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Preface

This book provides a rigorous treatment of the fundamentals of plane
geometry: Euclidean, spherical, elliptic, and hyperbolic. It is intended
primarily for upper-level undergraduate mathematics students, since they
will have acquired the ability to formulate mathematical propositions
precisely and to construct and understand mathematical arguments.

The formal prerequisites are minimal, and all the necessary background
material is included in the appendixes. However, it is difficult to imagine a
student reaching the required level of mathematical maturity without a
semester of linear algebra and some familiarity with the elementary
transcendental functions. A previous course in group theory is not
required. Group concepts used in the text can be developed as needed.

The book serves several purposes. The most obvious one is to acquaint
the student with certain geometrical facts. These are basically the classical
results of plane Euclidean and non-Euclidean geometry, congruence
theorems, concurrence theorems, classification of isometries, angle addi-
tion, trigonometrical formulas, and the like. As such, it provides an
appropriate background for teachers of high school geometry.

A second purpose is to provide concrete and interesting realizations of
concepts students have encountered or will encounter in their other
mathematics courses. All vector spaces are at most three-dimensional, so
students do not get bogged down in summation signs and indices. The
fundamental notions of linear dependence, basis, linear transformation,
determinant, inverse, eigenvalue, and eigenvector all occur in simple
concrete surroundings, as do many of the principal ideas of group theory.
Also, students will be in a better position to integrate geometry with
topology and analysis after having worked with the projective plane and
the metric space axioms.

A third purpose is to provide students not only with facts and an
understanding of the structure of the classical geometries but also with an
arsenal of computational techniques and a certain attitude toward geomet-
rical investigation. They should not be concerned merely with questions of
existence (e.g., whether two figures are congruent) but with questions of xi



Preface construction (finding the isometry relating two figures in terms of the given
data). Many of the proofs and exercises take this approach. This point of
view makes it clearer whether or not a student's "proof" is valid. In
addition, it is more appropriate for applications in areas such as computer
graphics and computer vision. Although this book does not treat such
applications explicitly, the concepts and techniques used are playing an
important role in these fast-growing areas of computer science. (See, for
example, Foley and van Dam [14], Chapters 7 and 8, and [36].)

The fourth purpose is to provide a link between classical geometry and
modern geometry, with the aim of preparing students for further study and
research in group theory, Lie groups, differential geometry, topology, and
mathematical physics. From this viewpoint the book is actually a study of
the real two-dimensional space forms, the (flat) Euclidean plane, the
sphere (constant positive curvature), and the hyperbolic plane (constant
negative curvature). The isometry groups studied are Lie groups, and the
notion of homogeneous space implicitly underlies much of the discussion.
Although differential calculus is not used in the book, all the constructs
lend themselves easily to differential-geometric treatment.

Our approach to the hyperbolic plane allows one to "do" analytic
geometry there without burdensome calculations, thus removing some of
the mystery of hyperbolic geometry. Familiarity with the concepts and
computational techniques of hyperbolic geometry is an asset to any student
of modern geometry and topology. Such central areas as Thurston's work
on 3-manifolds and Penrose's work on relativity require a working
knowledge of hyperbolic geometry. (See Thurston [32] and Penrose [27]
for an introduction to these topics.)

In this book each of the geometries is developed separately. Each
geometry has the notion of point, line, distance, perpendicularity, ray,
angle, triangle, reflection, congruence, and so forth. The amount of detail
with which each topic is treated varies with the setting and generally
decreases as the book progresses and readers get their bearings. Some
topics have been treated extensively in one setting and very briefly in
another. Other topics are merely introduced in the exercises. I have tried
to avoid repetition of similar arguments in different settings while allowing
readers to see a good variety of methods and viewpoints. For theorems
presented in a particular setting, readers should ask themselves the
questions: Does the statement make sense in other settings? If so, is it
true? Does the same proof work? What modifications are required?
Certain unifying notions become evident (e.g., the three reflections
theorem, true in all settings for all types of pencils), whereas other
statements (e.g., that the perpendicular bisectors of the three sides of a
triangle are concurrent) are not universally true, but an appropriate
reformulation may be.

