
Learning to Teach Science in the Secondary School

A companion to school experience

Edited by Rob Toplis

4TH EDITION

LEARNING TO TEACH SCIENCE IN THE SECONDARY SCHOOL

Learning to Teach Science in the Secondary School is an indispensable guide with a fresh approach to the process, practice and reality of teaching and learning science in a busy secondary school. This fourth edition has been fully updated in light of changes to professional knowledge and practice and revisions to the national curriculum.

Written by experienced practitioners, this popular textbook comprehensively covers the opportunities and challenges of teaching science in the secondary school. It provides guidance on:

- the knowledge and skills you need, and understanding the science department at your school
- development of the science curriculum
- the nature of science and how science works, biology, chemistry, physics, astronomy and earth science
- planning for progression, using schemes of work to support planning, and evaluating lessons
- language in science, practical work, using ICT, science for citizenship, sex and health education and learning outside the classroom
- assessment for learning and external assessment and examinations
- educational research and science teachers

Every unit includes a clear chapter introduction, learning objectives, further reading, lists of useful resources and specially designed tasks – including those to support Master's level work – as well as cross-referencing to essential advice in the core text *Learning to Teach in the Secondary School.*

Learning to Teach Science in the Secondary School is designed to support student teachers through the transition from graduate scientist to practising science teacher, while achieving the highest level of personal and professional development.

Rob Toplis is Senior Lecturer in Secondary Science Education at Brunel University, UK.

LEARNING TO TEACH SUBJECTS IN THE SECONDARY SCHOOL SERIES

Series Editors: Susan Capel and Marilyn Leask

Designed for all students learning to teach in secondary schools, and particularly those on school-based initial teacher training courses, the books in this series complement *Learning to Teach in the Secondary School* and its companion, *Starting to Teach in the Secondary School*. Each book in the series applies underpinning theory and addresses practical issues to support student teachers in school and in the training institution in learning how to teach a particular subject.

Learning to Teach in the Secondary School, 6th edition

Edited by Susan Capel, Marilyn Leask and Tony Turner

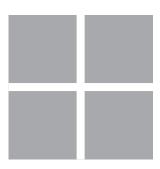
Learning to Teach Art and Design in the Secondary School, 3rd edition Edited by Nicholas Addison and Lesley Burgess

Learning to Teach Citizenship in the Secondary School, 3rd edition Edited by Liam Gearon

- Learning to Teach Design and Technology in the Secondary School, 2nd edition Edited by Gwyneth Owen-Jackson
- Learning to Teach English in the Secondary School, 3rd edition Edited by Jon Davison and Jane Dowson
- Learning to Teach Geography in the Secondary School, 2nd edition David Lambert and David Balderstone
- Learning to Teach History in the Secondary School, 4th edition Edited by Terry Haydn, James Arthur, Martin Hunt and Alison Stephen

Learning to Teach ICT in the Secondary School Edited by Steve Kennewell, John Parkinson and Howard Tanner

Learning to Teach Mathematics in the Secondary School, 3rd edition


Edited by Sue Johnston-Wilder, Peter Johnston-Wilder, David Pimm and Clare Lee

- Learning to Teach Modern Foreign Languages in the Secondary School, 3rd edition Norbert Pachler, Ann Barnes and Kit Field
- Learning to Teach Music in the Secondary School, 2nd edition Edited by Chris Philpott and Gary Spruce

Learning to Teach Physical Education in the Secondary School, 3rd edition Edited by Susan Capel

- Learning to Teach Religious Education in the Secondary School, 2nd edition Edited by L. Philip Barnes, Andrew Wright and Ann-Marie Brandom
- Learning to Teach Science in the Secondary School, 4th edition Edited by Rob Toplis
- Learning to Teach Using ICT in the Secondary School, 3rd edition Edited by Marilyn Leask and Norbert Pachler
- Starting to Teach in the Secondary School, 2nd edition Edited by Susan Capel, Ruth

Heilbronn, Marilyn Leask and Tony Turner

LEARNING TO TEACH SCIENCE IN THE SECONDARY SCHOOL

A companion to school experience

4th edition

Edited by Rob Toplis

Fourth edition published 2015 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge 711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

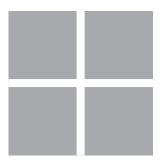
© 2015 R. Toplis for editorial material and selection. Individual contributors, their contribution.

The right of R. Toplis to be identified as the author of the editorial material, and of the authors for their individual chapters, has been asserted in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

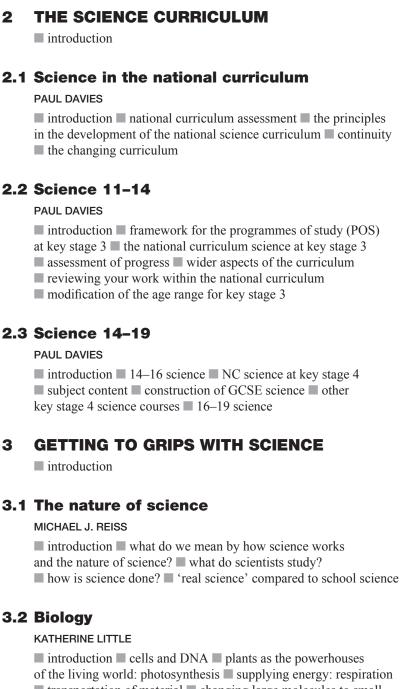
First edition published by Routledge 1998 Third edition published by Routledge 2010


