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Preface to first edition

A short account of the origins of this book will explain its purpose. In
the 1970s I coauthored (with John M. Wallace) a textbook for senior
undergraduates and first-year graduate students entitled Atmospheric
Science:An Introductory Survey (Academic Press, 1977). At the time that
text was written it was not considered necessary to include a chapter on
atmospheric chemistry. By the early 1990s, when we began to think about
a second edition of Atmospheric Science, the importance of atmospher-
ic chemistry was such that it was inconceivable that such a book would
not include a substantial chapter on this subject.

In the intervening years I had introduced a section on atmospheric
chemistry into the survey course taken by all first-year graduate students
in the Atmospheric Sciences Department at the University of Washing-
ton. I quickly discovered, however, that many of the students either had
no previous instruction in chemistry or had long since forgotten what
little they had known. I therefore wrote an (unpublished) primer on
physical chemistry for these students; the present book grew out of that
primer.

Reviewed herein are some of the fundamental concepts associated
with chemical equilibrium, chemical thermodynamics, chemical kinetics,
aqueous solutions, acid-base chemistry, oxidation-reduction reactions
and photochemistry, all of which are essential to an understanding of
atmospheric chemistry. The approach is primarily from the macroscopic
viewpoint, which provides the tools needed by the pragmatist. A deeper
understanding requires extensive treatment of the electronic structure
of matter and chemical bonding, topics that are beyond the scope of this
introductory text. This book can be used for either self-instruction, or as
the basis for a short introductory class on chemistry, prior to courses
in which chemistry is applied to one of the geosciences. In addition to

IX



x Preface to first edition

students (and I use this term in its broadest sense) of atmospheric
sciences, I hope this book will be useful to others. It should be suitable,
for example, as a precursor to undergraduate and graduate courses in
which chemistry is applied to any of the geosciences and environmental
sciences.

In keeping with the didactic approach of this book, and the view that
any science is best learned by solving problems, I have provided solu-
tions to 50 exercises in the text and posed 112 exercises for the student.
Answers to all the quantitative problems, and hints and solutions to
selected problems, are given in Appendix VII.

In preparing this book I benefited from the following texts, which are
recommended to the reader: Chemistry: An Experimental Science edited
by G. C. Pimentel (W. H. Freeman, 1963) gives a broad introduction to
chemistry with emphasis on its experimental foundations; Chemistry:
The Central Science by T. L. Brown and H. E. LeMay Jr. (Prentice-Hall
Inc., 1981) and General Chemistry: Principles and Modern Applications
by R. H. Petrucci (Macmillan Pub. Co., 1982) provide more extensive
accounts of most of the topics discussed in the present book and
deal with many other aspects of chemistry. Finally, for the student
who wants to take the next step in chemistry beyond that presented here,
University Chemistry by B. H. Mahan (Addison-Wesley, 1965) is highly
recommended.

This book was started in 1984 when I was an Alexander von
Humboldt Foundation Senior Scientist in Germany, and it was essentially
finished in 1993 during a sabbatical at the Instituto FISBAT-CNR,
Bologna, Italy. Thanks are due to both of these organizations for their
generous support. It is also a pleasure to thank my colleagues Professors
Dean Hegg and Conway Leovy, and many students, particularly John
Herring and Cathy Cahill, who commented on various drafts of this
book and made suggestions for its improvement. I am grateful to the
National Science Foundation for supporting my own research in
atmospheric chemistry over many years.

Any suggestions or corrections related to this book will be gratefully
received.

Seattle
May 1994



Preface to second edition

The success of the first edition of this book encouraged me to write
a companion text entitled Introduction to Atmospheric Chemistry
(Cambridge University Press, 2000). On the occasion of the publication
of the latter text, the opportunity has been taken to issue a second edition
of Basic Physical Chemistry for the Atmospheric Sciences.

In this second edition a number of minor (and a few major) errors
have been corrected, and the text has been clarified in several places.
I hope that, taken together, these two companion volumes will provide
students, researchers, and even the interested layperson, with a sound
introduction to the fascinating subject of atmospheric chemistry,
which has emerged as a discipline in its own right in just the past few
decades.

