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Preface

Computer support for design has gone through many generations and 
philosophical perspectives. In the early days, it was thought that computer-based 
design support should take the form of a sophisticated calculator that could 
handle complex analytical problems and make fewer errors than people. 
Similarly, there was a strong push toward CAD and computer support for 
generating production drawings. As the CAD systems improved and included 
more and more functionality, the analysis programs became capable of solving 
more and more complex problems with better accuracy. However, the idea of 
computer-based design support still eluded us.

In the late 1970s and early 1980s, there was a new approach introduced for 
computer-based design support: the artificial intelligence (AI) approach. Both 
logic and rule-based systems looked promising because they could address the 
aspect of design reasoning that was hard to do with numbers. Several expert 
systems were developed across a broad range of applications, some of which 
touched on the area of design. Still, these expert systems for design seemed to 
fall short of their promises. They needed more rules to cover more situations, 
they didn’t learn as people did, and they were good at inferring new facts from 
known facts but not at synthesizing new designs. There are many reasons why 
the expert system approach has had limited success in providing computer-based 
support for design, but the point is that the research community is still looking 
for that elusive “computer-based design support.” Professional designers are only 
interested if the system gets it right and saves them money.

One of the recent developments in problem solving paradigms in AI is the 
idea of case-based reasoning. In case-based reasoning, some aspect of a new 
problem provides a reminder of a previous experience and that experience can be 
the basis for a new solution. This approach shows great potential for computer- 
based design support. It combines the best of AI and expert systems, using 
symbolic reasoning and experience, and does not appear to have some of the 
pitfalls, such as the use of deduction to generate solutions, the difficulty in 
updating to reflect new experience, and so on. However, the use of case-based 
reasoning in design is in its early days, and there is some confusion about what 
role this new paradigm can play and how such systems are implemented.

Let’s look at what case-based reasoning in design means. Assume you are a 
structural engineer on a design project for a new hotel that has water views on 
both sides of its main axis. You may recall a similar project that your firm
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worked on a few years ago because it was also a hotel with a narrow floor plan. 
In order to reuse some of the ideas in the previous design you need to find the 
drawings or the reports filed after the building was completed. Or, you may 
contact the design engineer for the project, if he is still employed by the firm. 
Ultimately, in order to benefit from the previous experience of yours or of the 
firm that employs you, first, someone needs to remember a relevant previous 
project and, second, someone needs to be able to locate the information related to 
the relevant project.

This use of case-based reasoning, that is, to support designers when 
generating a new design solution, is concerned with the recall and the reuse of 
relevant design experience. In general, case-based reasoning can take on many 
faces to provide different answers to various problem solving needs. For 
example, case-based reasoning has been used to help generate explanations or to 
present experience in such a way that it teaches a lesson. In this book, the focus 
is on the use of case-based reasoning to support a designer in recalling a relevant 
design and in the reuse of that design to help generate a solution to a new design 
problem. In this sense the focus is oriented toward the design process view of 
case-based reasoning. This is a fairly strong bias and must be recognized as such. 
Case-based reasoning can be much more broadly defined and has been applied to 
demonstrate other perspectives on this problem solving paradigm.

This book has been written for academics and professionals who would like 
to use case-based reasoning to support designers and are looking for a 
specification of the process of case-based reasoning in design and alternatives for 
representation and implementation. The book should appeal to researchers who 
are considering:

• The unresolved issues of design research.
• Applications of case-based reasoning to complex problems.
• Representations of design knowledge and design experience.
• Process models of design.

From the professional perspective, this book should appeal to people 
involved in the development and/or use of computers during the design process. 
Such professionals will find the book provides a set of alternatives for the 
representation of design cases and examples of their implementation, a broad 
coverage of the issues in implementing a case-based reasoning system for design, 
and the advantages and disadvantages of different implementation decisions.

The book is organized into two major parts. The first part includes Chapters 
1 through 5 and gives an introduction to the issues and alternatives in using 
case-based reasoning in design. Chapter 1 is an overview of case-based reasoning. 
This chapter introduces the authors' bias on the definition of case-based reasoning 
and introduces the terminology that will help the reader understand the rest of the 
book. Chapter 2 focuses on design, design processes, and the applications of 
case-based reasoning to support the recall and reuse of previous designs. Chapter 
3 presents the considerations and alternatives for representing design cases.
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Chapter 4 deals with recalling previous design cases, Chapter 5 with adapting 
design cases. These chapters provide a general discussion of case-based reasoning 
in design with examples along the way.