British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Learning to teach science in the secondary school: a companion to school experience / edited by Rob Toplis. – Fourth edition. pages cm
1. Science–Study and teaching (Secondary) I. Toplis, Rob. Q181.L497 2015
507.1'241–dc23

2014030147

ISBN: 978-0-415-82642-6 (hbk) ISBN: 978-0-415-82643-3 (pbk) ISBN: 978-1-315-73128-5 (ebk)


Typeset in Times New Roman by RefineCatch Limited, Bungay, Suffolk

CONTENTS

List o	of figures of tables of tasks	xi xiii xv
Notes	s on contributors	xix
Prefa	ce to the fourth edition	xxi
	owledgements	xxiii
	of abbreviations	XXV
1	BECOMING A SCIENCE TEACHER	1
	introduction	
1.1	Learning to be a science teacher	3
	ROB TOPLIS	
	 introduction what do science teachers need to know? learning science assessment professional learning and enquiry working at master's level 	
1.2	Managing your professional learning	11
	CARO GARRETT	
	■ introduction ■ setting the scene ■ a model for professional learning ■ working with the teachers' standards ■ working with your own experiences and reflections ■ working with mentors and tutors ■ working with and through lesson observations ■ working in your school context	
1.3	Working in a science department	23
	ROB TOPLIS	
	 introduction moving from the primary school to the secondary school organisation in schools the science department 	

v

34

36

43

53

65

66

77

CONTENTS

of the living world: photosynthesis supplying energy: respiration transportation of material changing large molecules to small ones: digestion controlling conditions: homeostasis communication and control: hormones and the nervous system evolution and genetics ecology: the interdependence of organisms and their environment biology: the human animal

CONTEN	TS
--------	----

87

	ANN CHILDS	
	 introduction primary and lower secondary chemistry: macroscopic to the molecular level the power of the periodic table structure and bonding in the periodic table: another way of grouping elements chemical changes structure and bonding in compounds: materials, materials, materials materials and the future 	
3.4	Physics and astronomy	101
	STEVEN CHAPMAN	
	 introduction what is physics? explanations and misconceptions modelling physics is counter-intuitive contexts next steps 	
3.5	Earth and atmospheric science	107
	PAUL DAVIES	
	 introduction the structure of the earth types of rock products from rocks: the example of calcium carbonate fossils tectonic plate theory geological time the changing atmosphere mechanisms of climate change reducing climate change supplying potable water the fluoridation of water 	
4	PLANNING FOR TEACHING AND LEARNING	
-	SCIENCE	124
	■ introduction	
4.1	Planning for progression in science	125
	RALPH LEVINSON	
	 introduction describing progression planning for progression 	
4.2	Using schemes of work to support planning	138
	KEVIN SMITH	
	 introduction planning and schemes of work preparation is half the battle key scientific content/knowledge processes and skills sharing 	
4.3	Planning and evaluating lessons	148
	KEVIN SMITH	
	■ introduction ■ characteristics of lessons ■ starting lesson planning	

reflective practice and lesson planning

3.3 Chemistry

CONTENTS

4.4	Teaching strategies and organising learning PETE SORENSEN introduction teaching styles teaching strategies the organisation of learning and teacher behaviour metacognition	161
5	TEACHING SCIENCE: SPECIFIC CONTEXTS introduction	178
5.1	Language in learning science ROB TOPLIS introduction types of words types of audience types of register using the voice asking questions using talk using writing	179
5.2	 Practical work ROB TOPLIS introduction reasons for including practical work types of practical work managing practical work in the classroom 	192

5.3 Using technologies to support learning science

RUTH AMOS

introduction planning lessons incorporating technology tools
 technology-supported strategies for learning science communication and presentation information gathering and examining evidence
 practical work: data logging and control data handling simulations and animations building conceptual links and understanding
 mathematical models assessment for learning/exploring ideas

5.4 Science for citizenship

MARCUS GRACE

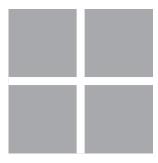
introduction what is citizenship?
 what is the connection between science and citizenship?
 how do science and citizenship fit together at school?
 how do schools teach science for citizenship?
 teaching about controversial issues
 using and developing pupils' knowledge of socio-scientific issues
 teaching strategies
 assessment methods
 available help and resources

5.5 Sex and health education

SANDRA CAMPBELL

■ introduction ■ sex and relationship education ■ health education

resources

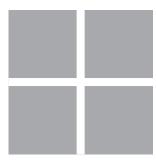

238

204

220

	CONTENTS
 5.6 Beyond the classroom RUTH AMOS introduction inspiring opportunities outside the classroom fieldwork in lesson time going off-site sites of special interest other opportunities 	252
6 ASSESSMENT IN SCIENCE introduction	265
 6.1 Assessment for learning; a formative approach CHRISTINE HARRISON introduction how does assessment for learning work in classrooms? using feedback to promote learning the current state of assessment for learning in UK schools 	266
 6.2 Summative assessment and examinations in science CHRISTINE HARRISON introduction summative assessment what kind of external assessments are done in schools? understanding the scheme of assessment in a specification validity and 'authentication' of coursework reliable marking and moderation of internally assessed work preparing pupils for public examinations 	276
 7 IS EDUCATION RESEARCH VALUABLE FOR EACHERS OF SCIENCE? JOHN OVERSBY introduction understanding research and scholarship specific research and scholarship that indicate how to improve teaching and learning the contribution of research and scholarship to being a professional bridging the gap between teachers and researchers: a UK example how to engage with research and scholarship as an active teacher 	
Index	301