Comments on this book, which will be gratefully received, can be sent
by e-mail to: phobbs@atmos.washington.edu. Current information on
the book, including any errata, can be found on http://cargsun2.atmos.
washington.edu/-debbie/HobbsWebPage/BasicChem/Info.html.

Peter V. Hobbs

XI





1
Chemical equilibrium

One of the major goals of chemistry is to predict what will happen when
various substances come into contact. Will a chemical reaction occur, or
will the substances just exist side by side? One way to approach this
problem is through the concept of chemical equilibrium, which is the
focus of this chapter.

1.1 Some introductory concepts
In a balanced equation for a chemical reaction, there are the same
number of atoms of each element on the left side of the equation as there
are on the right side. For example, the balanced equation for the chem-
ical reaction representing photosynthesis isla

6CO2 (g) + 6H2O(1) -» C6H12O6 (s) + 6O2 (g) (1.1a)

In a balanced chemical equation (which we will often call a reaction), the
relative numbers of the molecules involved in the reaction are given by
the numerical coefficients preceding the chemical symbol for the mole-
cule. Thus, Reaction (1.1a) indicates that six molecules of carbon dioxide,
CO2(g), react with six molecules of water, H2O(1), to form one molecule
of glucose, C6H12O6(s), and six molecules of oxygen, O2(g)

6 molecules of CO2(g) + 6 molecules of H2O(1) —>
1 molecule of C6Hi2O6(s) + 6 molecules of O2(g) (1-lb)

Reaction (1.1a) does not necessarily mean that if six molecules of
CO2(g) are mixed with six molecules of H2O(1) they will react completely

Numerical superscripts in the text (1, 2,. .. , etc.) refer to Notes at the end of each
chapter.



2 Chemical equilibrium

and produce one molecule of C6Hi2O6(s) and six molecules of O2(g).
Some chemical reactions proceed very quickly, others very slowly;
and some never reach completion. However, what Reaction (1.1a) does
tell us is that at any given instant in time the ratio of the numbers of
molecules of CO2(g), H2O(1), C6Hi2O6(s), and O2(g) that have reacted is
6:6:1:6.

The relative masses of the various atoms are represented by their
atomic weights (dimensionless) referenced to carbon-12 (i.e., a carbon
atom containing six protons and six neutrons), where carbon-12 is arbi-
trarily assigned an exact atomic weight of 12. Atomic weights are listed
in Appendix III. Similarly, the relative masses of molecules are repre-
sented by their molecular weights (dimensionless), where the molecular
weight is obtained by adding together the atomic weights of all the atoms
in the molecule. For example, since the atomic weights of hydrogen and
oxygen are 1.008 and 15.999, respectively, the molecular weight of water
(H2O) is (2 x 1.008) + 15.999 = 18.015.

One gram-molecular weight (abbreviation mole or mol) of any com-
pound is a mass of that compound equal to its molecular weight in grams.
Thus, 1 mole of water is 18.015 g of water. One mole of any compound
contains the same number of molecules as one mole of any other com-
pound.2 The number of molecules in 1 mole of any compound is 6.022 x
1023, which is called Avogadro's number (NA). Since the volume occupied
by a gas depends on its temperature, pressure, and the number of mole-
cules in the gas, at the same temperature and pressure 1 mole of the gas
of any compound occupies the same volume as 1 mole of the gas of any
other compound. At standard temperature and pressure (STP), which are
denned as 0°C and 1 bar (= 105Pa),3 the volume occupied by 1 mole of
any gas is about 22.4 liters (L).