The second part of the book is about specific implementations of case-based 
reasoning in design. Rather than survey all such implementations to date, we 
have decided to present in detail two applications we have implemented. We 
present all the things we found hard to determine given the current literature on 
case-based design. We found many descriptions of how to represent design case 
memory, but found very little on how to translate this to a computer program. 
Hopefully, in these two chapters there are enough examples of implementations 
that the reader could confidently implement his or her own system. In a way, 
these two chapters are cases in themselves that could provide the basis for a new 
case-based design system. Chapter 6 presents CASECAD, focusing on the 
representation of design cases using a variety of representation paradigms and the 
strategies for recalling a similar case. Appendix A includes the actual Lisp code 
for CASECAD and Appendix B presents an entire design case as represented in 
CASECAD. Chapter 7 presents CADSYN, focusing on the contents of case 
memory to support design case adaptation and the implementation of a constraint 
satisfaction approach to adapting design cases.

In summary, the purpose of the book is to present the issues in taking a 
paradigm from AI, specifically case-based reasoning, showing how it is relevant 
in supporting designers in generating new designs, and presenting some of the 
implementation issues and their resolution. The book does not present an 
exhaustive account of how case-based reasoning can be used in design, that 
would take too long and be too hard. The book, therefore, focuses on something 
that can be done well, showing how case-based reasoning can help a designer 
recall a relevant previous design and reuse the design in a new design situation.
Acknowledgments. This book was written after several years of successful 
collaboration among the authors. The collaboration occurred at the Key Centre of 
Design Computing, University of Sydney. Firstly, we would like to thank the 
many people, including researchers, students, and staff at the Key Centre that 
provided useful comments and assistance in the development of the case-based 
reasoning projects. We acknowledge the support from the Australian Research 
Council and the Australian Postgraduate Research Awards Program. We thank 
Rita Villamayor for her assistance in collecting case data, and especially, the 
engineers at Acer Wargon Chapman for giving us their time and information. 
Special thanks to Alex Wargon for introducing us to his colleagues and 
persuading them to participate in this project. We thank our reviewers, including 
Ashok Goel and Gerhard Schmitt, for providing comments that improved the 
quality of the book. Finally, we thank Fay Sudweeks for producing the final 
copy of the book who, through her skill and patience, makes all our efforts look 
better.
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1 Overview of 
Case-Based Reasoning 

Case-based reasoning promises to provide a way to support design by reminding 
designers of previous experiences that can help with new situations. As 
designers, we learn to design by experiencing design situations. For example, 
generating a design for a bridge requires not only an understanding of the analysis 
of bridges, but exposure to examples of several bridge designs. We learn to 
analyze through the use of formal methods, but creating a new design requires 
previous experience, or at least, exposure to another's design experiences. Case­
based reasoning addresses this type of reminding and reuse of experience with 
computational models and guidelines for their implementation. In order to 
appreciate the role case-based reasoning can play in design, this chapter provides 
an overview of case-based reasoning as a computational model. In this chapter, 
case-based reasoning is presented simply, maybe even ·simplistically, in order to 
introduce the terminology used in the remainder of the book. For a more detailed 
presentation and discussion of case-based reasoning, the reader is referred to 
Kolodner (1993). 

Case-based reasoning is an approach to problem solving that falls under the 
more general category of reasoning by analogy. Analogical reasoning is based on 
the idea that problems or experiences outside the one we are currently dealing 
with may provide some insight or assistance. Through analogy, we may be 
reminded of a window design when designing a door to a balcony with a view. 
Analogy is a way of recognizing something that has not been encountered before 
by associating it with something that has. We often use analogy to explain a 
concept or our reason for making decisions. Analogy can help us to search for an 
answer to a problem, or to explain how or why we make certain decisions, or to 
provide examples for teaching concepts. Even when we are not "problem 
solving", analogy plays an important role in understanding the world around us. 