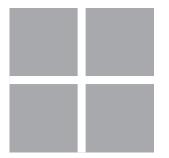
This page intentionally left blank



FIGURES

1.2.1	A model of active learning	13
1.2.2	Ways in which mentors can support an active learner	14
1.2.3	Students teachers' list of good teacher attributes	18
1.2.4	Good practice in giving and using feedback on teaching	19
1.2.5	Example of a guide for observing a lesson to focus on particular aspects	
	of the lesson and to record strategies and management skills being used	20
1.3.1	An example of the overall organisation of a secondary school	25
1.3.2	An example of separate science departments	25
1.3.3	An example of a Key Stage departmental structure	26
1.3.4	An example of a faculty structure	27
2.3.1	The most common pattern of GCSE Science courses in 14–16 age range	54
2.3.2	Science courses available at AS-level and A-level	61
3.1.1	Black swans (Cygnus atratus)	69
3.1.2	Caroline Allen's drawing of a scientist	74
3.3.1	Structures	92
3.3.2	Relative atomic mass	94
3.5.1	Segment through the Earth showing rock layers	108
3.5.2	Some features of the rock cycle	111
3.5.3	Map of the Earth showing plate boundaries	113
3.5.4	Arrangement of continental plates around 300 million years ago	
	showing the supercontinent Pangea	114
3.5.5	The difference in the average global temperature, for selected years	
	from 1860–2000, from the average global temperature in the period 1961–90	117
	An orientation exercise	130
4.2.1	Some characteristics of an example of a scheme of work	140
4.2.2	Aspects and language found in the QCDA scheme of work	141
4.2.3	Incomplete concept map for circuits	144
	A model of progress in circuits using the QCDA scheme of work	144
4.3.1	Characteristics of an effective lesson	150
	Other characteristics found in lesson plans	150
4.3.3	'Pin the organ': an example of a starter	153
4.3.4	Pro-forma example 1	157
	Pro-forma example 2	158
4.3.6	A lesson evaluation pro-forma	159

FIGURES


5.3.1	IWB cartoon	215
5.3.2	IWB reflection	215
5.4.1	The relationship between citizens and future scientists	223
5.4.2	Outline of a Year 9 lesson on polymers	226
5.4.3	A decision-making framework for learning about socio-scientific issues	232
5.5.1	True/false quiz	243
5.6.1	Inner city KS3 pupils exploring a rocky shore, Pembrokeshire,	
	Wales	254
5.6.2	Checklist for planning a short outside activity	256
5.6.3	A science student teacher working with a group in the Space Gallery	
	at the Science Museum, London	260

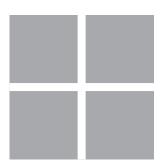
TABLES

2.2.1	The key concepts of each of the NC science at KS3 subject content areas	45
2.2.2	Statements from NC Science Biology KS3: cells and organisation for	
	an audit of confidence	47
2.3.1	Statements from NC Science Biology KS4: cells and organisation for	
	an audit of confidence	56
3.3.1	Mendeleev's predicted properties of 'eka-aluminium'	90
3.5.1	Details of rock types, formation and physical characteristics	109
3.5.2	Geological eons, eras and periods	115
3.5.3	Details of common atmospheric pollutants showing their anthropogenic	
	source and environmental effects	116
4.1.1	Keeping notes of pupils' progress	136
4.4.1	Three outline approaches to teaching the corrosion of metals	164
4.4.2	Ways of learning: possible activities to use with pupils	167
5.3.1	Basic technology-supported learning activities for school science	206
5.3.2	Adventurous technology-supported learning activities for school science	207
5.3.3	Extract from 'working scientifically' strand in the Key Stage 3 and	
	draft Key Stage 4 National Curriculum for Science	208
5.3.4	List of commonly found sensors and examples of use in practical	
	work	212
5.4.1	Ten 'big ideas' in science	223
5.4.2	Approaches teachers would adopt when teaching two different	
	controversial issues	228
5.4.3	A possible scoring system for assessing decision-making	234
5.6.1	Curriculum intentions related to fieldwork	253
7.1	Qualities of research and scholarship	287
7.2	Factors influencing the use of research by practitioners	296

This page intentionally left blank

TASKS

1.1.1	Starting out	4
1.1.2	Simple photosynthesis	5
1.1.3	Outcomes and assessment	8
1.2.1	Familiarising yourself with the Teachers' Standards for QTS	15
1.2.2	Reflections on your experiences of learning science	17
1.2.3	Auditing your own starting points	18
1.2.4	Watching science teachers: teaching skills	21
1.3.1	Differences between primary and secondary schools	24
1.3.2	Who's who in the school	27
1.3.3	The roles of the technician	28
1.3.4	The roles of Teaching Assistants	29
1.3.5	Involving the TA	30
1.3.6	Departmental policies	32
2.2.1	The design of the NC Science at KS3	44
2.2.2	Audit of prior knowledge: Subject Content and Working Scientifically	
	in science	45
2.2.3	Audit of personal confidence on range and content of science	46
2.2.4	Examining the Working Scientifically strand in the NC Science	48
2.2.5	Identifying breadth and balance in the NC Science	48
2.2.6	Assessing pupils' progress	49
2.2.7	Evaluating your teaching of a key concept	51
2.3.1	Making a comparison between Working Scientifically at Key Stage 3	
	and Key Stage 4	54
2.3.2	Audit of personal confidence on range and content of science	55
2.3.3	Comparing the organisation of two different GCSE Science courses	57
2.3.4	Comparing the GCSE Additional Applied and Additional Science	
	courses	58
2.3.5	Content and provision of Triple Science (Biology, Chemistry	
	and Physics)	59
2.3.6	Comparing the different KS4 Science qualifications	60
2.3.7	Comparison between the three GCE specifications: Biology, Chemistry	
	or Physics between two different awarding bodies	62
3.1.1	Getting pupils to consider the scope of science	70
3.1.2	What is your view of the nature of science? M-level	71