If we now multiply every term in the Relation (1.1b) by NA we get

6NA molecules of CO2(g) + 6NA molecules of H2O(1) ->

1NA molecule of C6H12O6(s) + 6./VA molecules of O2(g)

or,

6 moles of CO2 (g) + 6 moles of H2O(1) ->
1 mole of C6H12O6(s) + 6 moles of O2(g) (1.1c)

Relations (1.1b) and (1.1c) demonstrate how we can move directly
from a balanced chemical equation, such as Reaction (1.1a), to a state-
ment about the relative numbers of molecules (1.1b) or the relative
numbers of moles (1.1c) involved in the reaction.
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Exercise 1.1. An important chemical reaction in atmospheric,
earth, and ocean sciences is that of dissolved carbon dioxide with
liquid water to form carbonic acid, H2CO3(1),

CO2(g) + H2O(l)->H2CO3(l) (1.2)

Calculate the mass of carbonic acid that forms for every kilogram
of carbon dioxide that reacts with liquid water.
Solution. From the balanced chemical equation (1.2) we see that

for every mole of carbon dioxide that reacts with water one mole
of carbonic acid is formed. Since the molecular weight of CO2 is
44.01, the number of moles of CO2 in lkg is 1000/44.01 = 22.72.
Therefore, 22.72 moles of carbonic acid will form for every
kilogram of CO2 that reacts with water. The molecular weight of
carbonic acid is 62.02; therefore, the number of grams of carbonic
acid in 22.72 moles is (22.72 x 62.02) = 1409. Therefore, for every
kilogram of CO2 that reacts with water 1.409 kg of carbonic acid
are formed.

1.2 Equilibrium constants

A vapor is in equilibrium with its liquid when the rate of condensation
is equal to the rate of evaporation. An analogous state of equilibrium
exists in a chemical system when the rate at which the reactants combine
to form products is equal to the rate at which the products decompose
to form the reactants. For example, a reaction that plays a role in
tropospheric and stratospheric chemistry is

g) + NO3(g)->N2O5(g) (1.3)

However, some of the N2O5 molecules so formed break up again

N2O5(g)^NO2(g) + NO3(g) (1.4)

Reaction (1.3) is called the forward reaction and Reaction (1.4) the
reverse reaction. Reactions (1.3) and (1.4) can be combined as follows

NO2(g) + NO3(g)?±N2O5(g)

At every temperature there exists partial pressures of the gases for which
the forward and reverse reactions occur at the same rate; under these
conditions, the system is said to be in chemical equilibrium.

A general chemical reaction can be represented by
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bB+...+±gG + hH+... (1.5)

where A, B , . . . and G, H , . . . represent the chemical reactants and prod-
ucts, respectively, and a,b,... and g,h,... their coefficients in the bal-
anced chemical equation. If Reaction (1.5) is in chemical equilibrium,
and if the reactants and products are ideal gases or are present as solutes
in an ideal solution,4 then

WM-.K. (L6)
[A]-[B]b

where [A], [B], . . . and [G], [H] , . . . represent the equilibrium concen-
trations of the reactants and products, and Kc is called the equilibrium
constant for the forward reaction (or, simply, the equilibrium constant
for the reaction).5 Equilibrium constants for some chemical reactions are
given in Appendix IV. The value of Kc for a chemical reaction depends
only on temperature (see Section 2.2), not on the concentrations of the
chemical species or the volume or pressure of the system.

The concentrations in Eq. (1.6) may be expressed in molarity (M). For
a gas the molarity is the number of moles of gas per liter of air; for a
solution, it is the number of moles of solute per liter of solution. If any
of the reactants or products are pure liquids or pure solids, their con-
centrations (i.e., densities) are essentially constant, compared to the large
changes that are possible in the concentrations of the gases. Therefore,
the concentrations of liquids and solids are incorporated into the value
of Kc. The practical consequence of this is that the concentration of any
pure liquid or pure solid may be equated to unity in Eq. (1.6).

Exercise 1.2. At 2000°C the value of Kc for the reaction

N2(g) + O2(g)^2NO(g) (1.7)

is 1.0 x 10~4. If the equilibrium concentrations of O2(g) and NO(g)
are 50 M and 0.030 M, respectively, what is the equilibrium con-
centration of N2(g)?
Solution. Application of Eq. (1.6) to Reaction (1.7) yields

[NO(g)f
A = •C [N2(g)][O2(g)]

Therefore,

[N2(g)](50)
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I and, I

[N2(g)] = 0.18M I

At 25°C the value of Kz for Reaction (1.7) is only 1 x 10~30! This implies
that the equilibrium concentration of NO(g) is very low at normal tem-
peratures and that the equilibrium "lies to the left" of Reaction (1.7),
favoring the reactants. Hence, in the troposphere, negligible quantities of
NO(g) are produced by Reaction (1.7).