Because people are familiar with the use of analogy, it is an idea that can be 
studied, applied, and extended for the development of computer support for 
human problem solving. Analogy can be used in common situations, where the 
previous experience is directly applicable, or in unique or creative situations, 
where the previous situation shares something with the new situation, but the 
differences are just as interesting as the similarities. By studying the use of 
analogy, we can develop formal models of problem solving. 

The development of formal models of analogical reasoning has been studied 
by researchers in AI. An early model of analogical reasoning for problem solving 
is reported in Carbonell (1981). The development of this model has led to new 
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2 CHAPTER 1

approaches to machine learning (Carbonell, 1983), and to the distinction between 
derivational analogy and transformational analogy (Carbonell, 1983, 1986). 
Derivational analogy learns from the problem solving process performed in the 
previous experience; transformational analogy learns from the solution for the 
previous experience. The research in analogical reasoning as a means of learning 
new concepts from past experience has focused on the learning process and the 
representation of the analogy operators (Prieditis, 1988; Russell, 1989; Keane,
1988).

The application of these ideas to engineering design domains has led to the 
concept of structure-mapping (Falkenhainer, Forbus, and Gentner, 1990), and to 
the application of analogy and mutation for creative design (Zhao, 1991), 
providing operational definitions of analogical reasoning. Now we can consider 
whether the analogy draws on previous experience in the same domain or 
previous experience from another domain, referred to as within-domain or cross­
domain analogy. The representation of previous experience determines how 
useful it can be in a new situation. Many of these ideas have been studied as 
research projects to further our understanding of how analogy can be modeled and 
how to operationalize the various approaches to analogical reasoning.

Seeing analogy from the perspective of memory and reminding has developed 
somewhat independently of analogical reasoning and has led to the concept of 
memory organization (Schank, 1982) as a guideline for computer representations. 
Continuing with the study of memory and its use as a basis for new problem 
solving, generating explanations, and identifying the reasons for failure has led to 
models for representing experience in computers (Kolodner and Riesbeck, 1986). 
This work has been extended, applied, and developed into an entire area of AI- 
based problem solving called case-based reasoning (Riesbeck and Schank, 1989; 
Kolodner, 1993). Case-based reasoning has continued as a research area within AI 
but has also been applied and used in real-world situations.

Case-based reasoning is a formalization for the development of a 
computational model of problem solving that is based on memory organization 
and reminding. Case-based reasoning has been developed as a process model with 
specific stages and knowledge resources that reflects the research in analogical 
reasoning. The relevance to designers is to apply the research in memory 
organization for defining a case memory of previous designs and to apply the 
process of analogical reasoning for the reuse of previous design experiences.

This chapter presents a view of case-based reasoning as an operational model 
of problem solving that supports a designer in generating a new design concept. 
Two extreme views of case-based design are:

1. To provide a resource of previous experience to aid a designer, called a 
design aiding system.

2. To provide a computational approach to the design process, called a 
design automation system.
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Because most applications of case-based reasoning tend to fall somewhere 
between the two extremes, the focus of the presentation in this book is design 
support. In order to understand how case-based reasoning can support design, we 
first overview case-based reasoning and its application more generally. Then from 
this common base, we can build the concepts and issues related to case-based 
design in subsequent chapters.

CASE-BASED REASONING AS A COMPUTATIONAL PROCESS

Case-based reasoning is an approach to problem solving that makes use of a 
database, or case base, of previously solved problems when solving a new 
problem, where a database is a collection of data stored in the computer, and a 
case base implies that the data represent previous problem solving episodes. This 
approach is used as a model to guide the development of computer programs that 
assist in problem solving by accessing the case base directly. The concerns of 
case-based reasoning then become recalling the relevant case or cases and reusing 
or adapting the relevant cases.

Case-based reasoning as a computational model of problem solving is 
contrasted with the expert systems approach. Both approaches rely on the explicit 
symbolic representation of knowledge based on experience to solve a new 
problem. Expert systems (Jackson, 1990; Buchanan and Shortliffe, 1984) use 
past experience stored in a knowledge base of generalized heuristics to assist in 
solving a new problem. The generalized heuristics can be stored as rules of 
thumb or as logical inferences. Case-based reasoning uses a representation of 
specific episodes of problem solving to learn to solve a new problem. Both case- 
based reasoning and expert systems use the experience of past problem solving 
when solving a new problem. Case-based reasoning systems store past 
experience as individual problem solving episodes, and expert systems store past 
experience as generalized rules and/or objects.