xii The entire book may be covered in a two-semester course. In a



one-semester course I usually cover Chapter 1, part of Chapter 2, the first Preface
half of Chapter 4, Chapter 7, and those sections of Chapters 5 and 6
relevant to Chapter 7. There are numerous opportunities for excursions
into areas of interest to the instructor (e.g., projective geometry, Galilean
geometry, Lorentzian geometry, geometry over the complex numbers or
finite fields). Some source materials for such excursions are listed in the
references.

The exercises are closely related to the text material. Some of them
require specific numeric computations and provide a means of testing the
students' understanding of the formulas presented. Others require students
to supply proofs that have been omitted in the text. Students should do a
sufficient number of these so that they are confident that that they could do
the others on an examination if required. The rest of the exercises extend
the results of the text in some way. They can be omitted without loss of
continuity. However, these are the most enjoyable exercises, and students
are encouraged to work on as many of them as time permits.

I would like to thank several generations of students at the University of
Notre Dame and Indiana University at South Bend, whose interest in
geometry provided the impetus for developing the material and whose
reactions have helped to shape the book. Thanks are also due to a long list
of typists at these institutions and at McMaster University who have
worked on the various preliminary versions of the manuscript as well as the
final one. Finally, I am grateful to those colleagues and students who have
made helpful comments on various versions of the manuscript or assisted in
its preparation in other ways: in particular, Nancy Bridgeman, Michael
Brown, Kristine Broadhead, Thomas Cecil, H. S. M. Coxeter, K. Nomizu,
and Debra van Rie.

PATRICK J. RYAN
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Notation and
special symbols

General Remarks: Points are denoted by uppercase Roman letters. Lines
are denoted by lowercase script letters and lowercase Greek letters. Angles
are denoted by uppercase script letters. Figures are usually denoted by
uppercase script letters. Some symbols are used in more than one way.

Specific Symbols:

R
R2, R3, Rn

E2, E3, E"
S2

P2

H2

D2

O(2), O(3)
SO(2), SO(3)
GL(3), GL(n)
SL(3), SL(n)
PGL(2)
GAL(2)

AF(2)
Sim(E2)

J{M)

TRANS(€)

the set of real numbers
the vector space of all ordered pairs (respectively
triples, rc-tuples) of real numbers; also called the
Cartesian plane (resp. three-space, n-space)
the Euclidean plane (resp. three-space, rt-space)
the two-sphere
the projective plane
the hyperbolic plane
the Klein disk model of H2

the orthogonal group of R2 (resp. R3)
the special orthogonal group of R2 (resp. R3)
the group of all invertible 3 x 3 (resp. n x n) matrices
the special linear group
the group of collineations of P2

the Galilean group of R2

the symmetric group of permutations of three letters
the cyclic group of order m
the dihedral group of order 2ra
the group of all affine transformations of R2

the group of all similarities of E2

the group of all translations of E2

the group of all isometries of a geometry M
the group of all symmetries of a set A
the group of all affine symmetries of a set A
the group of all translations along the line € xv



Notation and
special symbols

REF(^)

ROT(P)
DIS(^)

Q)

)

(x,y)
(A)

M
[a]
[11,6]
(a,b]
[v, w]
[G:H]

[P\ Q
[C; € n

(PQ)
PQ
(PQR)