In the case of chemical reactions involving only gases, it is often more
convenient to express the equilibrium constant for the reaction in terms
of the partial pressures of the reactants and products instead of their
molarities. However, before doing this we must review the ideal gas
equation.

Laboratory experiments show that for a wide range of conditions the
pressure (p), volume (V), and temperature (7) of all gases follow closely
the same relationship, which is called the ideal gas equation. In SI units
(see Appendix I), the ideal gas equation can be written in the following
forms. For mass m (in kilograms) of a gas

pV = mRT (1.8a)

where p is in pascals, V in cubic meters, T in K (K = °C + 273.15 = °C +
273), and R is the gas constant for 1 kg of a gas. The value of R depends
on the number of molecules in 1 kg of the gas, and therefore varies from
one gas to another. Since mlV = p, where p is the density of the gas,

p = RpT (1.8b)

For lkg of gas (m = 1), Eq. (1.8a) becomes

pa = RT (1.8c)

where a is the specific volume of the gas (i.e., the volume occupied by
lkg of the gas). One mole of any gas contains the same number of
molecules (NA). Therefore, the gas constant for 1 mole is the same for
all gases and is called the universal gas constant 7?*(8.3143Jdeg"1mol"1).
Therefore,

PV = nR*T

where n is the number of moles of the gas, which is given by

1000m
n =

M
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where 1000 m is the number of grams of the gas and M the molecular
weight of the gas. Also,

^ ( L 8 e )

where R is divided by 1000 to obtain the gas constant for 1 g of gas. It
can be seen from Eq. (1.8d) that at constant temperature and pressure
the volume occupied by any gas is proportional to the number of moles
(and therefore the number of molecules) in the gas. The gas constant for
1 molecule of any gas is also a universal constant, called the Boltzmann
constant k. Since the gas constant for NA molecules is R*

R* 81141
k = AT = 6.022 xlO23 = L 3 8 1 X 10~23 J d e r l m o l e c u l e "

For a gas containing n0 molecules per cubic meter, the gas equation can
be written

p = nokT (1.8g)

In chemistry, it is common because it is convenient, to depart from
SI units in the gas equation and, instead, to express pressure in atmo-
spheres and volume in liters (T is still in K). In this case, for nA moles
of gas A with pressure pA and volume VA we can write the ideal gas
equation as

PAVA = nA R*T (1.8h)

where Rf is the universal gas constant in "chemical units" (indicated by
the subscript c); the value of Rf is 0.0821 L atmdeg^mol"1. Since nA/VA
is the number of moles of the gas per liter, that is, the molarity [A] of
the gas

L J VA R?T

Exercise 1.3. Carbon dioxide occupies about 354 parts per
million by volume (ppmv) of air. How many CO2 molecules are
there in 1 m3 of air at 1 atm and 0°C?
Solution. Let us calculate first the number of molecules in 1 m3

of any gas at 1 atm and 0°C (which is called the Loschmidt number).
This is given by n0 in Eq. (1.8g) with p = 1 atm = 1013 x 102Pa,
T = 273K and k = 1.381 x KT23 Jdeg"1 molecule-1. Therefore,



Equilibrium constants

Loschmidt number = — = 2.69 x 1025 molecule m"3

(1.381 xl(T23)273
Since, at the same temperature and pressure, the volumes occupied
by gases are proportional to the numbers of molecules in the gases,
we can write

Volume occupied by CO2 molecules in air
Volume occupied by air

_ Number of CO2 molecules in 1 m3 of air
Total number of molecules in 1 m3 of air

Therefore,

n-6 - dumber of CO2 molecules in 1 m3 of air
2.69 x 1025

Hence, the number of CO2 molecules in 1 m3 of air is (354 x 10"6)
x (2.69 x 1025) = 9.52 x 1021.