TASKS

3.1.3	Get pupils to research how science is done	72
3.1.4	Get pupils to do the 'draw a scientist' test	73
3.2.1	Plants	84
3.2.2	Our bodies	84
3.4.1	Questions	106
3.5.1	Investigating how different types of rock are used in, and around	
	your school	110
3.5.2	Cross-science subjects and cross-curricular opportunities for	
	teaching Earth and atmospheric science	121
4.1.1	Describing progression in different topics	127
4.1.2	Understanding conservation of matter	130
4.1.3	Identifying three learning outcomes for one objective	133
4.1.4	Planning differentiated investigations	135
4.2.1	What is the scheme for your school?	139
4.2.2	Reviewing the scheme of work	141
4.2.3	Identifying key ideas, processes and skills	142
4.2.4	Using a basic advance organiser to develop your scientific knowledge	143
4.2.5	Spotting how the idea progresses in the scheme of work	143
4.2.6	Developing your pedagogical content knowledge for a topic	145
4.3.1	An effective science lesson?	149
4.3.2	Looking at other teachers' planning	149
4.3.3	Planning at different Key Stages	151
4.3.4	Lesson objective or outcome	151
4.3.5	When does assessment take place?	152
4.3.6	Compare two activities that explore the same objective	154
4.3.7	Practise the activity	154
4.3.8	Have a go	155
4.3.9	Am I organised?	155
4.3.10	Homework	156
4.3.11	Comparing lesson plan pro-formas	158
4.3.12	Planning with pro-formas	158
4.4.1	Analysing different teaching approaches	163
4.4.2	Activities and learning objectives or outcomes	166
4.4.3	Learning styles and multiple intelligences	168
4.4.4	Teaching strategies in using a constructivist approach	169
4.4.5	Enquiry-based learning	169
4.4.6	Modelling	170
4.4.7	Types of questions science teachers ask	173
4.4.8	Differentiation strategies	174
5.1.1	Jabberwocky	179
5.1.2	Unfamiliar words	182
5.1.3	Using the voice	183
5.1.4	Categorising questions	184
5.1.5	Observing classroom talk	186
5.1.6	Comparing textbooks	188
5.1.7	Writing a good conclusion	188
5.2.1	Observing practical skills	194
5.2.2	Observing understanding with practical work	195

TASKS

5.2.3	Hands on, minds on	196
5.2.4	Using the Bunsen burner	197
5.2.5	Organising practical work	200
5.3.1	Developing graphical skills	213
5.3.2	Evaluating the effectiveness of technology-supported resources,	
	M-level	216
5.4.1	Big ideas in science	224
5.4.2	Citizenship and science in your school	225
5.4.3	Teaching about different controversial issues, M-level	228
5.4.4	Observing an experienced teacher	229
5.4.5	Evaluating a resource	234
5.5.1	Sex and health-related topics in the science curriculum	240
5.5.2	Two aspects of teaching SRE, M level	242
5.5.3	The need for ground rules	244
5.5.4	Developing ground rules	244
5.5.5	What does 'being healthy' mean?	245
5.5.6	The 'Question Box' technique	247
5.5.7	Technical language used in science	248
5.5.8	Devising activities for the classroom	248
5.6.1	Joining in a field visit or excursion	255
5.6.2	Planning a science trail	257
5.6.3	Planning a field visit.	260
6.1.1	Observing and collecting questions	268
6.1.2	Planning for quality feedback	271
6.1.3	Understanding your school's assessment policy	271
6.1.4	Finding research evidence for an interdependent relationship	
	between teachers and pupils, M-level	273
6.2.1	Understanding schemes of assessment for GCSE and GCE	280
6.2.2	Analysing question papers	281
6.2.3	Analysing the internally assessed components	282
6.2.4	Internal moderation	283

This page intentionally left blank

CONTRIBUTORS

Ruth Amos is Lecturer in Science Education at the Institute of Education, University of London. Her interests include learning science in field visit settings, using ICT to support learning science, chemistry education, environmental education and global dimensions and curriculum enrichment projects.

Sandra Campbell is Lecturer in Education at the Institute of Education, University of London, where she teaches on the Science PGCE and MA programmes. Previous posts include working as a Science Educator for the Science Learning Centre London at London's Science Museum and Head of Biology in a London comprehensive school. Her research interests include teacher development and biology education.

Steven Chapman is Head of Physics at Croydon High School. Before that he was Lecturer in Science Education at the Institute of Education, University of London, where he worked on the Physics elements of the secondary and primary PGCE. His research included teachers' subject knowledge and teaching Physics outside the classroom.

Ann Childs is Associate Professor in Science Education at the Oxford University Department of Education and a Fellow of Lady Margaret Hall, and she leads the science strand of the Post Graduate Certificate in Education (PGCE) at Oxford. She taught science in secondary schools in the UK and West Africa for 11 years, seven of these as a Head of Chemistry and Head of Science. Her research has focused on the professional learning of science teachers both nationally and internationally and the implications of government education policies for teacher education. Her current research is focused on working with teachers and pupils on explanations in science classrooms at both primary and secondary level.