For example, the development of a computer program that assists in the 
design of a new pedestrian bridge over a busy street could be based on an expert 
systems approach or a case-based reasoning approach. An expert systems 
approach would encode heuristics about the types of bridges and their appropri­
ateness for the span and width of the crossing, among other relevant information 
about bridges. A case-based reasoning approach would have a case base of 
previously designed bridges, among which one or more would be selected as the 
starting point for the new bridge design. Using the expert system approach, a 
new bridge design would be generated by applying the relevant rules to define the 
parameters of the new bridge. Using the case-based reasoning approach, a relevant 
previous bridge design would be recalled and adapted to the new design situation.

In many ways, a case-based reasoning approach mimics the way a person 
may solve a problem by recalling a previously solved similar problem. The 
person is reminded of the previously solved problem because it has some 
relevance to the new problem. In the bridge design example, the person may
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recall another pedestrian bridge, or maybe a bridge over the same span. After the 
person recalls a previously solved problem, certain aspects of the previous 
problem's solution are used in the new context and others are not. In the bridge 
design example, a pedestrian bridge with a span of 15 meters may be recalled, but 
the new design requires a span of 18 meters. The same design for the 
superstructure, such as the steel arch, may be used, but the span and sizes of the 
steel members will change.

The two major considerations in case-based reasoning are:

1. Identifying a relevant previous experience.
2. Determining what changes and what stays the same.

Identifying a relevant previous experience can be considered as searching the case 
base for a match with some predefined features or attributes of the new problem. 
For example, the pedestrian bridge design problem may use a search for other 
pedestrian bridges of a specified length. Determining what changes and what 
stays the same can be considered as adapting some of the attributes of the 
retrieved case to fit the new problem. For example, adapting a pedestrian bridge 
in case memory with a length of 15 meters for a new bridge with a length of 18 
meters requires changing the length and other related attributes.

Modeling these two parts of case-based reasoning as a computational model 
is illustrated in Figure 1.1. The two major considerations are referred to as recall 
and adapt, where during recall the case base is searched for a relevant previous 
experience, and during adapt the decisions of which aspects to change and which 
to retain are made. Using this model for problem solving, the system can learn 
from its own experience, as well as the experience of the people who supply the 
cases. Each new solution can be added to the case base, making it available in a 
new problem solving session.

Looking more closely at the model of case-based reasoning illustrated in 
Figure 1.1, the two processes, recall and adapt, can be defined in more detail. The 
recall process can be decomposed into indexing, retrieval, and selection. Indexing 
is concerned with the identification of the attributes that a previous problem 
should have in order to be relevant to the new problem. Retrieval is a process of 
identifying which cases that have all or a subset of those attributes should be 
retrieved for further consideration. Finally, selection is a process of evaluating 
the retrieved cases so they may be ranked. The “best” case is then selected for 
adaptation.

The adapt process includes a recognition of the differences between the 
selected case and the new problem and decisions regarding what aspects of the 
case are. changed to fit the new problem. This process can be decomposed into 
modify and evaluate. Modifying a selected case is a process of changing parts of 
the case description. Evaluating the modified case is a process of checking the 
new case description for feasibility. The elaborated case-based reasoning process 
is illustrated in Figure 1.2.
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New problem , 
Recall - Case 

Base 

+ -, 
Adapt - New solution 

Figure 1.1. A simple model of case-based reasoning. 

New problem , 
Recall I I Index 

Case 

I Retrieve I - Base .. 
I I Select , ~ 

Adapt 

I Modify I . New solution .. 
I Evaluate I 

Figure 1.2. An elaborated model of case-based reasoning. 