We can now derive an expression for the equilibrium constant for a
chemical reaction involving only gases in terms of the partial pressures
of the gases. From Eqs. (1.6) and (1.8i)

or,

Kc=Kv{RtT)^ (1.9a)

where,

^p=T73 (L9b)
PAPB •• •

and,

An = (a + b + . . . ) - ( g + h + . . . ) (1.9c)

Kp is generally used as the equilibrium constant in problems involving
gaseous reactions. As in the case of Kc, terms for pure liquids and solids
do not appear in the expression for Kv, and the coefficients for these
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terms are taken to be zero in the expression for An. Note that the units,
as well as the numerical values, of Kc and Kp may differ. For example,
for Reaction (1.3) the units of Kc are those of

[O3(g)]
[O(g)][O2(g)]

o r ,wwws = M x, the units of Kp are

atm _
- or = atm(Po)(Po2) (atm)(atm)

Nevertheless, it is common practice in chemistry not to indicate the
units of equilibrium constants, with the understanding that when Kc is
used the concentrations are in molarity, and when Kv is used the partial
pressures are in atmospheres.

Exercise 1,4. Ammonia, NH3(g), is produced commercially from
the reaction of hydrogen, H2(g), and atmospheric nitrogen, N2(g),
at high temperatures. If H2(g), N2(g), and NH3(g) attain equilib-
rium at 472°C when their concentrations are 0.12 M, 0.04 M, and
0.003 M, respectively, calculate the values of ^c and .Kp for the reac-
tion at 472°C.

Solution. The balanced chemical equation for the reaction is

3H2(g) + N2(g)*±2NH3(g)

Hence, from Eq. (1.6)

K [NH3(g)f (0.003)2
 Q 1K _

[H2(g)f[N2(g)] (0.12)3(0.04)
From Eq. (1.9a)

where Kc = 0.1, R* = 0.0821 L atm deg"1 mol"1, T = 745K and, from
Eq. (1.9c), An = (3 + 1) - (2) = 2. Therefore,

Kp =p = r
(0.0821 x 745)

1.3 Reaction quotient
If the general chemical reaction represented by Eq. (1.5) is not in
equilibrium, we can still formulate a ratio of concentrations that has the
same form as Eq. (1.6). This is called the reaction quotient, Q
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6 = [ G ] g
a

[ H ( - - - (1.10)

Clearly, if Q = Kc, the reaction is in chemical equilibrium. If Q < Kc, the
reaction is not in equilibrium, and it will proceed in the forward direc-
tion until Q = Kc. If Q > Kc, the reaction will proceed in the reverse direc-
tion until Q = Kc.

Exercise 1.5. If 0.80 mole of SO2(g), 0.30 mole of O2(g), and 1.4
mole of SO3(g) simultaneously occupy a volume of 2 L at 1000K,
will the mixture be in equilibrium? If not, in what direction will
it proceed to establish equilibrium? Consider only the species
SO2(g), O2(g), and SO3(g) in the reaction

2SO2(g) + O2(g)<±2SO3(g) (1.11)

with Kc = 2.8 x 102.
Solution. The reaction quotient for Reaction (1.11) is

[SO2(g)]2[O2(g)]

To evaluate the initial value of Q we must determine their initial
molarities. These are: for SO2 = 0.80/2 = 0.40M, for O2 = 0.30/2 =
0.15 M, and for SO3 = 1.4/2 = 0.70 M.

Hence,

(0.40) (0.15)

Since this value of Q is not equal to Kc (namely, 2.8 x 102), the initial
mixture is not in equilibrium. Moreover, since Q < Kc, Reaction
(1.11) will proceed in the forward direction.

Exercise 1.6. What are the equilibrium concentrations of SO2(g),
O2(g), and SO3(g) in Exercise 1.5?

( y \or — M of SO3(g) are formed, it follows

( y \ y

or — M of SO2(g) and — moles

(or — M) of O2(g) disappear. If this change establishes chemical

equilibrium we have