Paul Davies is Lecturer in Science Education at the Institute of Education, University of London, where he teaches on the Science PGCE and MA programmes. He previously worked in schools in London, most recently as Head of Biology.

Caro Garrett taught sciences, mainly physics and chemistry, in secondary schools and a sixth form college for 25 years before joining the Education School at the University of Southampton in 2008. She introduced the pre-ITE 24-week physics Subject Knowledge Enhancement course and is currently the lead tutor for the Science PGCE. She is chair of the Association of Tutors in Science Education (ATSE). Her research interests are in physics education, particularly related to girls in physics.

CONTRIBUTORS

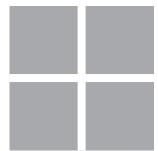
Marcus Grace is Head of Science Education Research in the University of Southampton's Education School. Previously, he taught science at state schools in London. His main interests centre on learning and teaching about socio-scientific issues, particularly health, biodiversity and environmental issues, and outdoor science education. His current work focuses on developing realistic teaching approaches to improving health-related attitudes and behaviour among young people.

Christine Harrison works at King's College London where she trains secondary science teachers, teaches on several Master's courses and carries out research in assessment and science education. Christ aught in London schools for 13 years prior to her university career and is known for the seamless way she bridges the gap between research and the classroom.

Ralph Levinson is Reader in Education at the Institute of Education, University of London. He taught science in London comprehensive schools for 12 years before working in higher education, mainly as a teacher educator and researcher.

Katherine Little currently teaches Biology at a girls' grammar school in Plymouth. Prior to training to be a teacher at the Institute of Education, University of London, she was awarded her doctorate in anthropology, researching the genetics and behaviour of Indian monkeys.

John Oversby has experience as a teacher of the sciences, mathematics and ICT, as well as research in chemistry and education in the sciences. Currently, he is working on diagrams in mathematics and sciences education, climate change education, and teacher subject knowledge.


Michael J. Reiss is Pro-Director: Research and Development and Professor of Science Education at the Institute of Education, University of London, and an Academician of the Academy of Social Sciences. The former Director of Education at the Royal Society, he has written extensively about curricula, pedagogy and assessment in science education.

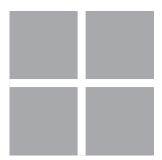
Kevin Smith has worked in education for 25 years as a teacher, middle manager and a science consultant/adviser. He is now a freelance consultant, specialising in teacher training and curriculum and resource development.

Pete Sorensen is Lecturer in Science Education in the School of Education at the University of Nottingham. He teaches on ITE courses, the PGCE (International) and Master's programmes, supervises higher-degree students, and researches in the field of teacher education. He has previously taught and held leadership and management positions in schools and teacher education institutions in the UK and Ghana.

Rob Toplis is Senior Lecturer in Science Education at Brunel University, London, where he teaches and supervises on pre-service, PhD, EdD and MA programmes. His research examines teaching and learning science in secondary schools with a particular emphasis on science for engagement and science for all.

XX

PREFACE TO THE FOURTH EDITION


As with the previous editions of *Learning to Teach Science in the Secondary School*, this fourth edition is written in conjunction with the generic text, Learning to Teach in the Secondary School, 6th edition (Capel, Leask and Turner, 2013), which we assume readers can access. Therefore, we have attempted to avoid repetition of material in the generic text though there may be some inevitable overlap to aid clarity. The suggested tasks, set in boxes, are an integral part of each unit and the intention is that they should be read in conjunction with the text. As with the generic book, these tasks can be done on your own or in collaboration with your mentors in school, your tutor or your fellow student teachers. The tasks frequently provide opportunities to link theory with practice: it is often very difficult to separate theory and practice and very often theory is essential in order to understand and interpret much of the practice and procedures you will encounter as a student teacher. It may be worth highlighting that in a number of texts and journals, the term 'student' is used instead of 'pupil'; that 'trainee teacher', 'trainee', 'beginning teacher' or 'pre-service teacher' may all be used to mean 'student teacher' and that 'school-based tutor' may be used instead of 'mentor'. Although the term 'student' instead of 'pupil' is now becoming commonplace to mean a learner in 11–19 secondary education, there is a risk of confusing 'student' with 'student teacher' and we have therefore kept to the terms 'pupil' and 'student teacher'.

Since the publication of the third edition, there have been a number of important changes in teacher education and in science education. These changes include:

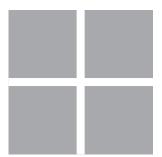
- a new set of Teachers' Standards;
- the introduction of School Direct for school-based teacher education and training;
- changes in the names and status of schools that now include terms such as colleges, academies, 'all-through' schools (from 5–19 years) and free schools;
- changes in assessment and examinations;
- new Ofsted (Office for Standards in Education) inspection frameworks for both schools and teacher education and training;
- changes in the National Curriculum.

Many teacher education and training courses include Master's level work and readers are directed to the relevant sections of the units that address these requirements. Many of the suggested 'Further Reading' lists include references to books and book chapters that will provide appropriate background for Master's level work.

This page intentionally left blank

ACKNOWLEDGEMENTS

When Jenny Frost, the editor of the previous editions of this book, approached me to take on the role of editor for this fourth edition, I was both flattered and rather daunted. How can anyone follow on from the direction that Jenny had set out for the book? I once commented to one of the contributors that this is really Jenny's book, I am just looking after it.