T(A) or TA

PQ
PQ
it

IT

n

B
XVI

the group generated by reflections in all lines of the
pencil 9
the group of all rotations leaving P fixed
the group of all parallel displacements determined by
the pencil SP
the set of all points
a pencil of lines
the set of all lines
a figure
the distance between the points P and Q
the distance between P and the closest point of €
the smallest number of the form d(P, Q) where P e (
and Q e m
the inner product of two vectors in R"
the group generated by a set of elements A
the absolute value of a number a
the length of the vector x in R"
the set of all multiples of the vector v
the equivalence class to which a belongs
the closed interval of real numbers r satisfying a^r^b
the interval of real numbers r satisfying a < r ^ b
the vector space spanned by vectors v and w
the index of a subgroup H in a group G
the affine reflection of E2 that leaves P fixed while
interchanging Q and R
the shear of E2 that leaves P fixed and sends Q to R
the perspectivity with center C mapping € to €'
the interval of real numbers r satisfying a < r < b
the point of R2 with coordinates a and b
the permutation that interchanges P and Q
the segment whose end points are P and Q
the cyclic permutation that sends P to Q, Q to R, and R
to P
the set of all points of the form TP, where P e A
the line containing points P and Q
the ray with origin P that contains Q
the natural projection determined by an equivalence
relation, TT(O) = [a]
the number (approximately equal to 3.14) that is the
smallest positive number 9 satisfying sin 6 = 0
a plane
parametric representation of a line
the set of all vectors that can be obtained by adding an



element of A to an element of B. If A = {P} is a Notation and
singleton, A + 5 may be written P + B special symbols

x e A x is an element of the set A
Ei, E2, . . . , .£„ standard unit basis vectors for R"
/ the identity matrix; the identity transformation
/ the complex structure on R2. In fact, / = rot(ir/2)
# the rectilinear completion of a figure &
vx in R2, if v = (v1? v2), then vx = (-v2, t>i)
A1- the set of all vectors orthogonal to every element of A
£ 1 m € is perpendicular to m
€ || m € is parallel to m
D end of a proof
Cl€ reflection in the line £
TV translation by the vector v
ref 9 reflection in the line through the origin with direction

vector (cos 9, sin 9)
rot 9 the rotation about the origin that takes (1 , 0) to

(cos 9, sin 9)
HP the half-turn about P
u x v the cross product of vectors u and v in R3

2^PQR the angle with vertex Q and sides QP and QR
APQR a triangle with vertices F, g , and R
det A the determinant of the matrix A
det(w, u, w) the determinant of the matrix whose rows are w, v, and

w
Gx = Orbit (JC) the orbit of a point A: by a group G
Gx = Stab(jc) the stabilizer of a point x in a group G
E summation sign
#A the number of elements in a set A
0 the empty set
A1 the transpose of the matrix A
= congruence of figures
= isomorphism of groups

Theorem Numbers: When theorems are referenced outside of the chapter
in which they occur, their numbers are prefixed with the chapter number.
For example, Theorem 4.21 refers to Theorem 21 of Chapter 4.

XVII





Historical introduction

In the beginning, geometry was a collection of rules for computing lengths,
areas, and volumes. Many were crude approximations arrived at by trial
and error. This body of knowledge, developed and used in construction,
navigation, and surveying by the Babylonians and Egyptians, was passed
on to the Greeks. Blessed with an inclination toward speculative thinking
and the leisure to pursue this inclination, the Greeks transformed geo-
metry into a deductive science. About 300 B.C., Euclid of Alexandria
organized some of the knowledge of his day in such an effective fashion
that all geometers for the next 2000 years used his book, The Elements, as
their starting point.

First he defined the terms he would use - points, lines, planes, and so on.
Then he wrote down five postulates that seemed so clear that one could
accept them as true without proof. From this basis he proceeded to derive
almost 500 geometrical statements or theorems. The truth of these was in
many cases not at all self-evident, but it was guaranteed by the fact that all
the theorems had been derived strictly according to the accepted laws of
logic from the original (self-evident) assertions.