Implementing a case-based reasoning approach as a computer program 
follows the models already described, where each component of the model is an 
algorithm or database. The overall algorithm for case-based reasoning (CBR) can 
be summarized as: 
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begin
get new problem specifications; 
identify indexing attributes; 

retrieve a set of cases that match attributes; 
select one case; 
repeat 

modify case; 
evaluate solution; 

until solution is satisfactory;
end

There are several approaches to implementing this algorithm. For example, 
to get new problem specifications, the program may simply ask the user to type 
in a set of specifications and use the specifications directly as the indexing 
attributes, or it may reason about the user’s unstructured specification to identify 
key attributes for searching case memory. Another example of the different ways 
CBR can be implemented is to select one case that has the largest number of 
attributes with the same values as the new problem or the case that has the 
highest ranking in a weighted count of matching attributes. Alternatively, recall 
could be less structured, as the user navigates through a case base without 
providing the new problem specifications or selecting one case to consider 
further.

The use of a CBR approach requires the definition of a representation of the 
case base, or case memory organization. This representation defines how the 
reasoning can be implemented. The content and organization of cases determines 
their reuse in a new situation. A very simple example of this is in the bridge 
design problem: If the case base does not include the attribute for the length of 
the bridge, then the new problem cannot be matched against this attribute. 
However, for adaptation purposes, if case memory does not include knowledge 
about how a change in length affects the size of the bridge components, then the 
change in length to match the new problem cannot be evaluated.

CASE MEMORY
Case memory, or the case base, includes a representation of a set of previously 
solved problems. This representation provides the basis for their use by the CBR 
system and by the person using the CBR system. The importance of determining 
what is in case memory and how this is represented cannot be overemphasized. 
The computational process of CBR assumes an adequate and useful case base. 
The development of case memory is an ill-defined process that can be as difficult 
as the knowledge acquisition stage in developing an expert system. In fact, the 
case base is the equivalent of a knowledge base for CBR.

This section provides a brief overview of the issues and alternatives in 
developing case memory. These issues and others are considered in more detail in 
subsequent chapters, with special consideration to design. Developing a case 
memory includes a definition of:
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• The content of each case. 
• The representation of the contents of each case. 
• The organization of the set of cases in case memory. 

The content of each case is basically a description of the previously solved 
problem. The difficulty in translating this into a representation of case memory 
in the computer lies in the identification of relevant information to include in the 
description. The problem solving episode to be recorded in case memory may 
have well-defined problem specification and solution attributes or a well-defined 
process by which it was solved. Formalizing this aspect of CBR requires an 
analysis of the problems for which the CBR system will be used, as illustrated 
in Figure 1.3. 

CBR 

Figure 1.3. Analyzing the contents of case memory. 

In order for there to be some commonality between the specifications to the 
new problem and the individual cases in case memory, a description of a case 
should include a representation of the initial specifications. In order for the cases 
to be useful in solving the new problem, a description of a case should include a 
representation of the solution. This is the most simplistic analysis needed for 
defining the content of case memory. In addition to the basic specifications + 
solution descriptions, case memory will also need to include knowledge for 
identifying a similar situation when the new problem specification is 
incomplete. This could take the form of indexing features and priorities. Case 
memory may also include a description of intermediate stages in the development 
of the solution, and possibly assumptions and justifications associated with 
decisions in the previous problem. 

The representation of the contents of each case defines how the information 
about a case is organized, as a set of attribute-value pairs, as part-subpart 

The content of each case. CASE-BASED 
CASE-BASED 

CASE-BASED CASE-BASED 

CASE-BASED CASE-BASED 

CASE-BASED 

CASE-BASED 

CASE-BASED 
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relationships, or as a network of attributes. These three alternatives are illustrated 
in Figure 1.4. Representing a case as attribute-value pairs represents the relevant 
decisions in the previous case and the specific values associated with each 
decision. Representing a case as a hierarchy of part-subpart relationships 
facilitates representation and reasoning about large and/or complex cases. The 
hierarchical representation includes more content than the attribute-value pairs 
representation because it includes relationship knowledge. The network-based 
representation of cases can build on the hierarchical representation with multiple 
attribute-value pairs at each node and allow additional types of relationships to be 
represented, or it can be similar to a semantic network, where the nodes in the 
network represent a single feature of the case. 