I am grateful to all the previous authors who remained on the team and were able to bring their Units up-to-date with the sometimes radical changes in both the school science curriculum and in science teacher education. I am also grateful to those new authors whom I approached and who enthusiastically agreed to contribute. I would like to thank those contributors with whom I had a very professional dialogue about terminology and meanings. These discussions have, I hope, added to the clarity of ideas in the Units and to our own thinking as science teacher educators.

Together with the contributors, I would like to express my thanks for permission to reproduce or use materials from the following individuals and organisations. These include, from the third edition, Cengage Learning Services Ltd for the reproduction of Figure 1.2.1; Caroline Allen for her drawing of a scientist in Unit 3.1; Nick O'Brien, Satomi Saki and Jamie Styles for ideas and drawings which appear in Unit 5.3; and the pupils and student teacher who appear in the photographs in Unit 5.6. In addition, I would like to thank Herschel Grammar School for permission to reproduce the pro-forma example in Figure 4.3.4 and Brunel University for the pro-forma example, Figure 4.3.5 and the lesson evaluation pro-forma in Figure 4.4.6.

Marcus Grace (Unit 5.4) would like to acknowledge the advice and helpful discussions with Jackie Smith, Personal Development Learning Coordinator and Careers Coordinator at The Mountbatten School, and with Maxine Farmer, Citizenship Coordinator at Hounsdown School.

I would like to express particular thanks to Helen Pritt, Sarah Tuckwell and Natasha Ellis-Knight of Routledge for their advice and support, to Kat Troth for editing some of my sections and asking awkward but important questions, and to Jenny Frost herself for her advice and for easing the transition to my editorship.

This page intentionally left blank

ABBREVIATIONS

AAIA ACCAC ACT AfL AIDS	Association for Achievement and Improvement through Assessments Qualification Curriculum and Assessment Authority for Wales Professional Association for Citizenship Teaching Assessment for Learning Auto Immune Deficiency Syndrome
A-level	Advanced level (GCE)
APP	Assessing Pupil Progress
AQA	Assessment and Qualifications Alliance
ARG	Assessment Reform Group
AS level	Advanced Subsidiary level (GCE)
ASE	Association for Science Education
AST	Advanced Skills Teacher
BEI	British Education Index
BTEC	Business and Technical Education Council
CASE	Cognitive Acceleration in Science Education
CAU	Centre Assessed Unit
CCTV	close circuit television
CLEAPSS	Consortium of Local Education Authorities for the Provision of Science
	Services
CLISP	Children's Learning in Science Project
CPD	Continuing Professional Development
DARTS	Directed Activities Related to Texts
DCSF	Department for Children, Schools and Families
DfE	Department for Education
DfEE	Department for Education and Employment
DfES	Department for Education and Skills
DNA	deoxyribonucleic acid
DoH	Department of Health
EAL	English as an Additional Language
ECM	Every Child Matters
EBD	Emotional and Behavioural Difficulties
EPPI	Evidence for Policy and Practice Information and Coordinating Centre
ESTA	Earth Science Teachers Association

ABBREVIATIONS

FUG	
EVC	Educational Visits Coordinator
EVS	Electronic Voting System
GCE	General Certificate of Education
GCSE	General Certificate of Secondary Education
GP	General Practitioner
G & T	Gifted and Talented
GTC	General Teaching Council
GTP	Graduate Teacher Programme
GUM	Genito-urinary Medicine
HEI	Higher Education Institution
HIV	Human Immunodeficiency Virus
HoD	Head of Department
HoS	Head of Science
IB	International Baccalaureate
IDEAS	Ideas, Evidence and Argument in Science project
IEP	Individual Educational Plan
IoB	Institute of Biology
IoP	Institute of Physics
ISA	Investigative Skills Assignment
IT	Information Technology
ITE	Initial Teacher Education
ITT	Initial Teacher Training
IWB	interactive white board
KS	Key Stage
LA	Local Authority
LRS	Learner Response System
LSA	Learning Support Assistant
LSD	lysergic acid diethylamide
MA	Master of Arts
MA	Management Allowances
MedFASH	Management Anowances Medical Foundation for Aids and Sexual Health
MEUFASH	
NHSS	Multiple Intelligences
	National Healthy School Status
NQT	Newly Qualified Teacher
Ofqual DACKS	Office of Qualifications and Examinations Regulation
PACKS	Procedural and Conceptual Knowledge in Science project
PCK	pedagogical content knowledge
PDP	Professional Development Portfolio
PHSE	Personal Health and Social Education
PLTS	Personal Learning and Thinking Skills
PSA	Practical Skills Assessment
PSHE	Personal, Social and Health Education
PSMSC	Personal, Social, Moral, Spiritual and Cultural
QCA	Qualifications and Curriculum Authority
QCDA	Qualifications and Curriculum Development Agency
QTS	Qualified Teacher Status
RSC	Royal Society of Chemistry
SASP	Science Additional Specialism Programme

ABBREVIATIONS

SATs	Standard Assessment Tasks
SCITT	School Centred Initial Teacher Training
SEN	Special Educational Needs
SEP	Science Enhancement Programme
SLT	Senior Leadership Team
SMT	Senior Management Team
SoW	Scheme of Work
SRE	Sex and Relationship Education
STEM	Science, Technology, Engineering and Mathematics
STI	sexually transmitted infection
TDA	Training and Development Agency for Schools
TGAT	Task Group on Assessment and Testing
TIMSS	Third International Mathematics and Science Survey
TLR1	First Teaching and Learning Responsibility
TLR2	Second Teaching and Learning Responsibility
TLRP	Teaching and Learning Responsibility Payment
TTA	Teacher Training Agency
VAK	Visual, Auditory, Kinaesthetic