Although a great breakthrough in their time, the methods of Euclid are
imperfect by modern standards. To begin with, he attempted to define
everything in terms of a more familiar notion, sometimes creating more
confusion than he removed. The following examples provide an illustra-
tion:

A point is that which has no part. A line is breadthless length. A straight line is a line which
lies evenly with the points on itself. A plane angle is the inclination to one another of two lines
which meet. When a straight line set upon a straight line makes adjacent angles equal to one
another, each of the equal angles is a right angle.

Euclid did not define length, distance, inclination, or "set upon." Once
having made his definitions, Euclid never used them. He used instead the
"rules of interaction" between the defined objects as set forth in his five
postulates and other postulates that he implicitly assumed but did not state.
Euclid's five postulates were the following:



Historical introduction I. To draw a straight line from any point to any other point.
II. To produce a finite straight line continuously in a straight line.

III. To describe a circle with any center and distance.
IV. That all right angles are equal to each other.
V. That, if a straight line falling on two straight lines makes the interior

angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are less than two right angles.

Euclid did not feel it necessary to enunciate the following postulate, even
though he used it in his very first theorem.

Two circles, the sum of whose radii is greater than the distance between their centers, and the
difference of whose radii is less than that distance, must have a point of intersection.

It is natural to ask why Euclid singled out his five postulates for explicit
mention. After Euclid, mathematicians attempted to make explicit the
assumptions that Euclid had neglected to mention. The fifth postulate
attracted much attention. It was cumbersome but intuitively appealing,
and people felt that it might be deduced from the other assumptions of
Euclid. Many "proofs" of the fifth postulate were proposed, but they
usually contained a hidden assumption equivalent to what was to be
proved. Three such equivalent conditions were:

i. Two intersecting straight lines cannot be parallel to the same straight
line. (Playfair)

ii. Parallel lines remain at a constant distance from each other. (Proclus)
iii. The interior angles of a triangle add up to two right angles. (Legen-

dre)

In 1763 a man named Kliigel wrote a dissertation at Gottingen in which
he evaluated all significant attempts to prove the parallel postulate in the
2000 years since Euclid had stated it. Of the 28 proofs he examined, not
one was found to be satisfactory. Of particular interest was the work of the
Jesuit Saccheri (1667-1733). Saccheri assumed the negation of the fifth
postulate and deduced the logical consequences, hoping to arrive at a
contradiction. He derived many strange-looking results, some of which he
claimed were inconsistent with Euclid's other postulates. Actually, he had
discovered some fundamental facts about what we now call hyperbolic
geometry.

Gauss (1777-1855) was apparently the first mathematician to whom it
occurred that this negation might never lead to a contradiction and that
geometries differing from that of Euclid might be possible. The thought
struck him as being so revolutionary that he would not make it public. In
1829 he wrote that he feared the "screams of the dullards," so entrenched
were the ideas of Euclid. Lobachevsky (1793-1856) and Bolyai (1802-

2 1860) independently worked out geometries that seemed consistent and



yet negated Euclid's fifth postulate. These works were published in 1829 Historical introduction
and 1832, respectively. Experience proved that Gauss had overestimated
the dullards. They paid no attention to the new theories.

Almost 40 years later Beltrami (1835-1900) and Klein (1849-1925)
produced models within Euclidean geometry of the geometry of Bolyai and
Lobachevsky (now called hyperbolic geometry). It was thus established
that if Euclid's geometry was free of contradiction, then so was hyperbolic
geometry. Because hyperbolic geometry satisfied all the assumptions of
Euclid except the parallel postulate, it was finally determined that a proof
of the postulate was impossible.

With this branching of geometry into Euclidean and non-Euclidean, it
became useful to categorize results according to their dependence on the
fifth postulate. Any theorem of Euclid that made no use of the parallel
postulate was called a theorem of absolute geometry. It was equally valid in
Euclidean and hyperbolic geometry. By contrast, certain Euclidean
theorems that depended only on postulates I, II, and V became known as
affine geometry. Theorems common to absolute and affine geometry are
called theorems of ordered geometry.