Case A 

attribute1: val1 
attribute2: val2 
attribute3: val3 

subcase A1 
attr3: val3 
attr4: val4 

subcaseA4 
attr9: val9 
attr10: val1 0 

(a) Attribute-value pairs (b) Part.subpart relationships 

( attrS: valS) 

(e) Network of attributes 

Figure 1.4. Organization of a case in case memory. 

The representation of a case is usually generalized for all cases in case 
memory, so that all cases are described by the same set of attributes or part­
subpart relationships, or all cases are described as networks of attributes. In this 

CASE-BASED 

CASE-BASED 
CASE-BASED 

CASE-BASED 

CASE-BASED 
CASE-BASED 

CASE-BASED 

CASE-BASED 
CASE-BASED 

CASE-BASED 

CASE-BASED CASE-BASED 

CASE-BASED 

CASE-BASED 



OVERVIEW OF CASE-BASED REASONING 9 

way, the organization of cases in case memory provides a template or model for 
defining the content of a case and for adding new cases to an existing case 
memory. This stage in the development of a CBR system results in a clearer 
definition of the contents of case memory and the representation schemes relevant 
to a CBR solution to a class of problems. 

The organization of the set of cases in case memory provides mechanisms for 
locating one case or a part of a case in case memory. The cases may be clustered 
or accessed by common attributes. Organizing cases in a structured way allows 
the CBR system to quickly and accurately search for similar cases. As case 
memory becomes very large, the need for an organizational structure becomes 
more important. The simplest way to organize case memory is to store the name 
of each case in a list with a pointer to the content of the case. As case memory 
gets larger, the use of an indexing tree, where each node in the tree is an 
attribute-value pair of one or more cases, reduces the space that needs to be 
searched. These two approaches to organizing case memory are illustrated in 
Figure 1.5. In Figure 1.5 (b), cases Band C both have attr4: val4, attr1: vall, 
and attr2: val2. 

List of cases 

Case A 
CaseB 
CaseC 

CaseAA 

(a) List of cases 

CaseB 
CaseC 

Case A 
CaseAA 

(b) Indexing tree 

CaseD 
CaseF 

Figure 1.5. Organizing a set of cases in case memory. 

The organization of case memory for access to an individual case is referred to 
as the indexing scheme. The development of an indexing scheme is dependent on 
the size of case memory and how a new problem is specified. If case memory is 
not large, with less than 50 cases, the indexing scheme that uses a list of cases is 
sufficient. Retrieving a case from a larger case memory would be too slow with 
the list of cases scheme. In Figure 1.5, the indexing scheme illustrated in part (a) 
assumes that all cases will be retrieved by name and that each case will be 
compared separately to the new problem specifications. The indexing scheme 

CASE-BASED 

CASE-BASED CASE-BASED 

CASE-BASED CASE-BASED CASE-BASED 
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illustrated in part (b) assumes that the attributes in the nodes of the indexing tree 
will be part of the specification of the new problem. If these attributes are not 
part of the new problem specification, then the relevant set of cases cannot be 
identified.

RECALLING CASES

Recalling a case from case memory is a pattern-matching problem that is based 
on the specification of a new problem. For example, the specification for the 
design of a new building is recorded in a document called a brief. A subset of the 
brief may be useful in recalling one or more similar building designs. A new 
problem may be specified as a set of attribute-value pairs, as a set of constraints 
or conditions on the values of each attribute, or as a network of attributes. Given 
a specification, the recall process can be decomposed into three tasks:

1. Index.
2. Retrieve.
3. Select.

In order to index cases in case memory, the specification of a new problem is 
transformed into a pattern to be matched. The pattern may be taken directly as the 
user input specification or it may be modified, for example, to include an order of 
importance of the attributes. A general approach to determining a pattern to 
match for indexing case memory for a specific new problem is given below.

begin
identify features of specification; 
organize features; 

begin
identify critical features; 
assign weights to features; 
group features; 

end
output pattern for matching; 

end

The retrieval task in CBR searches case memory for matches between 
individual cases and the pattern that serves to index the cases. Each case in case 
memory may be compared to the pattern, or the pattern may provide a set of 
indices to partition case memory, so only a relevant subset of cases are compared 
with the pattern. Retrieval can be based on a perfect match, where the pattern is 
found exactly, or on partial matches. If partial matches are retrieved, a threshold 
may be set to determine when a partial match is close enough. A general 
approach to case retrieval is given below.

