figure 1.5 (b), cases Band C both have attr4: val4, attr1: vall,
and attr2: val2.

List of cases

Case A
CaseB
CaseC

CaseAA

(a) List of cases

CaseB
CaseC

Case A
CaseAA

(b) Indexing tree

CaseD
CaseF

Figure 1.5. Organizing a set of cases in case memory.

The organization of case memory for access to an individual case is referred to
as the indexing scheme. The development of an indexing scheme is dependent on
the size of case memory and how a new problem is specified. If case memory is
not large, with less than 50 cases, the indexing scheme that uses a list of cases is
sufficient. Retrieving a case from a larger case memory would be too slow with
the list of cases scheme. In Figure 1.5, the indexing scheme illustrated in part (a)
assumes that all cases will be retrieved by name and that each case will be
compared separately to the new problem specifications. The indexing scheme

CASE-BASED

CASE-BASED CASE-BASED

CASE-BASED CASE-BASED CASE-BASED

10 CHAPTER 1

illustrated in part (b) assumes that the attributes in the nodes of the indexing tree
will be part of the specification of the new problem. If these attributes are not
part of the new problem specification, then the relevant set of cases cannot be
identified.

RECALLING CASES

Recalling a case from case memory is a pattern-matching problem that is based
on the specification of a new problem. For example, the specification for the
design of a new building is recorded in a document called a brief. A subset of the
brief may be useful in recalling one or more similar building designs. A new
problem may be specified as a set of attribute-value pairs, as a set of constraints
or conditions on the values of each attribute, or as a network of attributes. Given
a specification, the recall process can be decomposed into three tasks:

1. Index.
2. Retrieve.
3. Select.

In order to index cases in case memory, the specification of a new problem is
transformed into a pattern to be matched. The pattern may be taken directly as the
user input specification or it may be modified, for example, to include an order of
importance of the attributes. A general approach to determining a pattern to
match for indexing case memory for a specific new problem is given below.

begin
identify features of specification;
organize features;

begin
identify critical features;
assign weights to features;
group features;

end
output pattern for matching;

end

The retrieval task in CBR searches case memory for matches between
individual cases and the pattern that serves to index the cases. Each case in case
memory may be compared to the pattern, or the pattern may provide a set of
indices to partition case memory, so only a relevant subset of cases are compared
with the pattern. Retrieval can be based on a perfect match, where the pattern is
found exactly, or on partial matches. If partial matches are retrieved, a threshold
may be set to determine when a partial match is close enough. A general
approach to case retrieval is given below.

begin
get pattern for matching;
determine relevant cases for comparison;

OVERVIEW OF CASE-BASED REASONING 11

repeat for all relevant cases
determine how close the case matches the pattern;
if case match above threshold

then add case to retrieved list;
output list of retrieved cases;

end

The selection task in CBR orders the retrieved cases to determine which case
is the best match. The selection process depends on the pattern used to index case
memory. If the pattern is a set of weighted features and each retrieved case is
ranked according to the weight of the matching features, selection is based on the
retrieved case with the highest ranking. If the pattern is simply a set of features,
then selection is based on the case with the most features in common with the
indexing pattern. Selection is the result of ranking the retrieved cases, where
there are various methods for determining the ranking.

ADAPTING CASES

In some problems, a selected case provides a solution to the new problem. For
example, when using a CBR approach to determine if a loan should be approved,
the retrieved case provides a solution: approve or disapprove. In most problem
solving, however, the selected case needs to be modified to be appropriate as a
solution to the new problem. For example, a CBR approach to designing a
bridge may recall a similar bridge, but the recalled bridge design cannot be used
without modification for the new site. This modification is referred to as adapting
a case.

Adapting a case from case memory to solve a new problem requires additional
knowledge. The form this knowledge takes depends on how adaptation is done.
One approach to adaptation is to identify those attributes of a case that can be
changed and associate a formula with each adaptable attribute to be evaluated
during adaptation. Another approach to adaptation is to associate a set of
constraints with case memory that must be satisfied when adapting a case. These
two approaches are broadly defined as parametric adaptation and constraint
satisfaction.

Parametric adaptation adapts a previous case for a new problem solving
episode by associating formulas with the attributes, or parameters, that can be
changed. When defining the content of case memory, certain attributes are
identified as adaptable attributes. Each of these attributes has a formula or
procedure to be evaluated during case adaptation. The general approach to
parametric adaptation is given below.

begin
repeat for each adaptable attribute

evaluate associated formula;
end

12 CHAPTER 1

This approach to case adaptation assumes that the adaptable attributes are the
same for each case retrieved and for each new problem encountered. The
parametric adaptation considers each attribute in isolation from the others, so the
change in value of the attribute is not dependent on other adaptable attributes.
The consistency of the solution as a collection of attributes is not checked.

The constraint satisfaction approach to case adaptation requires a set of con­
straints to be associated with case memory. Once a case is selected as the basis
for the new solution, the constraints provide the knowledge needed to check for
inconsistencies between the selected case and the new problem. A domain of pos­
sible values for each attribute is needed when changing the values of attributes to
satisfy constraints. The approach to constraint satisfaction is given below.

begin
propose new solution;
check constraints;
repeat

change values of attributes of proposed solution;
until all constraints are satisfied;

end

Adapting cases is a potentially complex task that has not been fully explored.
When possible, a simple approach to adaptation is used to automate the
adaptation process. Otherwise, the user of the CBR system assists, or even
performs, case adaptation.

APPLICATIONS OF CBR

CBR technology has been applied to a wide range of problems. CBR systems
have been demonstrated in such varied domains as law, medicine, cooking, dis­
pute resolution, customer service, labor mediation, process control, and engineer­
ing design, especially in the past several years, yielding significantly improved
performance and cost savings. CBR provides the potential for developing
knowledge-based systems more easily than generalized knowledge-based
approaches. The assumption is that it is easier to produce specific examples of
problem solving than to generalize across a class of problems to suit all new
problems encountered.

Some case-based systems have been developed to solve problems automati­
cally, whereas others have been built only to aid human problem solvers. CBR
systems deployed in the field of industrial and commercial applications have
delivered a number of benefits, including reduced cost, reduced errors, faster
system development, reduced training time, decreased personnel required, im­
proved decisions, and improved customer service. Although a wide range of
potential applications have been explored, commercial CBR applications have
focused, for the most part, on case retrieval for decision support.