The study of central projection was forced upon mathematicians by the
problems of perspective faced by artists such as Leonardo da Vinci
(1452-1519). The image made by a painter on canvas can be regarded as a
projection of the original onto the canvas with the center of projection at
the eye of the painter. In this process, lengths are necessarily distorted in a
way that depends on the relative positions of the various objects depicted.
How is it possible that the geometric structure of the original can still
usually be recognized on the canvas? It must be because there are
geometric properties invariant under central projection. Projective geome-
try is the body of knowledge that developed from these considerations.
Many of the basic facts of projective geometry were discovered by the
French engineer Poncelet (1788-1867) in 1813 while a prisoner of war,
deprived of books, in Russia. Affine and projective geometry are also
closely related, because the study of those properties of figures that remain
invariant under parallel projection also leads to affine geometry. This
aspect of affine geometry was recognized by Euler (1707-1783).

Because progress in geometry had been frequently hampered by lack of
computational facility, the invention of analytic geometry by Descartes
(1596-1650) made simple approaches to more problems possible. For
instance, it allowed an easy treatment of the theory of conies, a subject
which had previously been very complicated. Since the time of Descartes,
analytic methods have continued to be fruitful because they have allowed
geometers to make use of new developments in algebra and calculus.

The scope of geometry was greatly enlarged by Riemann (1826-1866).
He realized that the geometry of surfaces provided numerous examples of
new geometries. Suppose that a curve lying on the surface is called a line if 3



Historical introduction each small segment of it is the shortest curve joining its end points. Then,
for instance, if the surface is a sphere, the lines are the great circles. In this
geometry, called double elliptic geometry, the following theorems are valid:

i. Every pair of lines has two points of intersection. These points are
antipodal; that is, they lie at the opposite ends of the same diameter.

ii. Every pair of nonantipodal points determines exactly one line. An
antipodal pair has many lines through them.

iii. The sum of the angles of a triangle is greater than TT. It is possible for a
triangle to have three right angles.

Riemann and Schlafli (1814-1895) considered higher-dimensional
Euclidean and spherical spaces, and in his celebrated inaugural lecture at
Gottingen in 1854, Riemann laid the foundations of geometry as a study of
general spaces of any dimension, which are now called Riemannian
manifolds. These spaces are the principal objects of study in modern
differential geometry. As the name suggests, the methods used depend on
calculus. The geometry of Riemann was used by Einstein (1879-1955) as a
basis for his general theory of relativity (1916).

Although Gauss observed the relationship between the angle sum of a
triangle and the curvature of the surface on which it occurs, Riemann and
those who followed him carried these ideas over to Riemannian manifolds.
Thus, curvature is still an important phenomenon in differential geometry,
and it indicates how much the geometry of the space being studied differs
from being Euclidean.

Although Euclid believed that his geometry contained true facts about
the physical world, he realized that he was dealing with an idealization of
reality. He did not mean that there was such a thing physically as
breadthless length. But he was relying on many of the intuitive properties
of real objects. In order to free geometry from reliance on physical
concepts for its proofs, Hilbert (1862-1943) rewrote the foundations of
geometry in 1899. Hilbert started with undefined objects (e.g., points,
lines, planes), undefined relations (e.g., collinearity, congruence,
betweenness), and certain axioms expressed in terms of the undefined
objects and relations. Anything that could be deduced from this by the
usual rules of logic was a geometrical theorem valid in that particular
geometry. The choice of axioms was a matter of taste. Of course, some
geometries would be interesting and some not, but that is a subjective
judgment. The theorems do not depend on the nature of the undefined
objects but only on the axioms they satisfy.

Seeing all these geometries around him, Klein, in 1872, proposed to
classify them according to the groups of transformations under which their
propositions remain true. Since then, group theory has been of increasing
importance to geometers. The new geometries of Riemann gave rise to

4 complicated groups of transformations. Soon techniques were developed