begin
get pattern for matching;
determine relevant cases for comparison;
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repeat for all relevant cases 
determine how close the case matches the pattern; 
if case match above threshold 

then add case to retrieved list; 
output list of retrieved cases; 

end

The selection task in CBR orders the retrieved cases to determine which case 
is the best match. The selection process depends on the pattern used to index case 
memory. If the pattern is a set of weighted features and each retrieved case is 
ranked according to the weight of the matching features, selection is based on the 
retrieved case with the highest ranking. If the pattern is simply a set of features, 
then selection is based on the case with the most features in common with the 
indexing pattern. Selection is the result of ranking the retrieved cases, where 
there are various methods for determining the ranking.

ADAPTING CASES

In some problems, a selected case provides a solution to the new problem. For 
example, when using a CBR approach to determine if a loan should be approved, 
the retrieved case provides a solution: approve or disapprove. In most problem 
solving, however, the selected case needs to be modified to be appropriate as a 
solution to the new problem. For example, a CBR approach to designing a 
bridge may recall a similar bridge, but the recalled bridge design cannot be used 
without modification for the new site. This modification is referred to as adapting 
a case.

Adapting a case from case memory to solve a new problem requires additional 
knowledge. The form this knowledge takes depends on how adaptation is done. 
One approach to adaptation is to identify those attributes of a case that can be 
changed and associate a formula with each adaptable attribute to be evaluated 
during adaptation. Another approach to adaptation is to associate a set of 
constraints with case memory that must be satisfied when adapting a case. These 
two approaches are broadly defined as parametric adaptation and constraint 
satisfaction.

Parametric adaptation adapts a previous case for a new problem solving 
episode by associating formulas with the attributes, or parameters, that can be 
changed. When defining the content of case memory, certain attributes are 
identified as adaptable attributes. Each of these attributes has a formula or 
procedure to be evaluated during case adaptation. The general approach to 
parametric adaptation is given below.

begin
repeat for each adaptable attribute 

evaluate associated formula;
end



12 CHAPTER 1

This approach to case adaptation assumes that the adaptable attributes are the 
same for each case retrieved and for each new problem encountered. The 
parametric adaptation considers each attribute in isolation from the others, so the 
change in value of the attribute is not dependent on other adaptable attributes. 
The consistency of the solution as a collection of attributes is not checked.

The constraint satisfaction approach to case adaptation requires a set of con­
straints to be associated with case memory. Once a case is selected as the basis 
for the new solution, the constraints provide the knowledge needed to check for 
inconsistencies between the selected case and the new problem. A domain of pos­
sible values for each attribute is needed when changing the values of attributes to 
satisfy constraints. The approach to constraint satisfaction is given below.

begin 
propose new solution; 
check constraints; 
repeat

change values of attributes of proposed solution; 
until all constraints are satisfied; 

end

Adapting cases is a potentially complex task that has not been fully explored. 
When possible, a simple approach to adaptation is used to automate the 
adaptation process. Otherwise, the user of the CBR system assists, or even 
performs, case adaptation.

APPLICATIONS OF CBR

CBR technology has been applied to a wide range of problems. CBR systems 
have been demonstrated in such varied domains as law, medicine, cooking, dis­
pute resolution, customer service, labor mediation, process control, and engineer­
ing design, especially in the past several years, yielding significantly improved 
performance and cost savings. CBR provides the potential for developing 
knowledge-based systems more easily than generalized knowledge-based 
approaches. The assumption is that it is easier to produce specific examples of 
problem solving than to generalize across a class of problems to suit all new 
problems encountered.

Some case-based systems have been developed to solve problems automati­
cally, whereas others have been built only to aid human problem solvers. CBR 
systems deployed in the field of industrial and commercial applications have 
delivered a number of benefits, including reduced cost, reduced errors, faster 
system development, reduced training time, decreased personnel required, im­
proved decisions, and improved customer service. Although a wide range of 
potential applications have been explored, commercial CBR applications have 
focused, for the most part, on case retrieval for decision support.