This page intentionally left blank

BECOMING A SCIENCE TEACHER

INTRODUCTION

Becoming a science teacher involves a diverse range of different tasks covering a wide range of skills, knowledge and understanding. No day is the same and very often no hour is the same. This is by its very nature a function of dealing with human beings. The humans you are dealing with on a daily basis are not just ordinary humans; they are teenagers and have all the features that go with an age group who are going through some of the most important changes of their lives. As a secondary science teacher you are in a privileged position to witness and even to some small extent, to be part of those changes. Therefore, the skills of a beginning or student science teacher are not those that just involve science knowledge and skills but are those of an individual who may, at various times, be a counsellor, careers officer, adviser, psychologist, carer and actor, to name but a few. After all, that is probably why you decided to be a teacher. At this point it might be useful to read the first unit, Unit 1.1, 'What do teachers do?' by Andrew Green and Marilyn Leask from the companion volume, *Learning to Teach in the Secondary School* (Capel *et al.*, 2013).

The units in this section provide an early introduction to starting out as a student science teacher. It provides some background about starting points and some of the skills and knowledge you may bring with you that can enhance pupils' experiences. It provides the backdrop to developing as an individual who is deeply involved with science *learning* – in Keith Taber's words, a 'learning doctor' (Taber, 2001, p. 53) – and with a proactive approach to managing your own learning and professional development as a science teacher. It also gives an overview about the ways in which schools and science departments are structured and some of the different jobs that science teachers undertake. In essence, this first section is about an induction into a community of practice that relies not only on science knowledge, but also on a variety of skills required when dealing with people. And the people in secondary schools are a diverse but extremely interesting lot!

1

REFERENCES

Capel, S., Leask, M. and Turner, T. (2013) *Learning to Teach in the Secondary School: An Introduction to School Experience*, 6th edn. London: Routledge.

Taber, K. S. (2001) *Chemical Misconceptions: Prevention, Diagnosis and Cure*, vol. 1: *Theoretical Background*, London: Royal Society of Chemistry.

LEARNING TO BE A SCIENCE TEACHER

Rob Toplis

INTRODUCTION

Science education can be a rather tricky business. Not only do you need to know the science itself, to 'know your stuff', you also need to know a lot about education, that is teaching and learning, and know quite a lot about people. There is a myth – and one that is unfortunately still prevalent in the minds of some people with little experience inside schools – that science is something that can somehow be imparted to pupils, that science knowledge can be transmitted directly from the teacher to the pupil by some unseen conduit, a kind of learning cable from one stock of knowledge to an empty vessel at the pupil end. The mere act of telling someone can somehow convey all the information needed. Nothing could be further from the truth.

OBJECTIVES

By the end of this unit, you should:

- be aware that science teaching and learning is a complex process;
- know that your own enquiry skills are needed to develop knowledge about science education;
- understand some of the requirements for Master's level work.

WHAT DO SCIENCE TEACHERS NEED TO KNOW?

Starting points: what do you know already?

Beginning or student teachers come from a wide variety of starting points in terms of their academic experience, social and cultural experiences and work experiences. Added to this are their values, attitudes and beliefs about science, what it is and how it should be taught.

Academic experiences may be varied. They may include a first degree from a fairly narrow area or one with a mixture of different modules; they may include a higher degree

in an even narrower area with research based on one specialist topic. Examples may be a biology student teacher with a first degree in genetics but with little or no ecology; a physics student teacher with a degree in electrical engineering but with little content in astrophysics, or a chemistry student with a degree in medicinal chemistry but little inorganic chemistry. In these examples, further subject knowledge enhancement would be required before being able to confidently teach all aspects of the specialist science.

An individual's social and cultural experiences can often be a valuable addition to the daily interactions with teenage pupils. Personal experiences and interests, memberships of groups, travel experiences and hobbies can contribute to the positive professional relationships that occur between teachers and pupils. At one level, involvement in the clubs and societies in schools not only helps forge these positive interactions but helps the informal education of pupils: the hidden curriculum. At another level, the richness of a diversity of backgrounds and cultures can add to the overall pupil experience in school.

A student teacher's prior work experience can provide opportunities that will enrich their science teaching, whether it be through new ideas to teaching science, approaches to organising the classroom, dealing with individuals – the so-called 'life skills' – or simply some of the anecdotes from work that can be used to illustrate ideas in the science laboratory. However, it is important to point out that schools and classrooms are very complex social situations and often work very differently to the workplace; it may not always be possible to simply transfer practices from the context of work to the context of school.

You will, inevitably, arrive with a number of very different views, values, beliefs and attitudes. Some of these may be based on your own education; some will be based on your views of the world, your experiences and even the ways you view learning. When you begin teacher education and training, a number of these will alter, and may even be in conflict with new experiences and change as a result. It is important to be open-minded. As you observe, reflect on and evaluate your previous ideas and current experiences, you may start to develop a personal philosophy about science teaching and learning, and your role in this.

Task 1.1.1 Starting out

Make a list of some of your skills and beliefs about science teaching and learning. These might include: subject knowledge; 'transferable' skills such as organisation, time management and creativity; 'people skills' such as empathy, diplomacy, enthusiasm, and beliefs, attitudes and values that might address the question, 'why do I want to teach science?'

Then look at this list and consider how you can enhance these skills, and how you hope to address some of these areas during your teacher training and education.

An outline of some of the different roles of teachers can be found in Unit 1.1 of the companion volume to this book, *Learning to Teach in the Secondary School* (Capel *et al.*, 2013).

Subject knowledge, content knowledge and pedagogy

There has been a certain amount of debate about the nature of subject knowledge. Teachers need to know *what* to teach, the content knowledge necessary. They also need to know how to teach this knowledge, the pedagogy involved. Shulman (1986) has contributed to our understanding about subject knowledge and has proposed the term *pedagogical* content knowledge, or PCK, to refer to the practical knowledge used by teachers in classrooms. This practical knowledge is, understandably, complex as it involves the knowledge that specialist teachers possess that includes pupil misconceptions, examples, analogies and models. Added to this are the illustrations, conceptual difficulties and connections with other aspects of learning such as assessment and the curriculum (Berry, 2012). If we take the example of teaching a very simple topic such as the forces on a cyclist pedalling at a constant speed along a flat road, the teacher will need to know a number of important facts. They will need to know the content knowledge about the forces acting on the cyclist such as friction, forward motion, gravity and Newton's Laws. They will also need to know pupils' misconceptions or alternative frameworks about forces and motion, how force arrows can be drawn, balanced forces, some possible simple demonstrations or observations about Newton's Laws, other possible examples that can add to pupils' understanding, 'what if' questions and even the kinds of questions that may arise in assessment tests or examinations. The PCK involved in this apparently straightforward example on forces and motion is rather more complex than it immediately appears and the teacher needs to draw on a wide range of knowledge to deal with this.

Task 1.1.2 Simple photosynthesis

List the items of PCK needed to teach a simple outline of photosynthesis, involving the production of carbohydrate and oxygen from carbon dioxide and water, using light energy.

Curriculum knowledge

Subject knowledge is not the only form of knowledge a teacher needs. They also need to know *what* needs to be taught, i.e. curriculum knowledge. This is further complicated by the frequency of curriculum change but change is inevitable as the curriculum is revised in response to changes in policy and evolving ideas about what kind of science needs to be taught to all pupils in the secondary age range. Curriculum change is not just something to hit the news in England; it occurs throughout the world as governments and international educators react to the need for both a scientific and technological workforce while at the same time enhancing the scientific literacy of twenty-first-century populations who need to be better informed about some of the major scientific, ethical and environmental issues facing them.

One of the biggest curriculum changes in more recent years has been the arrival of and changes to the General Certificate of Secondary Education (GCSE) with a shift towards what pupils can do, rather than what they can remember for a final examination – and recent shifts back again. The second major curriculum change is the National Curriculum and its revisions.

5

The National Curriculum arrived in 1989, resulting from a mixture of historical events, initiatives and a not inconsiderable degree of political influence. Although the biological, chemical and physical science content was familiar, AT1, later to be called Sc1, covered experimental and investigative work and was the first time investigations in school science were now part of a statutory curriculum. With Sc1, pupils were required to predict, carry out, analyse and evaluate investigative work in science. This type of practical work in science was a noticeable departure from the 'recipe-following' form of practical work that was being carried out across the country, designed to illustrate scientific phenomena and explanations.

Since 1989 there have been five versions of the National Curriculum in 1991, 1995, 2000, 2004 with another in 2013. What does this indicate? Changing criteria for the science curriculum? Different political agendas? Or the realisation that previous versions of the curriculum were in need of change? Two earlier areas of the National Curriculum were open to general criticism as far as teachers were concerned: its manageability in practice and its assessment. A third criticism relates to scientific literacy and the question: 'Who is the science curriculum for?' A rapid level of curriculum reform in the early days led to 'mass reading activities' (Wellington, 1994, pp. 3–4) where teachers attempted to interpret the new requirements, a difficulty for a group of professionals more used to *controlling* aspects of the curriculum (certainly below the examination years) than *delivering* a centralised and prescribed format over which they had no influence. Teachers then had to write complex schemes of work to accommodate all of these factors – and have been doing so ever since. The later versions of the National Curriculum attempted to address some of the problems and simplify them by relying more on the professional judgement of teachers in their interpretation and implementation.

In response to criticisms that the curriculum was prescriptive and assessment-driven in nature; that there was an overload of factual content, little contemporary science, and coursework that was restricted to a few tried and tested investigations that were divorced from day-to-day science teaching, the 2004 version of the National Curriculum introduced 'How Science Works' with its emphasis on evidence, investigative science, communication, and applications and implications. These now form the 'working scientifically' part of the latest version of the National Curriculum.

More recently, there have been continuing international concerns about school science education, including a reduction in the numbers of pupils studying the physical sciences beyond the age of 16, gender differences, and pupils' attitudes and motivation for studying science. The Relevance of Science Education (ROSE) study of pupils' attitudes to science shows that in over 20 countries, pupils' response to the statement: 'I like school science better than other subjects' is increasingly negative the more developed the country (Osborne and Dillon, 2008, p. 13), that science is 'important but not for me' (Jenkins and Nelson, 2005, p. 41). Against this backdrop has been the most recent version of the National Curriculum with greater emphasis on content knowledge. It remains to be seen if this initiative is able to reverse some of the trends in attitudes to school science and can engage *all* pupils in further study and for greater scientific literacy.

LEARNING SCIENCE

The science teacher needs to have some understanding about theories of learning. A biologist would not expect to understand many aspects of the subject without Darwin's theory of evolution by natural selection; a chemistry teacher would be expected to know